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Abstract—More than 30% of the world population have vision
defects, for some of which causes are still unclear. Visual health
monitoring for detection, prevention, and treatment is possible
but still very limited due to limited access to expensive specialized
equipment and domain experts. Therefore, it is difficult to provide
long-term visual health monitoring for a large population. In
this paper, we present the design and evaluation of Cyber
Glasses, low-cost computational glasses as a step toward long-
term large-scale human visual health monitoring. At the core of
Cyber Glasses are three key novel contributions: an integration
of low-cost commercial off the shelf (COTS) components, an
adaptive data collection mechanism taking into account tradeoffs
between sensing accuracy, latency, memory, and energy, and a
suit of energy efficient algorithms to reduce sensor data size
and to extract meaningful human vision information to high-
level applications. We conduct a number of experiments to verify
the feasibility of Cyber Glasses to enable long-term large-scale
human visual health monitoring.

I. INTRODUCTION

Human vision is the primary sense that provides approx-
imately 80% of the information received from the physical
world as well as important information about individual health
[1]. More than 30% of the world population have vision
defects such as myopia [2], which is an eye disease causing
nearsighted vision and is associated with increased risk of pre-
mature cataracts, glaucoma, retinal detachment and muscular
degeneration [2]. Human vision defects have great negative
impacts on human health, productivity, and social welfare.
For example, myopia is an increasing trend in Singapore with
80% of the population affected, causing a shortage in army
recruitment [3].

Visual health monitoring for detection, prevention, and
treatment is possible but still very limited due to limited
access to expensive specialized equipment and domain experts.
For example, a patient has to make an appointment, pay
fees, and go to a clinic to get eyes checked by a doctor.
Thus, it is difficult to provide visual health monitoring to a
large population for an extended period of time. As a result,
diagnostics are typically passive; people realize a problem
only when they notice some symptoms (e.g., blurred images).
In addition, due to the lack of human vision information
collected from a large population for a long period of time,
causes of and prevention for eye diseases like myopia are not
well understood. Indeed, it is still controversial about roles
of genetics, nutrition, environment, and vision activities like
prolonged close work in causing myopia [4].

We believe that long-term large-scale human visual health
monitoring is essential in improving human visual health.
Long-term monitoring can allow us to detect early vital signs,
to understand the progression of some vision problems, and to
have timely preventive solutions. Large-scale monitoring can
allow us to understand better causes of visual health problems
across geographical regions, origins, and socioeconomic status.
A visual health monitoring framework must be low-cost,
ubiquitous, and unobtrusive. One way to achieve this goal is
to instrument eyeglasses to collect various information about
the human eyes. It is, however, challenging to provide sens-
ing services on low-power embedded platforms with limited
memory, energy, and computation.

In this paper, we design and evaluate Cyber Glasses, which
have integrated sensing, computation, and communication ca-
pabilities to enable long-term large-scale human vision health
monitoring. At the core of Cyber Glasses are three key novel
contributions: an integration of low-cost commercial off the
shelf (COTS) components, an adaptive data collection mecha-
nism taking into account tradeoffs between sensing accuracy,
latency, memory, and energy, and a suit of energy efficient
algorithms to extract meaningful human vision information to
high level applications. The total cost of the COTS components
is less than $200. We conduct a number of experiments to
verify the feasibility of Cyber Glasses in enabling long-term
large-scale human visual health monitoring.

The contributions of the paper are following.

• Design and evaluation of a low-cost Cyber Glasses
with integrated sensing, communication, and compu-
tation for human visual health monitoring.

• Development of efficient sensor data compression and
collection mechanisms that reduce the amount of
data stored and transmitted, thus conserves memory,
energy, and bandwidth to prolong the glasses lifetime.

• An analysis of tradeoffs for various parameters includ-
ing sensing quality, delay, and energy consumption.
Based on our analysis, it is possible to provide long-
term large-scale human visual health monitoring using
Cyber Glasses.

