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Abstract—This paper presents a fault-tolerant hardware 
architecture for robust wearable heart rate monitoring. The 
proposed architecture is designed for fusion of the heart rates 
estimated from both electrocardiogram (ECG) and arterial blood 
pressure (ABP) signals, with small hardware footprint and low 
energy consumption. It benefits from the following unique 
features: (1) an optimized heart beat (peak) detection algorithm 
that can be dynamically configured for either ECG or ABP 
analysis, resulting in about 38% reduction of the hardware 
footprint, (2) coarse-grained reconfigurable functional units 
(FUs) that can be programmed for different processing flows, 
and (3) a low overhead fault detection and recovery unit that 
enables dynamic recovery from transient hardware faults in the 
FUs. Both FPGA and ASIC prototypes of the proposed hardware 
have achieved much better performance and energy efficiency 
compared to an Android implementation of the same algorithm, 
and can recover from transient faults with low resource (~15%) 
and energy (~34%) overheads and no (0%) performance impact. 

Keywords—heart rate monitor; reconfigurable architectures; 
fault tolerance; biomedical monitoring; wearable monitoring 

I.  INTRODUCTION 

Cardiac arrhythmias affect more than 5 million Americans, 
resulting in more than 1.2 million hospitalizations and 400,000 
deaths each year in the U.S. [1]. Arrhythmias are often 
characterized by suddenness and unpredictability, and may not 
be effectively detected by regular examinations. Therefore, 
pervasive real-time heart rate monitoring is key to in-time 
detection of arrhythmia and prevention of severe consequences.  

A wearable heart rate monitoring system requires three 
main factors in order to provide robust and continuous real-
time monitoring: (1) accuracy, (2) portability, and (3) long 
battery life. Accuracy depends on: (1) correctness and quality 
of input signals collected from sensors, (2) adequacy of the 
signal processing algorithms, and (3) reliability of the 
underlying hardware that runs the monitoring algorithms [2]. 
However, the existing wearable monitors suffer from numerous 
false alarms and delayed feedback, due to signal noise, 
artifacts [3], and missing data (e.g., due to disconnections) [4]. 
Also, a study of previous recalls of monitoring systems shows 
that system malfunctions due to software and hardware failures 
can cause serious safety problems, sometimes even resulting in 
patient deaths [5]. Therefore, there is a compelling need for 
design of reliable systems for pervasive heart rate monitoring. 

Several studies have proposed noise filtering and signal 
quality assessment techniques [6]-[8] or accurate signal peak 
detection algorithms [9][10], to address the problem of false 
alarms due to erroneous heart rate estimations. Others have 
proposed sensor fusion techniques to provide robust heart rate 
estimations by obtaining and fusing information from multiple 
physiological signals, such as the electrocardiogram (ECG), 
arterial blood pressure (ABP), and pulse oximetry 
waveforms [4][11][12][13]. Among those, Kalman-filter-based 
sensor fusion has been the most reliable technique for 

estimating heart rate from multiple noisy signals that provide 
redundant and independent measures of heart rate [4][12]. 

However, the implementation of sensor fusion algorithms 
on wearable devices requires concurrent recording, analysis, 
and/or transmission of multiple biomedical signals collected at 
relatively high sampling rates (125-360 Hz) from the patient’s 
body. But with the portability and long battery life 
requirements, wearable monitoring devices face challenges in 
real-time processing of large number of samples under tight 
energy and hardware footprint constraints. Previous work has 
explored different hardware technologies, such as ARM and 
DSP embedded processors [14] and customized hardware 
(ASIC), to improve the performance and energy efficiency of 
different ECG peak detection algorithms [15]-[17]. But no 
previous work has considered design of reliable and energy-
efficient hardware platforms that enable continuous analysis 
and fusion of multiple signals on wearable devices.  

In this paper, we propose a fault-tolerant hardware 
architecture for robust real-time heart rate (HR) monitoring, 
using fusion of Kalman-filter-based HR estimates from ECG 
and ABP signals. The following novel strategies are employed 
to enable efficient and fault-tolerant HR monitoring with small 
hardware footprint and low energy consumption: 

1) An optimized peak detection algorithm that can be 
dynamically configured for either ECG or ABP analysis 
and robust HR estimation based on the two signals, 
designed by sharing core computational kernels between 
two well-known peak detection algorithms [9][18], thus 
reducing the hardware footprint by about 38%.  

2) Coarse-grained reconfigurable functional units (FUs) 
designed for the shared computational kernels, which can 
be programmed within a few cycles to perform different 
kinds of biomedical signal processing and enable energy-
efficient computations in real time. The FUs are designed 
by following a template with the same interface to allow 
architecture extension to support other biomedical 
applications, such as breathing rate monitoring. 

3) A low-overhead hardware fault detection and recovery 
unit (FDRU) that monitors the activities of FUs using a 
configurable watchdog timer and patient-specific 
invariant checking [19], and upon detection of faults will 
reset and re-execute the affected FU in real time to 
dynamically recover from the unexpected faults.  

