
A Fault-Tolerant Hardware Architecture for
Robust Wearable Heart Rate Monitoring

Qingkun Li, Homa Alemzadeh, Zbigniew Kalbarczyk, Ravishankar K. Iyer
Coordinated Science Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, USA

{qli19, alemzad1, kalbarcz, rkiyer}@illinois.edu

Abstract—This paper presents a fault-tolerant hardware
architecture for robust wearable heart rate monitoring. The
proposed architecture is designed for fusion of the heart rates
estimated from both electrocardiogram (ECG) and arterial blood
pressure (ABP) signals, with small hardware footprint and low
energy consumption. It benefits from the following unique
features: (1) an optimized heart beat (peak) detection algorithm
that can be dynamically configured for either ECG or ABP
analysis, resulting in about 38% reduction of the hardware
footprint, (2) coarse-grained reconfigurable functional units
(FUs) that can be programmed for different processing flows,
and (3) a low overhead fault detection and recovery unit that
enables dynamic recovery from transient hardware faults in the
FUs. Both FPGA and ASIC prototypes of the proposed hardware
have achieved much better performance and energy efficiency
compared to an Android implementation of the same algorithm,
and can recover from transient faults with low resource (~15%)
and energy (~34%) overheads and no (0%) performance impact.

Keywords—heart rate monitor; reconfigurable architectures;
fault tolerance; biomedical monitoring; wearable monitoring

I. INTRODUCTION

Cardiac arrhythmias affect more than 5 million Americans,
resulting in more than 1.2 million hospitalizations and 400,000
deaths each year in the U.S. [1]. Arrhythmias are often
characterized by suddenness and unpredictability, and may not
be effectively detected by regular examinations. Therefore,
pervasive real-time heart rate monitoring is key to in-time
detection of arrhythmia and prevention of severe consequences.

A wearable heart rate monitoring system requires three
main factors in order to provide robust and continuous real-
time monitoring: (1) accuracy, (2) portability, and (3) long
battery life. Accuracy depends on: (1) correctness and quality
of input signals collected from sensors, (2) adequacy of the
signal processing algorithms, and (3) reliability of the
underlying hardware that runs the monitoring algorithms [2].
However, the existing wearable monitors suffer from numerous
false alarms and delayed feedback, due to signal noise,
artifacts [3], and missing data (e.g., due to disconnections) [4].
Also, a study of previous recalls of monitoring systems shows
that system malfunctions due to software and hardware failures
can cause serious safety problems, sometimes even resulting in
patient deaths [5]. Therefore, there is a compelling need for
design of reliable systems for pervasive heart rate monitoring.

Several studies have proposed noise filtering and signal
quality assessment techniques [6]-[8] or accurate signal peak
detection algorithms [9][10], to address the problem of false
alarms due to erroneous heart rate estimations. Others have
proposed sensor fusion techniques to provide robust heart rate
estimations by obtaining and fusing information from multiple
physiological signals, such as the electrocardiogram (ECG),
arterial blood pressure (ABP), and pulse oximetry
waveforms [4][11][12][13]. Among those, Kalman-filter-based
sensor fusion has been the most reliable technique for

estimating heart rate from multiple noisy signals that provide
redundant and independent measures of heart rate [4][12].

However, the implementation of sensor fusion algorithms
on wearable devices requires concurrent recording, analysis,
and/or transmission of multiple biomedical signals collected at
relatively high sampling rates (125-360 Hz) from the patient’s
body. But with the portability and long battery life
requirements, wearable monitoring devices face challenges in
real-time processing of large number of samples under tight
energy and hardware footprint constraints. Previous work has
explored different hardware technologies, such as ARM and
DSP embedded processors [14] and customized hardware
(ASIC), to improve the performance and energy efficiency of
different ECG peak detection algorithms [15]-[17]. But no
previous work has considered design of reliable and energy-
efficient hardware platforms that enable continuous analysis
and fusion of multiple signals on wearable devices.

In this paper, we propose a fault-tolerant hardware
architecture for robust real-time heart rate (HR) monitoring,
using fusion of Kalman-filter-based HR estimates from ECG
and ABP signals. The following novel strategies are employed
to enable efficient and fault-tolerant HR monitoring with small
hardware footprint and low energy consumption:

1) An optimized peak detection algorithm that can be
dynamically configured for either ECG or ABP analysis
and robust HR estimation based on the two signals,
designed by sharing core computational kernels between
two well-known peak detection algorithms [9][18], thus
reducing the hardware footprint by about 38%.

2) Coarse-grained reconfigurable functional units (FUs)
designed for the shared computational kernels, which can
be programmed within a few cycles to perform different
kinds of biomedical signal processing and enable energy-
efficient computations in real time. The FUs are designed
by following a template with the same interface to allow
architecture extension to support other biomedical
applications, such as breathing rate monitoring.

3) A low-overhead hardware fault detection and recovery
unit (FDRU) that monitors the activities of FUs using a
configurable watchdog timer and patient-specific
invariant checking [19], and upon detection of faults will
reset and re-execute the affected FU in real time to
dynamically recover from the unexpected faults.

We implemented the proposed hardware architecture
running the heart estimation algorithm both on an FPGA
platform and as an ASIC design, and evaluated its runtime
performance and energy consumption in comparison to a
software implementation on an Android device. Real ABP and
ECG signals from the MIMIC II database [20] were used for
evaluation of the algorithm. The overheads of the fault
detection and recovery mechanisms (FDRU) were evaluated
by comparison to the baseline architecture. The fault coverage

PervasiveHealth 2015, May 20-23, Istanbul, Turkey
Copyright © 2015 ICST
DOI 10.4108/icst.pervasivehealth.2015.259289

of the proposed mechanisms was evaluated using simulation-
based fault injection into the fault-tolerant architecture.

II. HEART RATE ESTIMATION ALGORITHM

For robust heart rate estimation with a small hardware
footprint, we leveraged a technique based on the fusion of
heart rates estimated from ABP and ECG signals [4][12].
More specifically, we applied algorithmic optimizations to the
heart rate monitoring flow proposed in [4] to enable sharing of
the computation blocks between two separate ABP and ECG
processing flows to minimize the hardware area.