In the following sections, we present background in human
vision and requirements for a visual health monitoring frame-
work (Section II). Based on the requirements, we describe the
design of our monitoring framework based on Cyber Glasses



Fig. 1. Basic Eye Anatomy (Adopted from [5]).

with specific rationale about choices of sensors, networking
technologies, as well as data processing and collection algo-
rithms in Section III. We evaluate the feasibility of Cyber
Glasses to enable long-term large-scale visual health moni-
toring in Section IV as well as our case study on extracting
meaningful health-related information and classifying user
activities based on blinks using Cyber Glasses in Section V.
Finally, we conclude the paper in Section VI.

II. VISUAL HEALTH MONITORING REQUIREMENTS

The goal of this work is to enable human vision moni-
toring based on Cyber Glasses over a large population for an
extended period of time. Based on recommendation from [4]
and discussions with optometry researchers, we define a vision
profile to be collected as a set of parameters encompassing
viewing information and eye states. We briefly describe here
main parameters as well as what they can contribute to
understanding of visual health problems.

Viewing information includes:

• Viewing distance: Distance from eyes to the viewing
object. Collecting viewing distance over time can
provide a good understanding of how users use their
eyes and can relate that information to certain diseases.

• Interrupt: Number of times users change their view in
a period of time. This information is useful to detect
unhealthy behavior such as staring at an object for a
long time.

• Viewing angle: The angle of the eyesight and the
surface of the viewing object. This information is
useful to detect abnormality in eye behavior.

• Ambient light, temperature, and humidity: These are
ambient conditions around the eyes. This information
can help providing useful feedback to users to change
the ambient conditions to keep their eyes healthy.

Eye states include (refer to Figure 1 for basic eye anatomy):

• Pupil position and size: Pupil position and size can
provide useful information about the user health as
well as emotion.

• Accommodation: Accommodation is the process by
which the vertebrate eye changes optical power to
maintain a clear image (focus) on an object as its
distance varies. This information is useful in under-
standing causes and progression of vision defects such
as myopia.

• Eye aperture size: The opening of the iris so that
different amount of light can enter into the eye. This

TABLE I. SENSING REQUIREMENTS AND HEALTH CARE
APPLICATIONS.

Sensing requirements Health care research/applications
Viewing distance Close work prevention
Interrupt Close work prevention
Viewing angle Abnormality detection
Ambient conditions Dry eye prevention, adaptive environment
Blink frequency Activity classification, detection of drowsiness
Eye squinting Detection of drowsiness
Strabismus Abnormality detection
Pupil position and size Abnormality detection
Eye aperture size Abnormality detection

Fig. 2. Networking Options for Cyber Glasses.

information is useful in understanding the eye reaction
to different stimulus.

• Blink frequency: Blinking is a quick eye motion of
closing and opening the eyelids. Blink frequency is
the number of times a user blinks eyes in a period of
time. This information is useful in understanding the
user general health, emotion or activities.

• Eye squinting: A user squints eyes when the user looks
with the eyes partly closed. This information is useful
in understanding the user concentration.

• Strabismus: A condition in which eyes are not prop-
erly aligned with each other. This information is useful
in detecting early sign of abnormality of the eyes.

Table I summarizes main sensing requirements and their
health care applications. In addition, the monitoring framework
must also be low-cost, ubiquitous, and unobtrusive to be
practically deployed in a large population.

III. VISION MONITORING FRAMEWORK WITH CYBER
GLASSES

We now present our framework using Cyber Glasses to
enable vision monitoring with the above health related re-
quirements as well as system requirements including low-
cost, ubiquitous, and unobtrusive. Figure 2 shows the over-
all architecture of the framework. At a high level, Cyber
Glasses collect vision profile from a user. The information is
forwarded to a database or cloud-based repository over the
Internet. Health care experts who have permissions to access
the information can provide more insight feedback to the user
as well as understand more about causes and progression of
certain visual health diseases. The sharing and feedback of
health information can utilize existing work in mobile health
integration such as Open mHealth [6] and are not the focus of
this paper. Instead, we focus on the design of Cyber Glasses as
well as system support to smoothly integrate our vision health
monitoring framework in Figure 2.

