Rendering of 3D Dynamic Virtual Environments

Salvatore A. Catanese
Dept. of Physics
Informatics Section
University of Messina, Italy

salvocatanese@gmail.com

Emilio Ferrara
Dept. of Mathematics
University of Messina, Italy
emilio.ferrara@unime.it

Giacomo Fiumara
Dept. of Physics
Informatics Section
University of Messina, Italy

giacomo.fiumara@unime.it

Francesco Pagano
Dept. of Information
Technology
University of Milan, Italy
francesco.pagano@unimi.it

ABSTRACT

In this paper we present a framework for the rendering of
dynamic 3D virtual environments which can be integrated
in the development of videogames. It includes methods to
manage sounds and particle effects, paged static geometries,
the support of a physics engine and various input systems. It
has been designed with a modular structure to allow future
expansions.

We exploited some open-source state-of-the-art compo-
nents such as OGRE, PhysX, ParticleUniverse, etc.; all of
them have been properly integrated to obtain peculiar physi-
cal and environmental effects. The stand-alone version of the
application is fully compatible with Direct3D and OpenGL
APIs and adopts OpenAL APIs to manage audio cards.

Concluding, we devised a showcase demo which repro-
duces a dynamic 3D environment, including some partic-
ular effects: the alternation of day and night influencing the
lighting of the scene, the rendering of terrain, water and veg-
etation, the reproduction of sounds and atmospheric agents.

Categories and Subject Descriptors

H.5.1 [Information Interfaces And Presentation]: Mul-

timedia Information Systems— Artificial, augmented, and vir-
tual realities; 1.2.1 [Computing Methodologies]: Appli-

cations and Expert Systems—Games; 1.3.7 [Computing

Methodologies]: Three-Dimensional Graphics and Real-

ism— Virtual reality

General Terms

Design, Experimentation

Keywords

Virtual Environments, Games

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

DISIO 2011 March 21, Barcelona, Spain.

Copyright 2011 ICST, ISBN .

1. INTRODUCTION

The design of virtual environments is a complex and ex-
pensive process within the development of videogames. The
improvements in programming video cards greatly increases
the possibility of creating extremely involving interactive
virtual environments and worlds with enhanced exploratory
choices in immersive playing experiences.

Besides the generation of virtual object models such as
buildings and landscapes and a real-time camera control for
navigation in virtual environments, the development should
provide the possibility to manage physical, environmental
and collision effects. These elements determined a substan-
tial increase of development costs in order to face the large
amount of extra technical and artistic features. The result
is that, in some cases, production costs are comparable to
those of some film productions.

Although some virtual environment development toolkits
are available, some of them provide only a subset of those in-
struments which are necessary to completely develop virtual
worlds. Some features particularly difficult to be simulated,
such as wind, fire, smoke and water often need a further
programming phase, thus still increasing development costs.

In the last years there has been an increase in the num-
ber of middlewares and frameworks (see further) which try
to face the problem of fulfillment and optimization of 3D
dynamic virtual environments in order to solve the techni-
cal requirements of complex videogames. The framework we
developed can be set in this category.

The virtual environment we describe in this paper is build
on top of a previously developed middleware framework [?]
with features to manage input devices, sound and music
integration, networking support and physics effects imple-
mentation. This work extends the features of this platform
improving the graphical quality, the degree of realism and
involvement of virtual scenes, when non-commercial engines
and libraries are employed.

2. RELATED WORK

A lot of research has been conducted, both by academia
and enterprises, in supporting videogames development in
reproducing 3D virtual environments. In the last few years,
the most of the efforts have been addressed in reproducing
realistic virtual environments which include those phenom-
ena usually characterizing real environments, such as the

physics, environmental effects, photo-realistic graphics, and
so on. Our work focuses on some of these aspects and most
of them have been already covered in specific related work.