As shown in Fig. 1.a, there are two main stages in the
monitoring flow: (1) detection of heart beats (peaks) based on
the raw ABP and ECG waveforms; and (2) Kalman-filter-
based estimation of heart rates and fusion of the two estimates
by a weighted voter based on the signal qualities. The shared
computation blocks between the ABP and ECG peak detection
and heart rate estimation stages are shaded in Fig 1.a. Fig 1.b
shows the new heart rate monitoring flow that is shared by the
ABP and ECG signals. The heart rate is estimated over a 10-
second window of each signal with a sampling rate of 125 Hz.

A. Peak Detection

For the ABP signal, a threshold-based onset detection [18],
and for the ECG signal, the Pan Tompkins QRS detection
algorithm [9] was used. We identified the computation steps
shared between the two algorithms and modified them to
create a new threshold-based peak detection algorithm that can
be configured to detect peaks for both ABP and ECG signals.

The peak detection algorithms for ABP and ECG signals
go through the following shared steps (shown in Fig 1.a):
1) Low-pass filtering (LPF) to remove high-frequency noise.
2) Derivative, squaring, and moving-average integration (for

ECG) or slope sum calculation (for ABP) to emphasize
higher-frequency peaks and enhance peak amplitudes.

3) Adaptive threshold-based peak detection to locate peaks.
Next, we will describe each of those steps in the new
(optimized) peak detection algorithm (shown in Fig 1.b).

1) Low-Pass Filtering: The low-pass filters designed for
ABP and ECG signals have different cut-off frequencies, as
the two signals have different natural frequencies and noise
interference. Using the technique proposed in [6], we designed

lightweight non-recursive digital filters (FIRs) with integer
multipliers and linear phase characteristics for ABP and ECG
signals. The designed LPFs are described as follows:

for ABP: ݕ௡ ൌ ሺݔ௡ ൅ ௡ିଵݔ2 ൅ ௡ିଶሻ/4ݔ
for ECG: ݕ௡ ൌ ሺݔ௡ ൅ ௡ିଵݔ2 ൅ ௡ିଶݔ3 ൅ ௡ିଷݔ2 ൅ ௡ିସሻ/9ݔ

Both the LPFs have the same computation structure,
composed of the weighted sum of the most recent signal
values with integer coefficients. For computation and design
efficiency, we designed a shared LPF hardware block that can
be dynamically configured by providing the coefficients and
delay parameters for filtering either ABP or ECG signals.

2) Peak Amplitude Enhancement: Through simulation of
the Pan Tompkins QRS peak detection and ABP onset
detection algorithms using ECG and ABP data collected from
several patients in the MIMIC II database, we found that the
moving-window integration step in the Pan Tompkins
algorithm [9] can be replaced by the slope sum function used
in the ABP onset detection algorithm [18] and still acheive
similar or better results. Therefore, we use the slope sum as a
common computation block in this step. The slope sum
function is described as follows [18]:

ሺ݇ሻܨܵܵ ൌ ෍ ௜ݕ∆

௞

௜ୀ௞ି௪

, ௜ݕ∆ ൌ ൜
௜ݔ∆ ݂݅ ௜ݔ∆ ൐ 0
௜ݔ∆ ݂݅ 0 ൏ 0

where k is the sample index and w is the slope sum window (w
should be set as the duration of the signal’s rising portion.) We
chose w=15 (120 ms) for ABP and w=10 (80 ms) for ECG,
because ECG has sharper peaks and rises faster than ABP.

3) Adaptive Threshold-based Peak Detection: Our peak
detection method consists of three steps:

a) The onset of the slope sum signal is detected by
checking a threshold (݄ܶ௢௡௦௘௧) on each data sample. Then a
local search is performed around the detected onset to find the
local maximum (slope sum peak) and minimum values. The
searching radius is half of the estimated peak to peak interval
(௘ܶ௦௧ሻ. Then, the difference between the slope sum’s local max
and min values is calculated. If the difference exceeds another
threshold (݄ܶௗ௜௙௙), the slope sum peak is accepted [18].

b) A backward search on the original signal around the
slope sum’s peak location is performed to detect peaks in the
original signal. The backward search radius is 0.25 ௘ܶ௦௧.

c) To dynamically adapt to signal changes, the
following weighted sum function is used to update parameters
݄ܶ௢௡௦௘௧, ݄ܶௗ௜௙௙, and ௘ܶ௦௧ with the newly detected peak values:

 ܸ ൌ 0.875 כ ܸ ൅ 0.125 כ ݐܿ݁ݐ݁݀_ݓܸ݁݊
The parameters are patient-specific and learnt during a training
period (the first 20 windows of the data). ݄ܶ௢௡௦௘௧ is initialized
to be twice the mean slope sum value in the training period.

௘ܶ௦௧ is the mean peak to peak intervals. ݄ܶௗ௜௙௙ is half of the
mean max and min slope sum difference of each window.

Table I shows the results of using the new algorithm versus
the Pan Tompkins algorithm on 10 hours of ECG data from
five patients in the MIMIC II database. MD rate shows the
percentage of the peaks detected by the Pan Tompkins
algorithm that were missed by our algorithm, and FP rate is the
percentage of the peaks detected by our algorithm that were
missed by Pan Tompkins. The mismatch rates were less than
1%, which indicates the accuracy of our proposed algorithm.

(a)

(b)

Fig. 1. Robust heart rate estimation flow

Low‐pass
filter

Slope
sum

Threshold‐
based ABP

peak
detection

Signal
abnormality

Fuzzy
signal
quality

Signal
quality
(SQABP)

Kalman
filter

Moving‐
window

integration

Threshold‐
based ECG

peak
detection

Heart
rate

Signal
quality
(SQECG)

Kalman
filter

Low‐pass
filter

Derivative

Squaring

Kurtosis
value

HR fusion
(weighted
voter)

ABP

ECG Heart
rate

Robust

Heart Rate

Peak Detection
Heart Rate Estimation

and Fusion

ABP
heart rate

ECG
heart rate

10

Low‐pass
filter

Slope
sum

Threshold‐
based peak
detection

Abnormality
and fuzzy
quality

Signal quality
(SQABP/ SQECG)

Kalman
filter

Derivative

Squaring

HR fusion
(weighted
voter)

ABP

ECG

Heart
rate

Robust

Heart Rate

0 1 2
3 4

5

6

7

8

ABP

ECG

ECG
kurtosis
value

9

ABP

ECG

TABLE I. ECG peak detection results using the proposed algorithm
Patient No. MD Rate (%) FP Rate (%)

a40076 0.27 0.12
a41287 1.11 0.61
a41770 0.05 0.01
a42022 0.40 0.21
a42157 0.05 0.04

Pan-Tompkins Matlab code: http://www.mit.edu/~gari/teaching/6.222j/DATA/rpeakdetect.m.