We implemented the proposed hardware architecture 
running the heart estimation algorithm both on an FPGA 
platform and as an ASIC design, and evaluated its runtime 
performance and energy consumption in comparison to a 
software implementation on an Android device. Real ABP and 
ECG signals from the MIMIC II database [20] were used for 
evaluation of the algorithm. The overheads of the fault 
detection and recovery mechanisms (FDRU) were evaluated 
by comparison to the baseline architecture. The fault coverage 
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of the proposed mechanisms was evaluated using simulation-
based fault injection into the fault-tolerant architecture. 

II. HEART RATE ESTIMATION ALGORITHM 

For robust heart rate estimation with a small hardware 
footprint, we leveraged a technique based on the fusion of 
heart rates estimated from ABP and ECG signals [4][12]. 
More specifically, we applied algorithmic optimizations to the 
heart rate monitoring flow proposed in [4] to enable sharing of 
the computation blocks between two separate ABP and ECG 
processing flows to minimize the hardware area. 

As shown in Fig. 1.a, there are two main stages in the 
monitoring flow: (1) detection of heart beats (peaks) based on 
the raw ABP and ECG waveforms; and (2) Kalman-filter-
based estimation of heart rates and fusion of the two estimates 
by a weighted voter based on the signal qualities. The shared 
computation blocks between the ABP and ECG peak detection 
and heart rate estimation stages are shaded in Fig 1.a. Fig 1.b 
shows the new heart rate monitoring flow that is shared by the 
ABP and ECG signals. The heart rate is estimated over a 10- 
second window of each signal with a sampling rate of 125 Hz. 

A. Peak Detection 

For the ABP signal, a threshold-based onset detection [18], 
and for the ECG signal, the Pan Tompkins QRS detection 
algorithm [9] was used. We identified the computation steps 
shared between the two algorithms and modified them to 
create a new threshold-based peak detection algorithm that can 
be configured to detect peaks for both ABP and ECG signals.  

The peak detection algorithms for ABP and ECG signals 
go through the following shared steps (shown in Fig 1.a): 
1) Low-pass filtering (LPF) to remove high-frequency noise.  
2) Derivative, squaring, and moving-average integration (for 

ECG) or slope sum calculation (for ABP) to emphasize 
higher-frequency peaks and enhance peak amplitudes. 

3) Adaptive threshold-based peak detection to locate peaks. 
Next, we will describe each of those steps in the new 
(optimized) peak detection algorithm (shown in Fig 1.b). 

1) Low-Pass Filtering: The low-pass filters designed for 
ABP and ECG signals have different cut-off frequencies, as 
the two signals have different natural frequencies and noise 
interference. Using the technique proposed in [6], we designed 

lightweight non-recursive digital filters (FIRs) with integer 
multipliers and linear phase characteristics for ABP and ECG 
signals. The designed LPFs are described as follows: 

for ABP:     ݕ௡ ൌ ሺݔ௡ ൅ ௡ିଵݔ2 ൅   ௡ିଶሻ/4ݔ
for ECG:     ݕ௡ ൌ ሺݔ௡ ൅ ௡ିଵݔ2 ൅ ௡ିଶݔ3 ൅ ௡ିଷݔ2 ൅  ௡ିସሻ/9ݔ

Both the LPFs have the same computation structure, 
composed of the weighted sum of the most recent signal 
values with integer coefficients. For computation and design 
efficiency, we designed a shared LPF hardware block that can 
be dynamically configured by providing the coefficients and 
delay parameters for filtering either ABP or ECG signals. 

2) Peak Amplitude Enhancement: Through simulation of 
the Pan Tompkins QRS peak detection and ABP onset 
detection algorithms using ECG and ABP data collected from 
several patients in the MIMIC II database, we found that the 
moving-window integration step in the Pan Tompkins 
algorithm [9] can be replaced by the slope sum function used 
in the ABP onset detection algorithm [18] and still acheive 
similar or better results. Therefore, we use the slope sum as a 
common computation block in this step. The slope sum 
function is described as follows [18]: 

ሺ݇ሻܨܵܵ ൌ ෍ ௜ݕ∆

௞

௜ୀ௞ି௪

, ௜ݕ∆ ൌ ൜
௜ݔ∆ ݂݅        ௜ݔ∆ ൐ 0
௜ݔ∆ ݂݅            0 ൏ 0 

where k is the sample index and w is the slope sum window (w 
should be set as the duration of the signal’s rising portion.) We 
chose w=15 (120 ms) for ABP and w=10 (80 ms) for ECG, 
because ECG has sharper peaks and rises faster than ABP.  

3) Adaptive Threshold-based Peak Detection: Our peak 
detection method consists of three steps:  

a) The onset of the slope sum signal is detected by 
checking a threshold (݄ܶ௢௡௦௘௧) on each data sample. Then a 
local search is performed around the detected onset to find the 
local maximum (slope sum peak) and minimum values.  The 
searching radius is half of the estimated peak to peak interval 
( ௘ܶ௦௧ሻ. Then, the difference between the slope sum’s local max 
and min values is calculated. If the difference exceeds another 
threshold (݄ܶௗ௜௙௙), the slope sum peak is accepted [18].  

b) A backward search on the original signal around the 
slope sum’s peak location is performed to detect peaks in the 
original signal. The backward search radius is 0.25 ௘ܶ௦௧.  

c) To dynamically adapt to signal changes, the 
following weighted sum function is used to update parameters 
݄ܶ௢௡௦௘௧, ݄ܶௗ௜௙௙, and ௘ܶ௦௧ with the newly detected peak values: 

 ܸ ൌ 0.875 כ ܸ ൅ 0.125 כ  ݐܿ݁ݐ݁݀_ݓܸ݁݊
The parameters are patient-specific and learnt during a training 
period (the first 20 windows of the data). ݄ܶ௢௡௦௘௧ is initialized 
to be twice the mean slope sum value in the training period. 