Figure 3(a), 3(b), and 3(c) show the platform overview,
our design concept, and the actual prototype that we have de-
veloped respectively. The platform is organized into five main
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layers: sensing, networking, processing and collection, visual
health extraction, and application. The sensing layer is respon-
sible for collecting physical measurements that contain visual
health information. The networking layer is responsible for
providing connectivity to other devices (e.g., a smart phone)
and to the Internet so that sensing data can be transferred to
a common repository. The processing and collection layer is
responsible for compressing data and deciding how data are
reported (e.g., streaming video in real-time or storing the video
and forwarding them later). The visual health information
extraction layer is a suit of algorithms that extract various
vision parameters described in Section II from the collected
data. Finally, the application layer contains a set of applications
or enabled research in healthcare.

Cyber Glasses are built from commercial off the shelf
(COTS) components. The glasses frame is taken from regular
eyeglasses. The frame is strong enough to carry other compo-
nents including embedded processing unit, sensors, cameras,
and batteries. The camera is placed in the lower front of the
eye. The camera is placed close to lower eyelid to be able
to capture images of the whole eye. Other sensors are placed
at various locations on the frame. The embedded processing
unit is embedded on the glasses in the left temple. Battery is
embedded in the right temple.

We use an embedded processing unit (MK802), which
contains an ARM Cortex A8 processor with 512MB RAM.
It can support Android Cream Sandwich and Linux Linaro
operating systems. Although Android is more energy efficient
than Lunux Linaro, we use Linux Linaro for the first prototype
due to its better hardware compatibility. We use Innergie
PocketCell battery, which has a capacity of 3000 mAh at 5V
and can power the Cyber Glasses through USB 2.0 connection.
We use a Sony PlayStation Eye Camera, which satisfies video
quality, frame rate, and hardware compatibility. Finally, we use
various sensors from Phidgets for ambient, acceleration, and
gyroscope sensing. The following sections will describe each
layer in detail.

A. Sensing

At the sensing layer, various sensors are selected based
on the vision monitoring requirements described in Section
II. The sensors are organized into three categories; ambient
sensors (e.g., light, humidity, and temperature), video, and
context sensors (e.g., accelerometer, and gyroscope).

For all sensors and cameras, they should have low cost,
small size, high accuracy, and low energy consumption. For
ambient sensors such as humidity, temperature, and light

sensors as well as context sensors such as accelerometer and
gyroscope, we use sensors from Phidgets [7]. These sensors
are low-cost and plug-and-play. Thus, it is relatively easy to
add new sensors as well as place sensors at different locations
on the frame to study their impacts on sensing. There is an
interface board that connects to these sensors to the MK802
minicomputer through USB. We attach sensors around the
eye region to record ambient light, humidity and temperature
around both eyes.

For cameras, both outward and inward facing cameras are
needed. Integrating outward facing cameras is straightforward.
Integrating inward facing cameras is challenging because there
are some tradeoffs that we need to consider in choosing a
camera. First, a camera should capture qualifying videos in
terms of image quality (320x480) and frame rate (30 fps).
These are two essential requirements enabling eye-monitoring
applications. Second, because of close distance from the cam-
era to the eye, the camera needs to have large enough field
of view to capture the whole eye and also needs to have a
correct focus. Third, cameras should be small enough to easily
attach to the glasses without making user uncomfortable while
wearing the glasses. Moreover, cameras attached in front of
the eye should not block the user’s view. In the very first
prototype, we decide to use a Red-Green-Blue (RGB) Sony
PlayStation Eye Camera, which satisfy video quality, frame
rate and hardware compatibility.