Because developing virtual environments fuses aspects of
software engineering, architecture, artificial intelligence, 3D
graphics, art and sound effects, frameworks and platforms
supporting these steps have been developed in the last years.
For example, Trenholme and Smith in [?] present an overview
of several currently available commercial game engines (id
Tech 3-4, CryENGINE, Source and Unreal Engine 2), which
are suitable for prototyping virtual environments. Similarly,
Watson et al. [?] review the procedural modeling, examin-
ing the CityEngine game engine they developed, and study-
ing the use of procedural urban modeling in Electronic Arts’
Need for Speed games, for representing virtual urban envi-
ronments exploiting their middleware. On the other hand,
in the academic field, a simple game engine (SAGE), de-
veloped in a game programming class at the University of
North Texas, is described by Parberry et al. in [?]. They
show a sequence of demos implementing different function-
alities; each demo extends its predecessor in a process called
incremental development. SAGE generates 3D virtual en-
vironments, that users can explore in real time, containing
interactive objects. It includes a graphics renderer, using
pixel shaders and HLSL, objects, terrain and some method
for level-of-detail to increase rendering speed, input man-
agement and collision detection. [?] shares similarities with
our work in these aspects.

In the area of environmental effects simulation, several
methods for reproducing weather phenomena, like particle-
based rain techniques, are presented in [?]. The authors
describe in details those methods to render, in a real-time
system, very complex atmospheric physical phenomena such
as strong rainfall, falling raindrops dripping off objects’ sur-
faces, various reflections in surface materials and puddles,
water ripples and puddles on the streets and so on.

Realistic animations of water, smoke, explosions, and re-
lated phenomena are reproduced via fluids simulation. Wicke
et al. [?] face the problem of high-resolution fluid mo-
tion in real-time videogame applications, describing some
techniques on a scale previously unattainable in computer
graphics. The central idea is to cover the simulation do-
main with a small set of simulation primitives, called tiles.
Each tile consists of a velocity basis representing the pos-
sible flow within its sub-domain. The boundaries between
sub-domains correspond to tile faces.

Finally, in the area of realistic graphics, an exterminated
amount of work has been presented in the last years. An
interesting interactive fractal landscape synthesizer on pro-
grammable graphics hardware, which exploits the intrinsic
strengths of GPUs to generate and render high-quality, high-
resolution, textured and shaded terrains has been presented
by Schneider et al. in [?]. The synthesis step is directly inte-
grated into the rendering procedure and requires neither any
polygonal representation nor a pre-processing stage. The al-
gorithms are combined into a visual interface to allow the
intuitive design of highly detailed terrain models.

An overview of Halo 3’s unique lighting and material sys-
tem and its main components is treated in [?]. Halo includes
key innovations in the following areas: spherical harmonics
lightmap generation, compression and rendering; rendering
complex materials under area light sources; HDR rendering
and post-processing. Some of the effects presented in that

work have been adopted also here (e.g. the HDR rendering).

3. THE FRAMEWORK

The application we developed includes some of the most
important open-source solutions used for the rendering of
3D virtual environments. We employed: OGRE (Objected-
Oriented Graphics Rendering Engine) [?]; Caelum for photo-
realistic creation of the sky, clouds and atmospheric agents;
Hydrax for the rendering of scenes including water and for
the reproduction of its effects such as depth, foam, sunbeams
through water surface, etc.

OGRE was chosen among other open-source engines for
various reasons. Some graphical engines while showing a
large list of features, can be hardly merged to create a us-
able tool. Others are supplied with enchanting demos, but
are scarcely helpful when a broader project is to be created.
Finally, others are too much specific for a given type of video-
game. What makes OGRE different from other graphical
engines is the wide support community, the documentation
and its being open-source.

We have used Paged Geometry for the rendering of large
amounts of little meshes needed to cover the surfaces of the
environment: the library is specifically designed for the ren-
dering of forests and outdoor scenes where mushrooms, rocks
and blades of grass must be rendered in a performing way.
The PhysX engine has been chosen to dynamically simulate
objects, collisions with the terrain and the static geometry
(paginated or not) of the scene. PhysX is also suited to
be integrated with OGRE via the NxOGRE wrapper class.
We have also used the OGREOggSound library in order to
manage sounds, together with Particle Universe to create
visually stunning particle systems.

We also introduced two techniques, namely “texture splat-
ting” and “parallax mapping”, which improve the quality and
the realism of the reproduced environment based on pro-
gramming shaders. They will be described in detail in next
sections. Our application extends a middleware framework
presented elsewhere [?] which provides a starting point to
ease the process of game development, discussed in the next
section.

3.1 Basic Middleware Framework

The middleware framework at the core of the application
consists of a series of tools which greatly eases the develop-
ment of videogames based on 3D environments. It allows
programmers and artists to focus on game dynamics and
gameplay neglecting the technical aspects of development.