௘ܶ௦௧ is the mean peak to peak intervals. ݄ܶௗ௜௙௙  is half of the 
mean max and min slope sum difference of each window.  

Table I shows the results of using the new algorithm versus 
the Pan Tompkins algorithm on 10 hours of ECG data from 
five patients in the MIMIC II database. MD rate shows the 
percentage of the peaks detected by the Pan Tompkins 
algorithm that were missed by our algorithm, and FP rate is the 
percentage of the peaks detected by our algorithm that were 
missed by Pan Tompkins. The mismatch rates were less than 
1%, which indicates the accuracy of our proposed algorithm.  

(a) 

  
(b) 

Fig. 1. Robust heart rate estimation flow 
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TABLE I. ECG peak detection results using the proposed algorithm 
Patient No. MD Rate (%) FP Rate (%) 

a40076 0.27 0.12 
a41287 1.11 0.61 
a41770 0.05 0.01 
a42022 0.40 0.21 
a42157 0.05 0.04 

Pan-Tompkins Matlab code: http://www.mit.edu/~gari/teaching/6.222j/DATA/rpeakdetect.m. 



 

B. Heart Rate Estimation and Fusion 

For heart rate estimation and fusion based on the peaks 
detected in the two signals, the following steps are performed:  

1) The average heart rate in the current window is determined 
by calculating the average peak-to-peak intervals based on 
both the ABP and ECG signals.  

2) The ABP and ECG signal qualities are estimated using the 
signal abnormality index, fuzzy-logic-based signal quality 
metric, and kurtosis, as proposed in [7], [11], and [21]. 

3) The Kalman filter is applied to remove high-frequency 
noise in the heart rate estimations between windows [4]. 

4) The heart rate estimates from the ABP and ECG signals are 
fused by a weighted voter to obtain the robust heart rate 
estimate for the current window. The weight for each 
estimate is defined based on the parameters described 
in [4]: (1) quality of the signal, (2) Kalman residuals for 
the heart rate estimates, and (3) inverse quality of the other 
signal. So the final estimate would always rely more on the 
heart rate estimated from the higher-quality signal.  

Fig. 2 illustrates an example in which heart rate was 
estimated for 150 windows of ABP and ECG data from patient 
a41709 in the MIMIC II database. In this example, we see that 
the Kalman filter is able to remove high-frequency noise in the 
heart rate estimations (Fig 2.a and 2.d). At around window 40, 
the ABP signal is corrupted by a large artifact due to sensor 
disconnection, so no peaks are detected and the signal quality 
is very low. Similarly, around window 100, the ECG signal is 
noisy, and QRS peaks cannot be accurately detected. The peak 
detections in the ABP and ECG signals of an example window 
in the two segments are shown in Fig 2.b and 2.c, and Fig 2.e 
and 2.f, respectively. The corresponding ABP and ECG signal 
qualities in the 150 windows are shown in Fig 2.h and 2.i. As 
a result, the weighted voter masks the interference of artifacts 
and noise in the signals by weighting less on the low-quality 
signals at those segments (see Fig 2.g), so an accurate 
continuous estimation of heart rate is achieved. 

III. RECONFIGURABLE HARDWARE ARCHITECTURE 

The proposed hardware architecture runs the robust heart 
rate estimation algorithm discussed in Section II. It consists of 
three main parts: (1) an ASIC accelerator composed of a set of 
configurable functional units and a fault detection and 
recovery unit (FDRU), (2) a lightweight MIPS controller, and 
(3) a shared on-chip memory system (see Fig 3). The inputs 

are the raw ABP and ECG signals collected from the 
biomedical sensors, which are stored in the dedicated memory 
locations (Fig 3.a). The output is the weighted heart rate 
estimated from the analysis of ABP and ECG signals.  

A. Functional Unit Design and Configuration 

Each common computational kernel shared between the 
ABP and ECG flows (Fig 1.b) is implemented as a functional 
unit inside the architecture. Functional units (FUs) are a set of 
coarse-grained reconfigurable accelerators that provide 
efficient ABP and ECG signal processing. With algorithmic 
optimizations presented in Section II, a total of 11 FUs are 
needed for our heart rate estimation algorithm (FU numbers are 
highlighted next to the computational blocks in Fig 1.b). All 
FUs are designed according to a design template and have the 
same interface. More specifically, each FU is composed of 
three parts: (1) configuration and memory interfaces, (2) 
configuration registers (CRs), and (3) computation logics (a 
data path and a state machine controller). The FU design 
template enables extension of the architecture with other FUs 
to potentially support other monitoring applications, e.g., 
breathing rate estimation by fusion of photoplethysmographic 
(PPG) and ECG waveforms or fusion of pressure signals [22].  