B. Heart Rate Estimation and Fusion

For heart rate estimation and fusion based on the peaks
detected in the two signals, the following steps are performed:

1) The average heart rate in the current window is determined
by calculating the average peak-to-peak intervals based on
both the ABP and ECG signals.

2) The ABP and ECG signal qualities are estimated using the
signal abnormality index, fuzzy-logic-based signal quality
metric, and kurtosis, as proposed in [7], [11], and [21].

3) The Kalman filter is applied to remove high-frequency
noise in the heart rate estimations between windows [4].

4) The heart rate estimates from the ABP and ECG signals are
fused by a weighted voter to obtain the robust heart rate
estimate for the current window. The weight for each
estimate is defined based on the parameters described
in [4]: (1) quality of the signal, (2) Kalman residuals for
the heart rate estimates, and (3) inverse quality of the other
signal. So the final estimate would always rely more on the
heart rate estimated from the higher-quality signal.

Fig. 2 illustrates an example in which heart rate was
estimated for 150 windows of ABP and ECG data from patient
a41709 in the MIMIC II database. In this example, we see that
the Kalman filter is able to remove high-frequency noise in the
heart rate estimations (Fig 2.a and 2.d). At around window 40,
the ABP signal is corrupted by a large artifact due to sensor
disconnection, so no peaks are detected and the signal quality
is very low. Similarly, around window 100, the ECG signal is
noisy, and QRS peaks cannot be accurately detected. The peak
detections in the ABP and ECG signals of an example window
in the two segments are shown in Fig 2.b and 2.c, and Fig 2.e
and 2.f, respectively. The corresponding ABP and ECG signal
qualities in the 150 windows are shown in Fig 2.h and 2.i. As
a result, the weighted voter masks the interference of artifacts
and noise in the signals by weighting less on the low-quality
signals at those segments (see Fig 2.g), so an accurate
continuous estimation of heart rate is achieved.

III. RECONFIGURABLE HARDWARE ARCHITECTURE

The proposed hardware architecture runs the robust heart
rate estimation algorithm discussed in Section II. It consists of
three main parts: (1) an ASIC accelerator composed of a set of
configurable functional units and a fault detection and
recovery unit (FDRU), (2) a lightweight MIPS controller, and
(3) a shared on-chip memory system (see Fig 3). The inputs

are the raw ABP and ECG signals collected from the
biomedical sensors, which are stored in the dedicated memory
locations (Fig 3.a). The output is the weighted heart rate
estimated from the analysis of ABP and ECG signals.

A. Functional Unit Design and Configuration

Each common computational kernel shared between the
ABP and ECG flows (Fig 1.b) is implemented as a functional
unit inside the architecture. Functional units (FUs) are a set of
coarse-grained reconfigurable accelerators that provide
efficient ABP and ECG signal processing. With algorithmic
optimizations presented in Section II, a total of 11 FUs are
needed for our heart rate estimation algorithm (FU numbers are
highlighted next to the computational blocks in Fig 1.b). All
FUs are designed according to a design template and have the
same interface. More specifically, each FU is composed of
three parts: (1) configuration and memory interfaces, (2)
configuration registers (CRs), and (3) computation logics (a
data path and a state machine controller). The FU design
template enables extension of the architecture with other FUs
to potentially support other monitoring applications, e.g.,
breathing rate estimation by fusion of photoplethysmographic
(PPG) and ECG waveforms or fusion of pressure signals [22].

The FU configuration interface connects to the system
coordination and configuration bus and monitors the execution
and configuration instructions sent from the MIPS controller.
Upon receiving a configuration instruction, the configuration
interface reads the instruction from the bus, parses the
configuration parameters, and configures the configuration
registers. When the execution instruction is received, the
configuration interface notifies the FU computation logic to
start execution. The FU memory interface is responsible for
reading and writing data from and to the on-chip memory
shared between the MIPS controller and the ASIC accelerator.

FU configuration registers (CRs) are used to pass the
needed input parameters into the FU computation logics. The
most common FU parameters are the memory address to read
input data, the memory address to store computation result(s),
and the size of the input data to process. In addition, more
configuration registers can be added in an FU to pass other
useful parameters, such as the threshold values (݄ܶ௢௡௦௘௧,
݄ܶௗ௜௙௙, ௘ܶ௦௧) for the peak detection algorithm.

FU computation logic consists of a computation data path
and a state machine controller. The data path is FU-specific
and implements the corresponding FU computation logic. The

Fig. 2. Kalman-filtered heart rates and weighted heart rates for 150 windows based on ABP and ECG signals and their signal qualities

20 40 60 80 100 120 140
0

50

100

window number

Final heart rate estimation with weighted voter

Filtered ABP HR

Filtered ECG HR
Weighted HR

20 40 60 80 100 120 140
0

50

100

ECG Kalman filter

window number

Original ECG HR
Kalman filtered HR

200 400 600 800 1000 1200
0

50

100

150
ABP signal in window 109 with detected peaks

signal sample number
200 400 600 800 1000 1200

-10

-5

0

5
ECG signal in window 109 with detected peaks

signal sample number

200 400 600 800 1000 1200

-2

0

2

4

ECG signal in window 38 with detected peaks

signal sample number
200 400 600 800 1000 1200

0

50

100

150

200
ABP signal in window 38 with detected peaks

signal sample number

0 50 100 150

0

0.5

1

window number

ECG window signal quality

ECG signal quality

0 50 100 150

0

0.5

1

window number

ABP window signal quality

ABP signal quality

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

20 40 60 80 100 120 140
0

50

100

ABP Kalman filter

window number

Original ABP HR
Kalman filtered HR

state machine is a hard-wired controller that schedules FU
computation and memory requests through the memory
interface. The state machine controllers are similar in all FUs,
as the FUs follow the same scheduling pattern. FU
computations are pipelined and optimized in each of our FU
implementations.