The system provides some features which ease the phases
of development and in particular to: i) load a 3D scene cre-
ated using graphical modeling softwares (e.g. Blender); ii)
specify the physical qualities of an object (mass and phys-
ical model) inside a scene; iii) export the 3D environment
towards third part applications; iv) accomplish the render-
ing of the dynamic environment; v) manage the motion of
the objects thus accomplishing a physical simulation, and
vi) save the videogame progress for further restore.

Modularity is the main characteristic of the middleware
framework. It permits extensions and customizations for
various uses, as in the case of the application we illustrate in
this paper. Each of the packages it is composed of, which can
be replaced upon choice, deals with a specific functionality.
Therefore it is possible to customize the framework without
having to re-implement all the characteristics if the interface

of the replaced package is maintained.

The main packages are those related to the management
of the cycle of rendering (GameSystem), the I/O (GamelO),
the interface with audio libraries OpenAL (GameAudio) and
the control system of the character based on PhysX (Game-
CharacterController). They also include the methods to
load and save the scenes (GameSceneLoader).

3.2 Framework Extended Modules

The new modules we developed allow to accomplish the
3D rendering of a dynamic environment which includes the
following features: day-night cycle simulation, to manage
the lighting of the whole scene; realistic rendering of the
water, with refraction and reflection effects on the objects
in the scene; optimized rendering of static paged geometry;
optimized and simultaneous rendering of the trees, grass and
other static elements; free camera with variable velocity to
explore the environment.

Moreover, the system supports: the terrain rendering and
generation from “heightmaps”; collision detection via PhysX;
terrain texturing using the “texture splatting” technique;
“parallax mapping” on road texture for good depth effect;
multiple sounds playing; multiple particle system effects.

We introduced the possibility of managing random weather
conditions, with dynamic wind variables (speed, direction);
rain effects with different intensity, speed, direction (wind
correlated); thunderstorm with lightning effects; sounds of
thunders calculated according to the distance between the
lightning and the observer, with real attenuation/distance
retard to hear them; water surface update in base of weather
conditions (calm or rough sea).

The stand-alone framework, written in C++, may be fur-
ther extended to include third part libraries; extensions should
be interfaced with existing modules, and eventually refac-
toring the replaced libraries. It is compatible with OpenAL,
Direct3D e OpenGL APIs, and supports a large number of
video cards with 2.x pixel shader functionality.

4. DYNAMIC VIRTUAL ENVIRONMENTS

The process of designing of virtual environments is build
on top of a previously developed middleware framework [?];
this platform represents a solid starting point for the devel-
opment of 3D games, including several features (e.g. input
devices management, sound and music integration, network-
ing support, physics effects implementation, etc.).

In this work we extend the features of this platform, in
particular improving graphics quality aspects (introducing
new rendering techniques) and the realism and the degree
of credibility and involvement the designed virtual environ-
ments could ensure (introducing realistic terrain generation
techniques, weather management, particle systems, fluid dy-
namics, load balancing of renderable elements, etc.).

4.1 Design of the Demo Environment

We also designed a demonstrating environment, which in-
tegrates the previously listed features and is used as show-
case for illustrating them. This virtual area reproduces the
Port Royal Bay (Jamaica) (Figure ?77); the place represents
a realistic setting for a possible fantasy/adventure show-case
demonstration; this because, during the 17th century, it was
one of the main scenarios of piracy in the Caribbean Sea.

It was necessary to reproduce a realistic environment also
with respect to the temporal period. It includes two main

Figure 1: Port Royal Bay (Jamaica) nowadays

areas: 1) the city center (including buildings, the citadel,
etc.); ii) the bay (shores, plains, forests, etc.).

We adopted two different scene managers to represent the
areas: for the outdoor environment we use the TerrainScene-
Manager, while for indoor places we adopt the BSPSceneM-
anager (both of them are optimized for their different pur-
poses). A small citadel has been designed via Blender. The
scene has been exported through an ad-hoc plug-in which ex-
ploits the DotScene extended DTD we previously presented
[?]. The outdoor environment has been created using a ter-
rain generation algorithm (details follow) starting from a
heightmap taken from NASA altimetry satellites (Figure 77,
top left).

4.2 The Terrain

The terrain generation problem is crucial for the creation
of a realistic virtual environment. Several commercial prod-
ucts already exist (e.g. Vue 9 Infinite Terrains '), which
produce realistic outdoor areas via different techniques. Our
purpose is to integrate in our framework a feature for ob-
taining similar results.