A limitation of our current design using RGB cameras
is that the cameras must be pointing toward the eyes to
capture images of the eyes. Thus, they will not be completely
unobtrusive. A possible alternative option is to use infrared
cameras mounted on the side of the frame to capture infrared
images reflected from transparent IR-mirror on the glasses
lenses themselves. This option is promising and has actually
been applied in Tobii glasses [8]. However, extra components
including IR emitter, IR reflector, and special glasses lenses
are required. Our design does not require users to wear lenses.
In addition, extra energy will be needed for the IR-emitter
to emit IR light to the eyes. Finally, IR images are in grey
scale, which may not contain certain information of the eyes
compared to colored images (e.g., color of red eyes). We use
the Sony PlayStation Eye Camera mainly for compatibility
reasons. With a holistic design in production, we believe that
much smaller wide-angle cameras can be integrated without
viewing obstruction.

GPS and compass can be useful to provide sensing data
context. For example, they can provide extra information about
where the user is and which direction the user is looking



TABLE II. SENSORS FOR CYBER GLASSES.

Sensors Requirements
Outward cameras Viewing distance,

interrupt, viewing angle
Inward cameras Blinking, squinting, Strabismus,

Accommodation and aperture size
Light, Humidity Ambient conditions
Temperature
Accelerometer View interrupt
Gyroscope Viewing angle

at. They, however, are more useful for interaction with the
physical world than for health monitoring purposes. Hence,
we do not include them in our prototype. Several other health
parameters such as pulse, skin temperature, brainwave (EEG),
and heartbeat (ECG) signals are also very useful for health
monitoring. However, they often require semi-invasive sensors
(e.g., sensors attached to skin). Hence, we decide not to include
these sensors in our design.

Table II shows the mapping between the sensors and the
requirements that the sensor data can potentially provide.

B. Networking

There are several networking technologies including
3G/4G, Wifi, Bluetooth, and Zigbee for Cyber Glasses to con-
nect to a network to transfer sensor data. Each technology has
its own advantages and disadvantages. Given the requirements
on low-cost and high data rate, Wifi and Bluetooth are the two
most suitable choices for Cyber Glasses. We chose Wifi for our
prototype for several reasons. First, it is already available on
the MK802 platform. Second, it is much easier to integrate
with existing services (e.g., cloud storage) on the Internet.
Finally, it can leverage existing Wifi infrastructure in office and
residential buildings. It does not require a third device to act
as a gateway to the Internet like Bluetooth. Cyber Glasses still
can connect to a Wifi enabled device (e.g., smart phone) if it
is necessary. Although, Wifi consumes more energy compared
to Bluetooth, our initial prototype shows that Cyber Glasses
with Wifi can have a reasonable lifetime. Our evaluation of
energy consumption is described in detail in Section IV.

C. Processing and Data Collection

Sensor data processing and collection consume a significant
amount of energy and are essential to prolonging the Cyber
Glasses lifetime. Ideally, the amount of data being collected
and transmitted should be minimized. However, video in-
trinsically has large size. Thus, it is important to efficiently
compress video as well as other sensor data for processing
and transmission. In the following subsections, we present
several techniques to reduce the amount of sensor data for
transmission, storage (Section III-C1), and processing (Section
III-C2). We also present an adaptive data collection mechanism
(Section III-C3) to extend the Cyber Glasses lifetime.

1) Content Driven Video Compression: One problem with
long-term monitoring with cameras is the large storage re-
quirement for video data. Currently we use a camera can
capture video at a resolution of 320x240 at 30 fps. However,
in the real integration, it can record video at about 20 fps.
The amount of memory storage required to store video at the
above resolution in MPEG-4 format, a popular video format
for low resolution video, for 30 minutes, 1 hour, and 2 hours

are 127 MB, 308 MB, and 807 MB respectively. With a large
capacity secure digital (SD) card (e.g., 32GB micro SD card),
we can capture and store video for more than a day and
upload the video to a server when the glasses are connected
to the Internet. However, the large amount of video data
itself requires significant processing and networking resources.
Therefore, it is important to reduce the amount of video data.