B. MIPS Controller

The MIPS controller is a lightweight processor (only about
3.5% hardware area) with 16-bit instruction and 32-bit data
lengths. It is responsible for (1) configuring the FUs by sending
configuration parameters, (2) scheduling the FUs’ execution by
sending instructions, and (3) executing basic MIPS instructions
that are needed between FU executions for control flow.

The FU configuration and execution instructions sent from
the MIPS controller are realized by extending the MIPS basic
instruction set. Two new instructions are added to the base
instruction set, as shown in Fig 3.c (lower part): (1) FU
configuration (FU_CFG), which moves a configuration
parameter from a MIPS register (reg_id) to a configuration
register (fu_conf_reg_id) of an FU (fu_id), and (2) FU
execution (FU_START), which notifies an FU (fu_id) to start
execution. Once an FU finishes the execution and stores the
result(s) to the shared memory, it notifies the MIPS controller
by sending a “DONE” signal.

Fig 3.c (upper part) shows an example of C code running
on the MIPS controller. An extended version of the MIPS C
compiler can be used to generate the assembly code from C
programs. The FU computations are invoked in the C program
as intrinsic functions that are recognizable by the compiler.
The compiler needs to maintain a table of mappings between
C intrinsic functions and the corresponding FUs and know the
meaning of FU configuration registers. In the given example,
the Slope_Sum intrinsic function is called in the C program.
The compiler maps it to FU1, which is responsible for slope
sum computation, and generates the MIPS assembly code
shown on the right. In lines 1-8, FU1 is configured by
FU_CFG instructions, and in line 9, the execution is started.
During execution, FU1 reads the signal sample values from
the memory locations specified by CR0, computes slope sum
values with the configured slope sum window (CR3), and
writes the results to the result array (CR1). The total signal
size to be read and processed is specified by CR2.

IV. FAULT TOLERANCE MECHANISMS

A low-overhead hardware fault detection and recovery unit
(FDRU) has been designed to protect the functional units
against unexpected transient faults (Fig. 4). Since the FUs
account for more than 93% of the area and 92% of the energy

consumption in the processing part of the hardware
architecture (ASIC Accelerator + MIPS controller), the FDRU
is able to cover most of the hardware.

The fault model we simulated for evaluation of the fault-
tolerance mechanisms is the low-level transistor fault that may
flip the result of a logic gate and then propagate to affect the
application’s output. Only transient faults are considered,
because transient faults or soft errors are the most common
hardware faults, the rate of which is expected to increase 8%
per logic state bit in each transistor generation [23].

Upon detection of a fault, the corresponding FU is reset
and re-executed. Therefore, with the proposed detection and
recovery mechanism, both transient and permanent faults can
be detected, but only transient faults can be recovered from.

A. Fault Detection

The FDRU uses two kinds of detectors, the configurable
watchdog timer and patient-specific invariant checking [19],
to detect hangs in the control logic and faults in the
computation logic. The watchdog timer monitors the
execution time of each FU and times out on FU hangs.
Invariants are the conditions that hold true during the FU’s
execution, and if any invariant is violated, it means a fault has
happened. Two kinds of invariants are used for our proposed
fault detection: result invariants and address invariants.
Therefore, the FDRU is able to detect faults that cause the FU:
1) to hang (not finish the execution within the amount of

time specified by the watchdog timers);
2) to generate incorrect results that violate the FU’s result

invariants; or
3) to write results to incorrect memory addresses that violate

the FU’s address invariants;

The watchdog timer is a module inside the FDRU that can be
dynamically reconfigured upon execution of each FU to detect
hangs due to faults in the control flow. If the number of cycles
since the start of an FU execution goes beyond the configured
threshold, the FDRU assumes the FU has hung.

Fig. 4. Fault tolerance hardware coverage

 (a) (b) (c)

Fig. 3. (a) Input and output of the proposed hardware; (b) hardware system overview; (c) code example and extended instructions

Address invariants are obtained during application
compiling. The compiler assigns memory locations for each
FU to write the results. Some FUs generate only a single
result, e.g., FU3 (heart rate), FU5 (signal quality), and FU10
(weighted voter). So their results are written at fixed memory
locations that can be used as their address invariants. Some
other FUs generate an array of results, e.g., FU0 (low-pass
filter) and FU1 (slope sum), and write the result elements to a
range of memory addresses with a given stride (for example
one). Therefore, the memory range and the stride between
consecutive memory writing locations are used as those FUs’
address invariants.

Result invariants are obtained by patient-specific
application profiling. Since each FU is responsible for a
processing step in the heart rate estimation algorithm, the
output of each FU has a specific application-level semantic (in
contrast to the output of basic instructions, such as addition,
and subtraction, in a general-purpose processor). Therefore,
we utilize that property to obtain FU result invariants for fault
detection. Two kinds of values are profiled for result
invariants: the range of results and the difference between two
consecutive results generated by the FU. Table II lists an
example set of result invariants for different functional units.
They are obtained by profiling data from patient a40050 in the
MIMIC II database. Just like the threshold parameters used in
the heart rate estimation algorithm, result invariants are signal-
and patient-specific. Therefore, FUs are also designed to be
configurable for result invariants obtained from profiling.

It should be noted that corrupted or abnormal signal inputs
may also cause violations in result invariants if the scenario
was not profiled. When that happens, abnormal signal values
are detected as FU faults. Since it may not be possible to
profile all patient and sensor input scenarios, there is a trade-
off between the fault detection coverage and the false
detection rate. If the invariants are set too tight (they fit only a
small set of profiled data), an FU fault may be incorrectly
detected upon new data samples. For example, in the worst
case, if a patient is completely healthy during the profiling
phase, when a problem happens to the patient later and
changes the pattern of the input data, this may result in FU
fault detection instead of patient problem detection. On the
other hand, if the invariants are set too loose, FU faults may
not cause violations of the result invariants, and this may
result in undetected faulty heart rate estimation.