The FU configuration interface connects to the system 
coordination and configuration bus and monitors the execution 
and configuration instructions sent from the MIPS controller. 
Upon receiving a configuration instruction, the configuration 
interface reads the instruction from the bus, parses the 
configuration parameters, and configures the configuration 
registers. When the execution instruction is received, the 
configuration interface notifies the FU computation logic to 
start execution. The FU memory interface is responsible for 
reading and writing data from and to the on-chip memory 
shared between the MIPS controller and the ASIC accelerator.  

FU configuration registers (CRs) are used to pass the 
needed input parameters into the FU computation logics. The 
most common FU parameters are the memory address to read 
input data, the memory address to store computation result(s), 
and the size of the input data to process. In addition, more 
configuration registers can be added in an FU to pass other 
useful parameters, such as the threshold values ( ݄ܶ௢௡௦௘௧, 
݄ܶௗ௜௙௙, ௘ܶ௦௧) for the peak detection algorithm.  

FU computation logic consists of a computation data path 
and a state machine controller. The data path is FU-specific 
and implements the corresponding FU computation logic. The 

 
Fig. 2. Kalman-filtered heart rates and weighted heart rates for 150 windows based on ABP and ECG signals and their signal qualities 
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state machine is a hard-wired controller that schedules FU 
computation and memory requests through the memory 
interface. The state machine controllers are similar in all FUs, 
as the FUs follow the same scheduling pattern. FU 
computations are pipelined and optimized in each of our FU 
implementations.  

B. MIPS Controller 

The MIPS controller is a lightweight processor (only about 
3.5% hardware area) with 16-bit instruction and 32-bit data 
lengths. It is responsible for (1) configuring the FUs by sending 
configuration parameters, (2) scheduling the FUs’ execution by 
sending instructions, and (3) executing basic MIPS instructions 
that are needed between FU executions for control flow. 

The FU configuration and execution instructions sent from 
the MIPS controller are realized by extending the MIPS basic 
instruction set. Two new instructions are added to the base 
instruction set, as shown in Fig 3.c (lower part): (1) FU 
configuration (FU_CFG), which moves a configuration 
parameter from a MIPS register (reg_id) to a configuration 
register (fu_conf_reg_id) of an FU (fu_id), and (2) FU 
execution (FU_START), which notifies an FU (fu_id) to start 
execution. Once an FU finishes the execution and stores the 
result(s) to the shared memory, it notifies the MIPS controller 
by sending a “DONE” signal.  

Fig 3.c (upper part) shows an example of C code running 
on the MIPS controller. An extended version of the MIPS C 
compiler can be used to generate the assembly code from C 
programs. The FU computations are invoked in the C program 
as intrinsic functions that are recognizable by the compiler. 
The compiler needs to maintain a table of mappings between 
C intrinsic functions and the corresponding FUs and know the 
meaning of FU configuration registers. In the given example, 
the Slope_Sum intrinsic function is called in the C program. 
The compiler maps it to FU1, which is responsible for slope 
sum computation, and generates the MIPS assembly code 
shown on the right. In lines 1-8, FU1 is configured by 
FU_CFG instructions, and in line 9, the execution is started. 
During execution, FU1 reads the signal sample values from 
the memory locations specified by CR0, computes slope sum 
values with the configured slope sum window (CR3), and 
writes the results to the result array (CR1). The total signal 
size to be read and processed is specified by CR2.  

IV. FAULT TOLERANCE MECHANISMS 

A low-overhead hardware fault detection and recovery unit 
(FDRU) has been designed to protect the functional units 
against unexpected transient faults (Fig. 4). Since the FUs 
account for more than 93% of the area and 92% of the energy 

consumption in the processing part of the hardware 
architecture (ASIC Accelerator + MIPS controller), the FDRU 
is able to cover most of the hardware. 

The fault model we simulated for evaluation of the fault-
tolerance mechanisms is the low-level transistor fault that may 
flip the result of a logic gate and then propagate to affect the 
application’s output. Only transient faults are considered, 
because transient faults or soft errors are the most common 
hardware faults, the rate of which is expected to increase 8% 
per logic state bit in each transistor generation [23].  

Upon detection of a fault, the corresponding FU is reset 
and re-executed. Therefore, with the proposed detection and 
recovery mechanism, both transient and permanent faults can 
be detected, but only transient faults can be recovered from. 

A. Fault Detection 

The FDRU uses two kinds of detectors, the configurable 
watchdog timer and patient-specific invariant checking [19], 
to detect hangs in the control logic and faults in the 
computation logic. The watchdog timer monitors the 
execution time of each FU and times out on FU hangs. 
Invariants are the conditions that hold true during the FU’s 
execution, and if any invariant is violated, it means a fault has 
happened. Two kinds of invariants are used for our proposed 
fault detection: result invariants and address invariants. 
Therefore, the FDRU is able to detect faults that cause the FU: 
1) to hang (not finish the execution within the amount of 

time specified by the watchdog timers); 
2) to generate incorrect results that violate the FU’s result 

invariants; or 
3) to write results to incorrect memory addresses that violate 

the FU’s address invariants;   

 

The watchdog timer is a module inside the FDRU that can be 
dynamically reconfigured upon execution of each FU to detect 
hangs due to faults in the control flow. If the number of cycles 
since the start of an FU execution goes beyond the configured 
threshold, the FDRU assumes the FU has hung.  