One approach is to reduce the resolution of video frame
(e.g., to 60x80). The reduction of frame size will lose certain
information in the video. Moreover, for wearable devices,
video resizing is a computationally heavy task that requires
significant amount of energy. Regular COTS cameras often
have certain resolution that allows highest frame rate (usually
30 fps for current 2.0 USB interface). Further reducing the
video resolution will affect the recording frame rate, which is
critical in some applications such as blinking detection.

In this paper, we propose a content driven approach to
optimize the storage for Cyber Glasses. The key observation
is that for cameras pointing towards the eyes, the recorded
images have similar content structure (e.g., the eye shape).
Therefore, we apply eigen-eye [9], a set of vectors containing
main features in images of eyes. From a dataset of eyes, we
extract eigen-eye using Principal Component Analysis (PCA),
which convert a set of images of possibly correlated variables
into a set of values of linearly uncorrelated variables called
principal components [10]. PCA is applied to capture the
variance in the given dataset. In [11], PCA was applied to
extract eigenface for human face recognition. Note that in
Cyber Glasses, inward cameras are used to capture images
of the user’s eyes. The most variances of the eye images are
the states of the eye of a user (e.g., closing, opening, gazing)
and between users. Instead of storing the captured video, for
each video frame, we just need to store the first n coefficients
after projecting that video frame onto an extracted subspace of
basis images. The subspace constructed by first n basis images
conveys the most variance of the given dataset. So, by using
those first n coefficients, we can reconstruct the original frames
with negligible error. Therefore, applying PCA to the dataset
of eye images to extract eigen-eye reduces the amount of data
storage.

To apply the eigen-eye approach to Cyber Glasses, we
prepare a collection of eye images and apply PCA to extract
basis images. The subset of n basis images, which contain
the most variance of the dataset, is stored in the server and
synchronized with Cyber Glasses via cloud synchronization
technique (Figure 3). Cloud synchronization helps quickly
update the trained results to the Cyber Glasses. These enable
continuous monitoring over a large scale. One slightly different
approach is to store and extract set of basic vectors for each
single person. However we try it and see that it did not increase
the contribution of first n basis vectors significantly compared
to a generic dataset of multiple users.

2) Compressive Sensing: We consider applying compres-
sive sensing (CS) [12] techniques to reduce the amount
of sensor data. In compressive sensing, a high dimensional
sparse signal can be reconstructed exactly from only a small
number of measurements. Consider a signal f represented in
the standard basis as a vector of length n, where f ∈ Rn. f
can also be represented in another bases such as Fast Fourier
Transform (FFT) using a coefficient vector f̂ ∈ Rn. The basis
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Fig. 3. Content Driven Video Compression: Video frames are projected onto
a subspace of basis images to get n coefficients. Only these n coefficients are
stored in a database. Extracting and synchronizing n basis images are driven
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function can be characterized by an invertible matrix Ψ ∈ Rnn

and the relation between f and f̂ can be stated as:

f = Ψf̂ and f̂ = Ψ1f

The key idea is that if a signal f is sparse (i.e., it can be
expressed in some domain as f̂ in a few linear combinations
of basis functions), then we can reconstruct the signal from a
few measurements. One way to obtain these measurements is
to project the signal f using a random matrix.

Let m be the number of random measurements can be
obtained as a vector h ∈ Rm by projecting f to a projection
matrix P of m by n random entries, i.e., h = Pf . Projection
can be obtained by special hardware [13] or by sampling the
signal first then compute the projection.

One key theoretical result is that if m ≥ c × |k| × log n
where c is a constant, k is the number of non-zero coefficients
of f in the domain that f is sparse, then solving the optimiza-
tion problem∑t=n−1

t=0 |g(t)| such that ˆg(ω) = ˆf(ω) for all ω ∈ Ω

will give f exactly with overwhelming probability. There
may be measurement noise in an application, another theoret-
ical result states that the reconstruction error is bounded and
proportional to the noise level in most cases [14].