Fig. 5 shows an example with three result invariants. As
the profiling period increases, the range of the result invariants
increases. The profiling data from 1000 to 4000 windows
includes 11 occurrences of physician-annotated arrhythmia

alarms. Even though the invariant range becomes larger, the
experimental results in Section IV.B show that the fault
detection coverage is only slightly affected. The reason is that
the manifested hardware faults usually change the FU result
by a large amount (beyond the patient’s physiological ranges).

Therefore, medical knowledge about the patient should be
combined with profiling data to set result invariants for some
of the FUs, such as the low-pass filter, slope sum, and peak
detection. The patient’s physiological ranges can be used to
find the result invariants (e.g., the patient’s blood pressure
never goes above 200 or below 30). Some other FUs, such as
the signal quality, do not need the physiological ranges to find
the result invariants, because their results should always be
within a certain range no matter what the inputs are (e.g.,
signal quality must be a numeric value between 0 and 1).

On the other hand, false detections of faults are not always
harmful, because they could be a symptom of severe signal
corruptions caused by sensor disconnections. For example, if
the invariants have been set via profiling of a long period of
data with the patient’s physiological ranges considered, and a
detected fault was not actually caused by a nonexistent
hardware fault that was erroneously detected, it will be certain
that the detected fault was caused by input that was outside the
patient’s physiological range and very likely resulted from
severe signal corruptions that are worth the physician and
patient’s attention.

The FDRU is part of the ASIC accelerator (Fig. 3.b) and
monitors all the FU configurations and executions. During FU
configuration, the FDRU keeps a copy of all configuration
register values, which will be used for fault recovery upon
detection of a fault. When an FU sends a request to the
memory arbiter to write a result, the FDRU checks it with both
the address and result invariants of this FU using hardware
range checkers.

B. Fault Recovery

During the execution of a functional unit, if a fault is
detected, the FDRU takes three steps to recover the faulty FU:
(1) it resets the FU by sending a reset signal to it. (2) it
reconfigures the FU by sending configuration instructions
(FU_CFG), and (3) it re-executes the FU by sending the
execution instruction (FU_START).

Fig. 5. Relationship between the result invariant range and the profiled data
window number (with three example invariants)

TABLE II. FU result invariants (profiled with data from 1000 windows)

FU number
Result Invariant

ࢌࢌ࢏ࢊ࢔࢏࢓ ࢞ࢇ࢓ ࢔࢏࢓ ࢌࢌ࢏ࢊ࢞ࢇ࢓

FU0 – low pass
for ABP 32.400 176.100 -18.600 23.400
for ECG -6.315 7.250 -4.160 4.015

FU1 – slope sum
for ABP 0 87.300 -20.700 52.200
for ECG 0 18.180 -16.621 18.180

FU2 – peak detection
peak index 0 1240 45 322
peak number 1 17 -8 13

FU3 – heart rate 53.354 104.530 -37.190 40.396

FU4 –Kalman filter
filtered value 26.350 100.549 -25.088 17.991
residue -92.866 66.596 - -

FU5 – signal quality 0 1.000 - -
FU6 – derivative -4.160 4.015 -6.375 8.175
FU7 – squaring 0 17.306 -11.136 16.621
FU8 – ABP beat quality 0 1.000 - -
FU9 – ECG beat quality 2.158 8.984 - -
FU10 – heart rate fusion 86.733 100.513 -1.495 2.583

Note: the following conditions hold true during the corresponding FU execution:
௜ݕ ൒ ݉݅݊, ௜ݕ ൑ ,ݔܽ݉ ௜ݕ െ ௜ିଵݕ ൒ ݉݅݊ௗ௜௙௙, ݕ௜ െ ௜ିଵݕ ൑ ,ௗ௜௙௙ݔܽ݉ where ݕ௜ is the
current result value and ݕ௜ିଵ is the previous result value.

Fig. 6 illustrates the entire operation flow of the FDRU. It
includes both the fault detection and recovery mechanisms
discussed above. As shown in Fig. 6, if either the invariant is
violated three times or the hang is detected three times during
a MIPS-scheduled execution, the FDRU enters the system
failure state and notifies the user about the failure. This will
happen if there is a permanent hardware fault or the transient
fault continually occurs in re-executions. If the system failure
state was entered because of three consecutive transient faults,
a reset of the whole architecture may fix the problem.
However, a permanent fault can only be detected by the
FDRU, but cannot be recovered from.

V. EXPERIMENTAL RESULTS

The proposed hardware architecture has been implemented
both on a Xilinx FPGA platform and as an ASIC design using
the Synopsys Design Compiler. ASIC is the target platform
for the final product (the proposed heart rate monitor), while
the FPGA is used as a platform to evaluate the proposed
hardware architecture and to experiment with its extension
with more FUs for other potential applications (heart rate
estimation application).

For comparison with the off-the-shelf embedded
processors, we also implemented the same heart rate
estimation algorithm as an Android application on a Nexus 7
tablet (2013 model), equipped with the Qualcomm Krait
processor (architecturally similar to ARM Cortex-A15).

Table III lists the experimental setup of the three platform
implementations (Android, FPGA, and ASIC). The Android
application ran on the Qualcomm Krait processor of the
Snapdragon chipset at 1.5 GHz. The execution time of the
Android application was recorded by inserting time
measurement functions in the code immediately before and
after the heart rate estimation algorithm. The Android power
consumption was profiled using the Qualcomm Trepn Profiler.
During the measurements of the execution time and power
consumption, all the other Android applications and services
were turned off.

The Xilinx Virtex 5 ML507 board (XC5VFX70T) was
used as a platform for the FPGA implementation. We were
able to run the proposed hardware architecture on the actual
FPGA platform, while the FPGA results were collected from
the simulation of the FPGA-synthesized hardware. The
application’s execution time on FPGA is calculated by
multiplying the number of execution cycles (from the cycle-
accurate Modelsim simulation) by the clock period (from the
Xilinx ISE timing report). The FPGA power consumption was
profiled using the Xilinx Power Analyzer based on the signal
activities collected from the post-routing simulations.