 
Fig. 4. Fault tolerance hardware coverage

 
                        (a)                            (b)                         (c) 

Fig. 3. (a) Input and output of the proposed hardware; (b) hardware system overview; (c) code example and extended instructions 



Address invariants are obtained during application 
compiling. The compiler assigns memory locations for each 
FU to write the results. Some FUs generate only a single 
result, e.g., FU3 (heart rate), FU5 (signal quality), and FU10 
(weighted voter). So their results are written at fixed memory 
locations that can be used as their address invariants. Some 
other FUs generate an array of results, e.g., FU0 (low-pass 
filter) and FU1 (slope sum), and write the result elements to a 
range of memory addresses with a given stride (for example 
one). Therefore, the memory range and the stride between 
consecutive memory writing locations are used as those FUs’ 
address invariants.  

Result invariants are obtained by patient-specific 
application profiling. Since each FU is responsible for a 
processing step in the heart rate estimation algorithm, the 
output of each FU has a specific application-level semantic (in 
contrast to the output of basic instructions, such as addition, 
and subtraction, in a general-purpose processor). Therefore, 
we utilize that property to obtain FU result invariants for fault 
detection. Two kinds of values are profiled for result 
invariants: the range of results and the difference between two 
consecutive results generated by the FU. Table II lists an 
example set of result invariants for different functional units. 
They are obtained by profiling data from patient a40050 in the 
MIMIC II database. Just like the threshold parameters used in 
the heart rate estimation algorithm, result invariants are signal- 
and patient-specific. Therefore, FUs are also designed to be 
configurable for result invariants obtained from profiling.  

It should be noted that corrupted or abnormal signal inputs 
may also cause violations in result invariants if the scenario 
was not profiled. When that happens, abnormal signal values 
are detected as FU faults. Since it may not be possible to 
profile all patient and sensor input scenarios, there is a trade-
off between the fault detection coverage and the false 
detection rate. If the invariants are set too tight (they fit only a 
small set of profiled data), an FU fault may be incorrectly 
detected upon new data samples. For example, in the worst 
case, if a patient is completely healthy during the profiling 
phase, when a problem happens to the patient later and 
changes the pattern of the input data, this may result in FU 
fault detection instead of patient problem detection. On the 
other hand, if the invariants are set too loose, FU faults may 
not cause violations of the result invariants, and this may 
result in undetected faulty heart rate estimation.  

Fig. 5 shows an example with three result invariants. As 
the profiling period increases, the range of the result invariants 
increases. The profiling data from 1000 to 4000 windows 
includes 11 occurrences of physician-annotated arrhythmia 

alarms. Even though the invariant range becomes larger, the 
experimental results in Section IV.B show that the fault 
detection coverage is only slightly affected. The reason is that 
the manifested hardware faults usually change the FU result 
by a large amount (beyond the patient’s physiological ranges).  

Therefore, medical knowledge about the patient should be 
combined with profiling data to set result invariants for some 
of the FUs, such as the low-pass filter, slope sum, and peak 
detection. The patient’s physiological ranges can be used to 
find the result invariants (e.g., the patient’s blood pressure 
never goes above 200 or below 30). Some other FUs, such as 
the signal quality, do not need the physiological ranges to find 
the result invariants, because their results should always be 
within a certain range no matter what the inputs are (e.g., 
signal quality must be a numeric value between 0 and 1).  

On the other hand, false detections of faults are not always 
harmful, because they could be a symptom of severe signal 
corruptions caused by sensor disconnections. For example, if 
the invariants have been set via profiling of a long period of 
data with the patient’s physiological ranges considered, and a 
detected fault was not actually caused by a nonexistent 
hardware fault that was erroneously detected, it will be certain 
that the detected fault was caused by input that was outside the 
patient’s physiological range and very likely resulted from 
severe signal corruptions that are worth the physician and 
patient’s attention.  

The FDRU is part of the ASIC accelerator (Fig. 3.b) and 
monitors all the FU configurations and executions. During FU 
configuration, the FDRU keeps a copy of all configuration 
register values, which will be used for fault recovery upon 
detection of a fault. When an FU sends a request to the 
memory arbiter to write a result, the FDRU checks it with both 
the address and result invariants of this FU using hardware 
range checkers.  

B. Fault Recovery 

During the execution of a functional unit, if a fault is 
detected, the FDRU takes three steps to recover the faulty FU: 
(1) it resets the FU by sending a reset signal to it. (2) it 
reconfigures the FU by sending configuration instructions 
(FU_CFG), and (3) it re-executes the FU by sending the 
execution instruction (FU_START).  