Compressive sensing is useful when (i) measurements are
expensive to obtain (e.g., magnetic resonance imaging [15])
or (ii) computation is expensive in the original signal domain
(e.g., video background subtraction [16], [17]). For Cyber
Glasses, compressive sensing can be helpful to reduce the
captured video to a small number of measurements to calculate
viewing distance or blinking rate efficiently. To apply CS in
Cyber Glasses, we construct a random Bernoulli projection
matrix with value +1/-1. We project each video frame to the
projection matrix to get a vector of compressive measurements.
Then, we apply PCA to extract the structure of dataset of the
compressive measurements. We will show that compressive
sensing works well for close-eye detection, an important step
in eye-blink detection in Section IV-B4.

3) Energy Aware Adaptive Data Collection: Data collec-
tion consumes a significant amount of energy and directly
affects the Cyber Glasses lifetime. Key parameters in the data
collection are the amount of computation to be done at the
device itself, the amount of data being transmitted, and the time
Cyber Glasses has to keep the network module (e.g., radio)
on for transmission. We consider three main data collection
mechanisms: in-device processing, stored and forward, and
real-time streaming. Their description as well as qualitative
tradeoffs in terms of energy, latency, and memory are described
in Table III.

We present detail quantitative evaluation of these tradeoffs
in Section IV-B. The key challenge is to adaptively choose a
data collection mechanism based on application requirements
(e.g., real-time monitoring) and the energy budget of the Cyber
Glasses. We propose an energy aware adaptive data collection
algorithm that takes into account the application minimum
sampling requirements, minimum lifetime requirement, and
latency to adjust the Cyber Glasses operation to maximize its
lifetime. At the core of the algorithm is a linear optimization
problem that maximize the Cyber Glasses lifetime while satis-
fying the minimum sampling requirement, minimum lifetime,
and latency subject to the device energy and storage budget as
well as network availability.

D. Applications

This layer contains a number of applications based on
Cyber Glasses. The applications can be detecting drowsiness,
detecting abnormal or vital signs, or classifying user emotional
level. Collectively, data collected from a large population
can enable understanding of causes and progression of some
visual health diseases. In this paper, we will present our
results in evaluating a blinking detection algorithm that we
developed specifically for low-power embedded devices like
Cyber Glasses in Section V.

IV. EVALUATION

A. Goal and Metrics

There can be a number of aspects to be evaluated for Cyber
Glasses. In this paper, we focus on evaluating the feasibility
of using Cyber Glasses for (i) long-term and (ii) large-scale
human visual health monitoring. In terms of long-term, we
analyze the energy consumption in various configurations
to see if feasible to provide continuous monitoring for the
whole day. Our assumption is that, the Cyber Glasses can be
recharged daily just like other personal computing devices such
as phones and laptops. In terms of large-scale, we develop a
blink-based activity classification application and conduct real
experiments with a small number of people. We evaluate if it is
feasible to extract high-level information from Cyber Glasses
across different people. We understand that a real clinical trial
with a large number of participants would reveal more insights
about this aspect. However, it will be our future work.

B. Evaluation Results

In this section, we present our evaluation results in terms
of energy consumption for different device configurations,
latency and energy consumption tradeoff, content driven data
compression, and compressive sensing.



TABLE III. DATA COLLECTION MECHANISMS FOR CYBER GLASSES.

Collection Mechanism Description Energy, latency, and memory tradeoff
In-device processing Process all measurements in Cyber Glasses, store

the results and only report data when networking
is available

Cyber Glasses cannot process data fast enough.
Results are delayed.

Stored and forward Measurements are stored in Cyber Glasses and pe-
riodically or opportunistically reported to database

Require enough storage for data, delay varies
depending on the reporting period.

Real-time streaming Measurements are reported as soon as they are
captured.

Cyber Glasses must be connected to a network at
all time.

TABLE IV. CONFIGURATIONS.