For the ASIC implementation, separate tools were used for
synthesizing the processing logic and on-chip memory (Fig.
4). Just as in the FPGA implementation, the ASIC results were
collected from the simulation of the synthesized hardware. A
100 MHz clock frequency was used for the ASIC
implementation. The power consumption of ASIC was
profiled using the tools in the Design Compiler based on the
signal activities collected from the post-synthesis simulation.

We first evaluated the performance and energy
consumption of the baseline hardware architecture
(without the FDRU) in comparison to Android, FPGA, and
ASIC implementations. Then we evaluated the proposed fault
tolerance mechanisms by measuring the overhead and
detection coverage of the FDRU.

A. Baseline Hardware System Evaluation

The resource utilizations for the FPGA and ASIC
implementations are shown in Table IV. The computational
steps shared between ECG and ABP monitoring flows utilized
up to 38% of the hardware resources, which were saved in the
proposed heart rate monitoring flow (Fig. 1.b).

Fig. 7 shows a comparison of the runtime performance and
energy consumption of the three platforms, obtained by
running 1000 windows (10,000 seconds) of patient data from
the MIMIC II database. All the results are normalized to the
results of the ASIC platform, which are listed in Table V.

Compared to ASIC, the execution times to process the
same amount of patient data on the Android and FPGA
platforms are 20.62 and 1.50 times longer, respectively. The
speedup of ASIC compared to the Android implementation is
mainly from (1) the efficiency of the FU modules that are
optimized in the ASIC logic, and (2) the faster memory
accesses enabled by the on-chip memory. On the other hand,
since the same underlying hardware design is used for both the
FPGA and ASIC implementations, the hardware cycles to run
the same application are the same on both platforms. So the
speedup of ASIC compared to FPGA is due only to the higher
clock frequency.

Energy consumption directly affects battery life. Both the
ASIC and FPGA implementations of the proposed hardware
system are much more energy-efficient than the Android
implementation. They consume 1/2871 and 1/923 of the
energy used by Android, respectively. The reason is that the
Android implementation runs on the general-purpose
embedded processor (Krait) with complicated processing
pipelines and hierarchical memory systems, which are
designed to reduce the processing latency of general
embedded applications.

TABLE III. Experiment toolsets for hardware system evaluation

Platform Frequency Design Tools Evaluation Tools

Android
Snapdragon S4

@ 1.5 GHz

Android SDK (test and
evaluate on the 2013 Asus
Nexus 7 tablet)

Qualcomm Trepn
Profiler10

FPGA 66.6 MHz
Xilinx ISE 14.2 (test and
evaluate on the Virtex-5
XC5VFX70T FPGA)

Modelsim SE 10.1a,
Xilinx ISE, and
Xilinx Power Analyzer2

ASIC
100 MHz

(up to 222.2
MHz)

Processing logics:
Synopsys Design Compiler
with NanGate 45 nm Open
Cell Library.
On-chip memory:
Synopsys Generic Memory
Compiler (32 nm).

Modelsim SE 10.1a and
Synopsys Design Compiler
with NanGate 45 nm and
Generic Memory Compiler
32 nm technology libraries3

1. https://developer.qualcomm.com/mobile-development/increase-app-performance/trepn-profiler.
2. http://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/design-

tools/v2012_2---14_2.html.
3. http://www.nangate.com/?page_id=2325

Fig. 6. Fault Detection and Recovery Unit (FDRU) operation flow

1. Monitor the FU
instructions sent from
the MIPS controller

FU_CFG

2. Keep a copy of the
FU configuration value

FU_START

3. Monitor and check FU
memory write requests, and
check the watchdog timer.

Memory
write

Start
watchdog
timer

FU_DONE

invariant
violation

hang # = hang # + 1

Yes

Yes

No

violate # = violate # + 1

violate # = 0
fault # = 0

Yes

No

4. Reset and
re-configure

the FU

6. System failure
(unrecoverable

FU hang or
incorrect result)

No

violate # < 3

FAULT
DETECTION

FAULT
RECOVERY

hang # < 3

5. Re-execute the FU
by sending FU_START

instruction

watchdog
timeout

On the other hand, the proposed hardware architecture is
composed of FUs that have been specially designed and
optimized for the target monitoring application. In addition,
because of the small memory size required, the on-chip
(cache-like) memory is directly used as the main memory in
the proposed hardware, which simplifies the memory system
design and reduces the corresponding energy consumption.
Both the ASIC and FPGA implementations benefit from those
application-specific optimizations. Therefore, with the same
battery capacity, the proposed hardware architecture on the
ASIC and FPGA platforms would be able to achieve,
respectively, 2871 and 923 times the battery life of an
implementation on the Android platform.

B. Fault Tolerance Evaluation

The overheads of the FDRU in resource utilization, power
consumption, and runtime performance are listed in Table VI.
During a fault-free execution, the fault-tolerant architecture
consumes 37.01% and 33.89% more power, compared to the
baseline architecture, in the FPGA and ASIC implementations,
respectively. The extra power consumption is mainly due to
the invariant checking and watchdog timers used for fault
detection.

The FDRU does not incur performance overheads (any
extra hardware cycles) during normal monitoring without
faults, because the fault detection checking is executed in
parallel with normal FU executions, and none of the fault
detection checking is on the critical execution path. When
faults are detected during an execution, extra power and
performance overheads would be introduced by the fault
recovery process. The amount of extra overhead depends on
the frequency of the FU fault detection and the specific FU to
which the fault occurs.

The fault-tolerant architecture utilizes about 14.5% more
look-up tables in FPGA and 15.5% more cell gates in ASIC,
compared to the baseline architecture. The resource overhead
is due to (1) the FDRU’s controlling state machine logics (Fig.
6), (2) a copy of all FU configuration registers, (3) the

watchdog timer, and (4) the FU address and result invariants,
as well as the invariant checkers (hardware comparators).

To evaluate the detection coverage of the proposed fault
tolerance mechanisms, we used the CrashTest fault injection
framework [24] to inject transient faults to all synthesized
logic gates of the FUs (highlighted in Fig. 4). We injected
faults at different fault rates of 4×10-9 to 24×10-9 per logic gate
per cycle. For each fault rate, 500 simulations were performed,
with faults randomly triggered at different gates in each
simulation. Depending on the time and location of which the
fault was triggered, we observed three possible results, listed
in Table VII.