 

 

 
Fig. 5. Relationship between the result invariant range and the profiled data 
window number (with three example invariants) 

 

TABLE II. FU result invariants (profiled with data from 1000 windows)
 

FU number 
Result Invariant

ࢌࢌ࢏ࢊ࢔࢏࢓ ࢞ࢇ࢓ ࢔࢏࢓ ࢌࢌ࢏ࢊ࢞ࢇ࢓

FU0 – low pass  
for ABP 32.400 176.100 -18.600 23.400
for ECG -6.315 7.250 -4.160 4.015

FU1 – slope sum 
for ABP 0 87.300 -20.700 52.200
for ECG 0 18.180 -16.621 18.180

FU2 – peak detection 
peak index 0 1240 45 322
peak number 1 17 -8 13

FU3 – heart rate 53.354 104.530 -37.190 40.396

FU4 –Kalman filter 
filtered value 26.350 100.549 -25.088 17.991
residue -92.866 66.596 - -

FU5 – signal quality 0 1.000 - -
FU6 – derivative -4.160 4.015 -6.375 8.175
FU7 – squaring 0 17.306 -11.136 16.621
FU8 – ABP beat quality 0 1.000 - -
FU9 – ECG beat quality 2.158 8.984 - -
FU10 – heart rate fusion 86.733 100.513 -1.495 2.583

 

Note: the following conditions hold true during the corresponding FU execution: 
௜ݕ ൒ ݉݅݊, ௜ݕ ൑ ,ݔܽ݉ ௜ݕ െ ௜ିଵݕ ൒ ݉݅݊ௗ௜௙௙,   ݕ௜ െ ௜ିଵݕ ൑ ,ௗ௜௙௙ݔܽ݉ where ݕ௜ is the 
current result value and ݕ௜ିଵ is the previous result value. 



Fig. 6 illustrates the entire operation flow of the FDRU. It 
includes both the fault detection and recovery mechanisms 
discussed above. As shown in Fig. 6, if either the invariant is 
violated three times or the hang is detected three times during 
a MIPS-scheduled execution, the FDRU enters the system 
failure state and notifies the user about the failure. This will 
happen if there is a permanent hardware fault or the transient 
fault continually occurs in re-executions. If the system failure 
state was entered because of three consecutive transient faults, 
a reset of the whole architecture may fix the problem. 
However, a permanent fault can only be detected by the 
FDRU, but cannot be recovered from.  

 

V. EXPERIMENTAL RESULTS 

The proposed hardware architecture has been implemented 
both on a Xilinx FPGA platform and as an ASIC design using 
the Synopsys Design Compiler. ASIC is the target platform 
for the final product (the proposed heart rate monitor), while 
the FPGA is used as a platform to evaluate the proposed 
hardware architecture and to experiment with its extension 
with more FUs for other potential applications (heart rate 
estimation application).  

For comparison with the off-the-shelf embedded 
processors, we also implemented the same heart rate 
estimation algorithm as an Android application on a Nexus 7 
tablet (2013 model), equipped with the Qualcomm Krait 
processor (architecturally similar to ARM Cortex-A15). 

Table III lists the experimental setup of the three platform 
implementations (Android, FPGA, and ASIC). The Android 
application ran on the Qualcomm Krait processor of the 
Snapdragon chipset at 1.5 GHz. The execution time of the 
Android application was recorded by inserting time 
measurement functions in the code immediately before and 
after the heart rate estimation algorithm. The Android power 
consumption was profiled using the Qualcomm Trepn Profiler. 
During the measurements of the execution time and power 
consumption, all the other Android applications and services 
were turned off. 

The Xilinx Virtex 5 ML507 board (XC5VFX70T) was 
used as a platform for the FPGA implementation. We were 
able to run the proposed hardware architecture on the actual 
FPGA platform, while the FPGA results were collected from 
the simulation of the FPGA-synthesized hardware. The 
application’s execution time on FPGA is calculated by 
multiplying the number of execution cycles (from the cycle-
accurate Modelsim simulation) by the clock period (from the 
Xilinx ISE timing report). The FPGA power consumption was 
profiled using the Xilinx Power Analyzer based on the signal 
activities collected from the post-routing simulations.  

For the ASIC implementation, separate tools were used for 
synthesizing the processing logic and on-chip memory (Fig. 
4). Just as in the FPGA implementation, the ASIC results were 
collected from the simulation of the synthesized hardware. A 
100 MHz clock frequency was used for the ASIC 
implementation. The power consumption of ASIC was 
profiled using the tools in the Design Compiler based on the 
signal activities collected from the post-synthesis simulation. 

We first evaluated the performance and energy 
consumption of the baseline hardware architecture  
(without the FDRU) in comparison to Android, FPGA, and 
ASIC implementations. Then we evaluated the proposed fault 
tolerance mechanisms by measuring the overhead and 
detection coverage of the FDRU.  

A. Baseline Hardware System Evaluation 

The resource utilizations for the FPGA and ASIC 
implementations are shown in Table IV. The computational 
steps shared between ECG and ABP monitoring flows utilized 
up to 38% of the hardware resources, which were saved in the 
proposed heart rate monitoring flow (Fig. 1.b). 

Fig. 7 shows a comparison of the runtime performance and 
energy consumption of the three platforms, obtained by 
running 1000 windows (10,000 seconds) of patient data from 
the MIMIC II database. All the results are normalized to the 
results of the ASIC platform, which are listed in Table V.  