Notation Configuration
[1] MK802
[2] MK802, sensors
[3] MK802, sensors, collecting data
[4] MK802, camera
[5] MK802, sensors, camera
[6] MK802, sensors, camera, running

blink detection algorithm
[7] MK802, sensors, camera, collecting data,

running blink detection algorithm
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Fig. 4. Energy Consumption : The energy consumption ranges from 3 Watts
to 4.5 Watts with a significant jump when the camera is active in configuration
[4]. With a 3000 mAh × 5V battery, Cyber Glasses can run continuously from
4 to 5 hours.

1) General Energy Consumption: We measure energy con-
sumption for Cyber Glasses with different configurations de-
scribed in Table IV.

Figure 4 shows the power consumption of Cyber Glasses
in the above configurations with and without Wifi on. As
expected, configurations with Wifi on always consume more
energy than configurations with Wifi off. The energy consump-
tion ranges from 3 Watts to 4.5 Watts with a significant jump
when the camera is active in configuration [4]. With a 3000
mAh × 5V battery, Cyber Glasses can run continuously from
4 to 5 hours. With two batteries, Cyber Glasses can provide
continuous monitoring for the whole day. With a more careful
integration and optimization and increasing efficient energy
storage technologies, Cyber Glasses can enable monitoring for
days before being recharged.

2) Latency and Energy Tradeoff: Table V shows different
settings for the store and forward data collection mechanism.
We only analyze tradeoffs between latency and energy con-
sumption for video because of its significant amount of data.

Figure 5 shows the energy consumption for the above set-
tings. Streaming video consumes the most amount of energy.
Other approaches capture video in blocks of 1, 5, 30, and 4
hours with wireless turned off and then only turned on at the
end of each block to upload the video to a cloud storage. As the

TABLE V. STORE AND FORWARD SETTINGS.

[Streaming] streaming camera
[1m] capture and store video of 1 min, keep synchronizing with

cloud
[5m] capture and store video of 5 min, Wifi is only on for

synchronizing
[30m] capture and store video of 30 min, Wifi is only on for

synchronizing
[4h (1)] capture and store video of 4 hours, Wifi is only on for

synchronizing
[4h (2)] capture and store video of 4 min, Wifi on for synchronizing

only after having finished capturing

Streaming 1m 5m 30m 4h (1) 4h (2)
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Fig. 5. Latency and Energy Consumption: As the delay duration increases,
the energy consumption decreases. The tradeoff here is the increasing amount
of memory for storing the captured video.

block duration increases, the energy consumption decreases.
Another tradeoff here is the increasing amount of memory
for storing the captured video. The energy saving comes
from keeping the Wifi networking support off as much as
possible. Hence, an optimal approach for data collecting is
the delay reporting data as late as possible without violating
the minimum latency requirement of the application.

3) Data Driven Video Compression: One of the possibility
to reduce amount of storage is to further down sample video
size and save in a different format other than the regular video
codec MPEG-4. We down sample eye images to very small
size and then reconstruct them back to the original size. We
use bicubic interpolation as the resizing method. We select
the same number of principle component coefficients as the
number of pixels of the resized images. For example, for
images of size 80x60, we down sample them to size 8x6, and
also extract the first 48 PCA coefficients; for image of size
160x120, we down sample them to size 16x12, and also extract
the first 192 PCA coefficients. We then reconstruct the resized
images to the original size 80x60 and 160x120 respectively. We
calculate average peak signal-to-noise ratio (PSNR) of pairs
of original image and reconstructed images for both methods.
The higher the PSNR is, the better the reconstruction is. Using
PCA coefficients, the reconstructed images have the average
PSNR of 29.5 and 32.5 compared to 25.5 and 29 using image
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(c) Storage Size of Stored Video vs Stored Co-
efficients of Principle Components (PC): storing
certain amount coefficients number of PC reduces
significantly amount of storage.

resizing for 80x60 and 160x120 resolution respectively.

As shown Figure 6(a), the first 50 singular values corre-
spond to first 50 basis images captures the major structure
of the dataset. Figure 6 shows the original 120x160 images
and the reconstructed images using 50 coefficients. Figure 6(b)
shows the result of applying PCA to get coefficients and using
those coefficients for detecting close eyes, a step in detecting
eye-blinks. We achieve both precision and recall of more than
95%.