Fig. 8 shows a comparison of the fault injection results on
the baseline architecture versus the fault-tolerant architecture
with the proposed FDRU. The result invariants were profiled
with 1000 windows of patient data. The results are in terms of
the percentages of the three possible results (shown in Table
VII) out of the 500 simulations for each fault rate.

At all fault injection rates, the FDRU was able to increase
the correct result percentages by detecting the FU faults and
dynamically recovering from them through FU re-executions.
In total, incorrect system behavior (incorrect results and
system failures) are reduced by 55.9-65.7% in all fault
injection rates (e.g., reduced from 33.6% to 14.8% under the
fault rate of 20*10-9 per logic gate per cycle). In addition, all
system failures were detected in the fault-tolerant architecture.
If the FDRU fails, the baseline architecture will still operate
normally, but with no fault protection.

As discussed in Section IV, with longer profiling period
(more input scenarios), the ranges of FU result invariants
become larger. As a result, the fault detection coverage would
be affected, because the probability would be higher that the

TABLE VI. Overheads of FDRU in FPGA and ASIC implementations

FPGA ASIC

Power* 37.01% 33.89%

Performance* 0%

Resource 14.54% LUTs 15.54 % cell gates (12.65% area)

* Power and performance overheads in the table are the overheads during normal monitoring
when no fault has been detected. If there are detected faults, more overheads would be introduced
due to FU re-configuration and re-execution in the fault recovery process of FDRU.

TABLE VII. Description of possible fault injection results

Baseline Architecture
(without FDRU)

Fault-Tolerant Architecture
(with FDRU)

Correct Result
The hardware finishes execution on time*, and

the heart rate detected is correct (faults are not manifested).

Incorrect Result
The hardware finishes execution in time*, but

the heart rate detected is incorrect (faults are manifested).

System Failure
The hardware does not
finish execution on time*.

Either the FU hang or the
invariant violation is detected
three times in a single MIPS-
scheduled execution of the FU.

* "on time" means within 5 times the supposed execution time, which is the execution time of the same
application without fault injection.

Fig. 8. Fault injection result comparison between the baseline system and the
fault-tolerant system (with the proposed FDRU)

50

55

60

65

70

75

80

85

90

95

100

4 4 8 8 12 12 16 16 20 20 24 24

Transient fault rate of each gate

Transient Fault Injection Result
(Left: baseline architecture. Right: fault‐tolerant architecture)

correct result (%) incorrect result (%) system failure (%)

4*10‐9 8*10‐9 12*10‐9 16*10‐9 20*10‐9 24*10‐9

TABLE IV. Resource utilizations of the proposed hardware system

Processing logics FPGA ASIC

Total 11,856 LUTsa + 22 DSP48E 53,697 cell gates (0.121 mm2)

Shared logic (FU0–FU5)
(%)

2,718 LUTsa + 4 DSP48E
(38.1%)

16,844 cell gates
(31.4%)

On-chip memory 32 KB Block RAM 32 KB SRAM (0.195 mm2)b

a LUT means “look-up table” (LUT is 6-input for the Virtex 5 FPGA family).
b The ASIC on-chip memory is implemented with the 32 nm SRAM generated by the Generic
Memory Compiler (a different technology library from the one used for processing logics).

Fig. 7. Comparison of runtime performance and energy consumption (for each
platform, the same heart rate estimation application was run for 1000
windows of patient data (a40050) from the MIMIC II database.)

TABLE V. Runtime and energy consumption of the ASIC implementation

Runtime (s) Energy (mJ)

0.211
Processing logic 1.453
On-chip memory 0.096

Total 1.549

20.62

1.50 1.00

0.00

5.00

10.00

15.00

20.00

Android FPGA 66.6 MHz ASIC 100 MHz

Runtime Performance
normalized to ASIC runtime

2870.71

3.11

1.00
1.00

10.00

100.00

1000.00

Android FPGA 66.6 MHz ASIC 100 MHz

Energy Consumption (Logscale)
normalized to ASIC energy

fault would cause the incorrect result to be within the invariant
range and thus undetected. To illustrate the effect of the
profiling data size on the fault detection coverage, Fig. 9
compares the fault injection results for the baseline
architecture and fault-tolerant architecture with three different
profiling data sizes. The comparison results show that the fault
detection coverage does not decrease much as the profiling
data size (result invariant range) becomes larger. Even with
4000 windows of profiling data, the incorrect system
behaviors (incorrect results and system failures) are still
reduced by at least 51.58% compared to the baseline system.
The reason is that the detected fault usually causes the FU
result to be changed by a large amount that is beyond normal
physiological ranges. Therefore, the result invariants should be
set based on both the patient’s physiological ranges and the
profiling of long periods of patient data, so that the false fault
detections that are not indications of severe signal corruptions
can be eliminated, while the fault detection and recovery
coverage is still kept high.

VI. CONCLUSIONS

In this paper, a fault-tolerant hardware architecture for
robust real-time heart rate monitoring is introduced. A signal
fusion algorithm for robust heart rate estimation based on
analysis of ECG and ABP waveforms is used. We developed
an optimized peak detection algorithm that can be dynamically
configured for detecting heart beats from either ECG or ABP
signals, which enables sharing of the computational blocks
and reduces hardware footprint by 38%. A fault detection and
recovery unit (FDRU) is proposed that by utilizing the
watchdog and patient-specific invariant checkers can protect
FUs from transient hardware faults. The proposed hardware
architecture is implemented on both an FPGA platform and as
an ASIC device. Both implementations achieved better
runtime performance (almost 20 times faster) that the same
algorithm implemented on an Android device, while
consuming much lower energy (1/2871 and 1/923 of Android
implementation). In addition, the proposed fault-tolerant
mechanisms can protect the device against 55.9%-65.7% of
incorrect results and system failures, with low energy (34%),
area (15%), and no performance (0%) overheads.

The proposed hardware architecture can be used as a
configurable platform for robust real-time estimation of a
variety of cardiovascular parameters on a wearable device.
Future work will focus on evaluation of the proposed
architecture for monitoring cardiac arrhythmias in real patient
settings and on the comparison of detection results with the
state-of-the-art heart rate monitoring algorithms and systems.