Compared to ASIC, the execution times to process the 
same amount of patient data on the Android and FPGA 
platforms are 20.62 and 1.50 times longer, respectively. The 
speedup of ASIC compared to the Android implementation is 
mainly from (1) the efficiency of the FU modules that are 
optimized in the ASIC logic, and (2) the faster memory 
accesses enabled by the on-chip memory. On the other hand, 
since the same underlying hardware design is used for both the 
FPGA and ASIC implementations, the hardware cycles to run 
the same application are the same on both platforms. So the 
speedup of ASIC compared to FPGA is due only to the higher 
clock frequency.  

Energy consumption directly affects battery life. Both the 
ASIC and FPGA implementations of the proposed hardware 
system are much more energy-efficient than the Android 
implementation. They consume 1/2871 and 1/923 of the 
energy used by Android, respectively. The reason is that the 
Android implementation runs on the general-purpose 
embedded processor (Krait) with complicated processing 
pipelines and hierarchical memory systems, which are 
designed to reduce the processing latency of general 
embedded applications. 

TABLE III. Experiment toolsets for hardware system evaluation

Platform Frequency Design Tools Evaluation Tools 

Android 
Snapdragon S4 

@ 1.5 GHz 

Android SDK (test and 
evaluate on the 2013 Asus 
Nexus 7 tablet) 

Qualcomm Trepn 
Profiler10 

FPGA 66.6 MHz 
Xilinx ISE 14.2 (test and 
evaluate on the Virtex-5 
XC5VFX70T FPGA) 

Modelsim SE 10.1a,  
Xilinx ISE, and  
Xilinx Power Analyzer2  

ASIC 
100 MHz 

(up to 222.2 
MHz) 

Processing logics: 
Synopsys Design Compiler 
with NanGate 45 nm Open 
Cell Library.  
On-chip memory: 
Synopsys Generic Memory 
Compiler (32 nm). 

Modelsim SE 10.1a and 
Synopsys Design Compiler 
with NanGate 45 nm and 
Generic Memory Compiler 
32 nm technology libraries3

1. https://developer.qualcomm.com/mobile-development/increase-app-performance/trepn-profiler. 
2. http://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/design-

tools/v2012_2---14_2.html. 
3. http://www.nangate.com/?page_id=2325 

 
Fig. 6. Fault Detection and Recovery Unit (FDRU) operation flow 
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On the other hand, the proposed hardware architecture is 
composed of FUs that have been specially designed and 
optimized for the target monitoring application. In addition, 
because of the small memory size required, the on-chip 
(cache-like) memory is directly used as the main memory in 
the proposed hardware, which simplifies the memory system 
design and reduces the corresponding energy consumption. 
Both the ASIC and FPGA implementations benefit from those 
application-specific optimizations. Therefore, with the same 
battery capacity, the proposed hardware architecture on the 
ASIC and FPGA platforms would be able to achieve, 
respectively, 2871 and 923 times the battery life of an 
implementation on the Android platform.  

B. Fault Tolerance Evaluation 

The overheads of the FDRU in resource utilization, power 
consumption, and runtime performance are listed in Table VI. 
During a fault-free execution, the fault-tolerant architecture 
consumes 37.01% and 33.89% more power, compared to the 
baseline architecture, in the FPGA and ASIC implementations, 
respectively. The extra power consumption is mainly due to 
the invariant checking and watchdog timers used for fault 
detection.  

The FDRU does not incur performance overheads (any 
extra hardware cycles) during normal monitoring without 
faults, because the fault detection checking is executed in 
parallel with normal FU executions, and none of the fault 
detection checking is on the critical execution path. When 
faults are detected during an execution, extra power and 
performance overheads would be introduced by the fault 
recovery process. The amount of extra overhead depends on 
the frequency of the FU fault detection and the specific FU to 
which the fault occurs.  

The fault-tolerant architecture utilizes about 14.5% more 
look-up tables in FPGA and 15.5% more cell gates in ASIC, 
compared to the baseline architecture. The resource overhead 
is due to (1) the FDRU’s controlling state machine logics (Fig. 
6), (2) a copy of all FU configuration registers, (3) the 

watchdog timer, and (4) the FU address and result invariants, 
as well as the invariant checkers (hardware comparators).  

To evaluate the detection coverage of the proposed fault 
tolerance mechanisms, we used the CrashTest fault injection 
framework [24] to inject transient faults to all synthesized 
logic gates of the FUs (highlighted in Fig. 4). We injected 
faults at different fault rates of 4×10-9 to 24×10-9 per logic gate 
per cycle. For each fault rate, 500 simulations were performed, 
with faults randomly triggered at different gates in each 
simulation. Depending on the time and location of which the 
fault was triggered, we observed three possible results, listed 
in Table VII.  

Fig. 8 shows a comparison of the fault injection results on 
the baseline architecture versus the fault-tolerant architecture 
with the proposed FDRU. The result invariants were profiled 
with 1000 windows of patient data. The results are in terms of 
the percentages of the three possible results (shown in Table 
VII) out of the 500 simulations for each fault rate.  