Figure 6(c) shows the amount of storage for both methods.
Compared to the smallest video resolution we can capture at
80x60, the amount of data storage in our method is several
times smaller.

4) Compressive Sensing: To apply Compressive Sensing
for Cyber Glasses, we construct a random Bernoulli projection
matrix with value +1/-1. We project each video frame to
projection matrix to get a vector of compressed measurements.
We then apply PCA to extract the structure of dataset of
compressed measurements. The results are reported in Figure
7(a) with different compressing sizes. With a few compressive
measurements, 96 coefficients compared to 80x60 images, the
measurements still preserve the variance information of the
original dataset.

We also test the same close-eye detection method using
compressive measurements and show the results in Figure 7(b).
We still can achieve a comparable performance (95% precision
and 90% recall) in detecting close eyes. Thus, compressive
measurements can potentially in many other applications such
as inferring viewing distance from images.

V. USE CASE: BLINK-BASED ACTIVITY CLASSIFICATION

Further exploring capability of the Cyber Glasses, we
conduct a real experiment using Cyber Glasses with an eye
blink detection algorithm to capture blink patterns of different
human activities (e.g., reading books or watching movies). We
have developed a robust eye blink detection method for low-
power embedded devices like Cyber Glasses. Since the detail
development of the blink detection algorithm is not the focus
on this paper, we do not describe our algorithm here.

Three users wear Cyber Glasses while reading books and
watching video clips for ten minutes. We use Cyber Glasses to
capture Spontaneous Eyeblink Rate (SEBR) and Inter-eyeblink

TABLE VI. SEBR IN ACTIVITIES.

Activity user 1 user 2 user 3
Reading book 25.2 4.8 11.4
Watching video clips 21.6 9.8 19.0

Interval (IEBI), which are assessment method mentioned in
[18]. Results are presented in Table VI and Figure 7(c). We can
see a clear difference between the blinking rates for reading
books and watching a movie. These very initial results can
enable a deeper eye behavior study for visual health care
experts.

The main purpose of the experiment is to show the practical
use of the Cyber Glasses. Different from other eye-learning
experiments [18], [19] conducted in lab environments, in short
time and with a small scale, Cyber Glasses enable conducting
experiments in different conditions, for longer time, and at
larger scale. For example, Cyber Glasses can be used for
group of students studying in the classroom with different light
conditions to learn impacts of ambient lighting on students’
concentration. Another example is to discover relationship of
eye disease such as red-eye disease in different daily life
scenarios.

VI. CONCLUSION

We design, develop, and evaluate low-cost Cyber Glasses,
which have integrated sensing, communication, and compu-
tation to enable long-term large-scale human visual health
monitoring. Cyber Glasses mainly use COST components.
Cyber Glasses sensors and networking technologies are care-
fully considered based on the requirements for visual health
monitoring as well as the limitation of embedded devices. We
also propose and evaluate a suit of algorithms in Cyber Glasses
to reduce the amount data being collected and transmitted
in order to conserve energy to prolong the glasses lifetime.
Results from real experiments show that Cyber Glasses can
enable long-term large-scale visual health monitoring. Our
example application shows that using Cyber Glasses, user
activities can be correctly classified based on eye blinks.
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Fig. 6. PCA Reconstruction Using 50 Basis Images of Size 160x120: Original Images (above) and Reconstructed Images (below)
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(a) Singular Value and Variance Fraction of Com-
pressed Signal Using Compressive Sensing: com-
pressive sensing preserve well variance of the train-
ing set.
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(b) Close Eye Detection Using Different Compes-
sive Sensing Ratio: applying compressive sensing
technique can still keep high accuracy of close-eye
detection.
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(c) Inter-Eyeblink Interval in Different Activities:
Cyber Glasses helps record and analyze eye-
monitoring parameters in different activities and
environments.
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