 ACKNOWLEDGMENT

This work is supported in part by the Department of Energy
under Award Number DE-OE0000097, by the Air Force
Research Laboratory and the Air Force Office of Scientific
Research under Agreement No. FA8750-11-2-0084, and by
National Science Foundation under Grant No. CNS 13-37732.
The authors would like to acknowledge the contributions of
Yangyang Yu in hardware development and ASIC synthesis
of functional units in the proposed architecture. We also thank
Jenny Applequist for her assistance in preparing the paper.

REFERENCES
[1] Heartcheck ECG monitor website. Available: http://www.theheartcheck.com/.

[2] H. Alemzadeh et al., “Towards resiliency in embedded medical monitoring
devices,” in Dependable Systems and Networks Workshops (DSN-W), 2012
IEEE/IFIP 42nd International Conference on. IEEE, 2012, pp. 1-6.

[3] M. K. Chung, et al., “Aggregate national experience with the wearable
cardioverter-defibrillator event rates, compliance, and survival,” Journal of the
American College of Cardiology, vol. 56, no. 3, pp. 194-203, 2010.

[4] Q. Li, R. G. Mark, and G. D. Clifford, “Robust heart rate estimation from multiple
asynchronous noisy sources using signal quality indices and a Kalman filter,”
Physiol. Meas., vol. 29, no. 1, p. 15, Jan. 2008.

[5] H. Alemzadeh, et al., “Analysis of Safety-Critical Computer Failures in Medical
Devices,” IEEE Security and Privacy, vol. 11, no. 4, pp. 14-26, July/August 2013.

[6] P. A. Lynn, “Online digital filters for biological signals: Some fast designs for a
small computer,” Med. Biol. Eng. Comput., vol. 15, no. 5, pp. 534–540, Sept. 1977.

[7] J. X. Sun, A. T. Reisner, and R. G. Mark, “A signal abnormality index for arterial
blood pressure waveforms,” in Computers in Cardiology, 2006, pp. 13–16.

[8] T. Berset, D. Geng, and I. Romero, “An optimized DSP implementation of
adaptive filltering and ICA for motion artifact reduction in ambulatory ECG
monitoring,” in Proc. Conf. IEEE Engineering in Medicine and Biology Society
(EMBC), pp. 6496–6499, 2012.

[9] J. Pan and W. J. Tompkins, “A real-time QRS detection algorithm,” IEEE Trans.
Biomed. Eng., vol. 32, no. 3, pp. 230–236, Mar. 1985.

[10] A. Pachauri and M. Bhuyan, “ABP peak detection using energy analysis technique,”
in Multimedia, Signal Processing and Communication Technologies (IMPACT),
2011 International Conference on. IEEE, 2011, pp. 36-39.

[11] D. W. Zong, G. B. Moody, and R. G. Mark, “Reduction of false arterial blood
pressure alarms using signal quality assessement and relationships between the
electrocardiogram and arterial blood pressure,” Med. Biol. Eng. Comput., vol. 42,
no. 5, pp. 698–706, Sept. 2004.

[12] M. Ebrahim, J. Feldman, I. Bar-Kana, “A robust sensor fusion method for heart
rate estimation,” Journal of Clinical Monitoring, vol. 13, no. 6, pp. 385–393, 1997.

[13] A. Aboukhalil et al., “Reducing false alarm rates for critical arrhythmias using the
arterial blood pressure waveform,” Journal of Biomedical Informatics, vol. 41, no.
3, pp. 442–451, 2008.

[14] I. Al Khatib et al., “A multiprocessor system-on-chip for real-time biomedical
monitoring and analysis: Architectural design space exploration,” in Proceedings
of the 43rd Annual Design Automation Conference. ACM, 2006, pp. 125-130.

[15] C. Pavlatos et al., “Hardware implementation of Pan & Tompkins QRS detection
algorithm,” in Proceedings of the EMBEC05 Conference, 2005.

[16] R. Stojanovic et al., “A FPGA system for QRS complex detection based on integer
wavelet transform,” Measurement Science Review, vol. 11, no. 4, pp. 131-138,
2011.

[17] H. Alemzadeh et. al, “An embedded reconfigurable architecture for patient-specific
multi-parameter medical monitoring,” Proc. Conf. IEEE Engineering in Medicine
and Biology Society (EMBC), pp. 1896–1900, 2011.

[18] W. Zong et al., “An open-source algorithm to detect onset of arterial blood
pressure pulses," Computers in Cardiology, IEEE, pp. 259-262, 2003.

[19] M. D. Ernst et al., “Dynamically discovering likely program invariants to support
program evolution," IEEE Trans. Softw. Eng, vol. 27, no. 2, pp. 99-123, 2001.

[20] G. B. Moody and R. G. Mark, “A database to support development and evaluation
of intelligent intensive care monitoring,” Computers in Cardiology, pp. 657–660,
1996.

[21] T. He, G. Clifford, and L. Tarassenko. "Application of independent component
analysis in removing artefacts from the electrocardiogram." Neural Computing &
Applications, vol. 15, no. 2, pp. 105–116, 2006.

[22] L. Tarassenko, L. Mason, and N. Townsend. “Multi-sensor fusion for robust
computation of breathing rate,” Electronics Letters, vol. 38, no. 22, pp. 1314-1316,
2002.

[23] S. Borkar, “Designing reliable systems from unreliable components: The
challenges of transistor variability and degradation,” IEEE Micro, vol. 25, no. 6,
pp. 10-16, 2005.

[24] A. Pellegrini et al., “CrashTest: A fast high-fidelity FPGA-based resiliency
analysis framework,” in IEEE International Conference on Computer Design, pp.
363–370, 2008.

Fig. 9. Fault injection result comparison between the baseline system and the

fault-tolerant system with different profiling data sizes

50

55

60

65

70

75

80

85

90

95

100

4 4 8 8 12 12 16 16 20 20 24 24

Transient fault rate of each gate

Transient Fault Injection Result
left: baseline, middle left: 1 window, middle right: 1000 windows, right: 4000windows

correct result (%) incorrect result (%) system failure (%)

4*10‐9 8*10‐9 12*10‐9 16*10‐9 20*10‐9 24*10‐9