At all fault injection rates, the FDRU was able to increase 
the correct result percentages by detecting the FU faults and 
dynamically recovering from them through FU re-executions. 
In total, incorrect system behavior (incorrect results and 
system failures) are reduced by 55.9-65.7% in all fault 
injection rates (e.g., reduced from 33.6% to 14.8% under the 
fault rate of 20*10-9 per logic gate per cycle). In addition, all 
system failures were detected in the fault-tolerant architecture. 
If the FDRU fails, the baseline architecture will still operate 
normally, but with no fault protection.  

As discussed in Section IV, with longer profiling period 
(more input scenarios), the ranges of FU result invariants 
become larger. As a result, the fault detection coverage would 
be affected, because the probability would be higher that the 

TABLE VI. Overheads of FDRU in FPGA and ASIC implementations

FPGA ASIC

Power* 37.01% 33.89% 

Performance* 0% 

Resource 14.54% LUTs 15.54 % cell gates (12.65% area)

* Power and performance overheads in the table are the overheads during normal monitoring 
when no fault has been detected. If there are detected faults, more overheads would be introduced 
due to FU re-configuration and re-execution in the fault recovery process of FDRU. 

TABLE VII. Description of possible fault injection results 

Baseline Architecture 
(without FDRU) 

Fault-Tolerant Architecture
(with FDRU)

Correct Result 
The hardware finishes execution on time*, and

the heart rate detected is correct (faults are not manifested).

Incorrect Result 
The hardware finishes execution in time*, but

the heart rate detected is incorrect (faults are manifested). 

System Failure 
The hardware does not 
finish execution on time*. 

Either the FU hang or the 
invariant violation is detected 
three times in a single MIPS-
scheduled execution of the FU. 

* "on time" means within 5 times the supposed execution time, which is the execution time of the same 
application without fault injection. 

  
Fig. 8. Fault injection result comparison between the baseline system and the 
fault-tolerant system (with the proposed FDRU) 
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TABLE IV. Resource utilizations of the proposed hardware system 

Processing logics FPGA ASIC

Total 11,856 LUTsa + 22 DSP48E 53,697 cell gates (0.121 mm2)

Shared logic (FU0–FU5) 
(%) 

2,718 LUTsa + 4 DSP48E 
(38.1%) 

16,844 cell gates
(31.4%) 

On-chip memory 32 KB Block RAM 32 KB SRAM (0.195 mm2)b

a  LUT means “look-up table” (LUT is 6-input for the Virtex 5 FPGA family). 
b The ASIC on-chip memory is implemented with the 32 nm SRAM generated by the Generic 
Memory Compiler (a different technology library from the one used for processing logics). 

      
Fig. 7. Comparison of runtime performance and energy consumption (for each 
platform, the same heart rate estimation application was run for 1000 
windows of patient data (a40050) from the MIMIC II database.) 

TABLE V. Runtime and energy consumption of the ASIC implementation 
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fault would cause the incorrect result to be within the invariant 
range and thus undetected. To illustrate the effect of the 
profiling data size on the fault detection coverage, Fig. 9 
compares the fault injection results for the baseline 
architecture and fault-tolerant architecture with three different 
profiling data sizes. The comparison results show that the fault 
detection coverage does not decrease much as the profiling 
data size (result invariant range) becomes larger. Even with 
4000 windows of profiling data, the incorrect system 
behaviors (incorrect results and system failures) are still 
reduced by at least 51.58% compared to the baseline system. 
The reason is that the detected fault usually causes the FU 
result to be changed by a large amount that is beyond normal 
physiological ranges. Therefore, the result invariants should be 
set based on both the patient’s physiological ranges and the 
profiling of long periods of patient data, so that the false fault 
detections that are not indications of severe signal corruptions 
can be eliminated, while the fault detection and recovery 
coverage is still kept high.  

VI. CONCLUSIONS 

In this paper, a fault-tolerant hardware architecture for 
robust real-time heart rate monitoring is introduced. A signal 
fusion algorithm for robust heart rate estimation based on 
analysis of ECG and ABP waveforms is used. We developed 
an optimized peak detection algorithm that can be dynamically 
configured for detecting heart beats from either ECG or ABP 
signals, which enables sharing of the computational blocks 
and reduces hardware footprint by 38%. A fault detection and 
recovery unit (FDRU) is proposed that by utilizing the 
watchdog and patient-specific invariant checkers can protect 
FUs from transient hardware faults. The proposed hardware 
architecture is implemented on both an FPGA platform and as 
an ASIC device. Both implementations achieved better 
runtime performance (almost 20 times faster) that the same 
algorithm implemented on an Android device, while 
consuming much lower energy (1/2871 and 1/923 of Android 
implementation). In addition, the proposed fault-tolerant 
mechanisms can protect the device against 55.9%-65.7% of 
incorrect results and system failures, with low energy (34%), 
area (15%), and no performance (0%) overheads.  

The proposed hardware architecture can be used as a 
configurable platform for robust real-time estimation of a 
variety of cardiovascular parameters on a wearable device. 
Future work will focus on evaluation of the proposed 
architecture for monitoring cardiac arrhythmias in real patient 
settings and on the comparison of detection results with the 
state-of-the-art heart rate monitoring algorithms and systems.  
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