4.2.1 Terrain Generation via Maps

The TerrainSceneManager provided with OGRE supports
the generation of outdoor terrains via maps. In particular,
a “heightmap” is used to define the topology of the terrain;
this map is a grayscale image in which each pixel describes
the altimetry of a corresponding terrain point (Figure 77,
top left). After the terrain topology generation, textures are
applied to it (Figure ?77); then a base color is passed over
the surfaces in order to diversify different areas, adopting
a “color map” (Figure ?7, bottom right); finally, a “detail
map” (Figure 77, bottom left) is applied, which includes
RGB and alpha channels (used for texture splatting and
parallax mapping via shaders, details follow).

Figure 77, so as several following screenshots, shows the
results for our show-case example; comparing these pictures
with real photos (e.g. Figure ??) we observe the excellent
degree of realism of the reproduced environment.

4.2.2 Maps and Texturing

"http:/ /www.e-onsoftware.com/

Figure 2: 3D virtual reconstruction of the bay

.

Figure 3: Clockwise from top left: “heightmap”,

“density map”, “coverage map”, “color map”

For our show-case demonstrative environment, four differ-
ent maps have been generated for creating the outdoor area
(Figure ?7?): i) the “heightmap” (previously discussed); ii)
a “density map”, which is adopted for adding entities like
trees, grass, etc.; iii) a “coverage map” (containing informa-
tion about the distribution of textures in the four channels,
RGB and alpha) and iv) the “color map” (the base color
passed on surfaces), used for texture splatting and parallax
mapping processes.

Four textures have been applied to the terrain (Figure
?7?): i) pathway, ii) sand, iii) sand and grass and iv) short
grass.

4.3 Rendering Techniques

The framework [?] relies on OGRE [?] for rendering the
virtual environment. This open-source rendering engine pro-
vides techniques and methods for representing 3D virtual
scenes, exploiting the power of GPUs (Graphics Process-

Figure 4: Textures for the terrain

Figure 5: Texture splatting and parallax mapping

ing Units), supporting both the Direct3D and the OpenGL
pipelines.

Although several state-of-the-art algorithms have been al-
ready implemented within the rendering engine, we intro-
duced two techniques, namely texture splatting and parallax
mapping, which improve the quality and realism of the re-
produced environment. These techniques are implemented
via shaders.

4.3.1 Texture Splatting

The process of texture splatting was originally described
by Bloom [?] in 2000. The purpose of this technique is to
merge several textures on a unique surface via alphamaps.
An alphamap is a grayscale image which is included in the
alpha channel of a texture.

Each pixel of the alphamap determines the degree of opac-
ity or translucency of the pixel in the same position of the
texture. In this technique the alphamaps are exploited to
establish how much opaque or translucent has to be each
pixel of the texture in the corresponding position within the
alphamap. This is easily obtained by multiplying the alpha
channel by the RGB channels. Alpha lies in the interval [0,1]
(0 corresponds to completely transparent, 1 to completely
opaque).

We extended the graphical features of the rendering en-
gine implementing the texture splatting algorithm; it was
adopted (together with parallaz mapping), for example, to
better reproduce the effect of pathways through the forest
(Figure 77).

4.3.2 Parallax Mapping

This rendering technique has been introduced by Kaneko
[?] in 2001, and represents an improvement of standard
bump mapping algorithms; because of the computational
overhead introduced, this technique has been widely ex-
ploited only in the last few years thanks to the adoption of
GPUs programming. The parallax mapping is implemented
using normal maps for displacing the position of texture co-
ordinates on the rendered polygon, considering the value of
the normal map in each point of the texture, as a function
of the view angle in tangent space.

As shown in Figure 7?7, due to the parallax effect, this
technique improves the realism of texturing flat surfaces,
giving the optic illusion of depth. The rendering engine has
been extended for supporting the parallax mapping with
multiple iterations of the process.

4.4 The Skydome

In order to create an illusion of being projected into an
environment bigger than it really is, our framework includes
the possibility of embedding the whole world inside a box,
namely the skydome. The skydome represents a technique
used for creating backgrounds. This way, distant and un-
reachable objects such as the sky, boundary mountains, etc.
are projected onto this container, thus obtaining the optic
illusion of three-dimensional surroundings.

The skydome we adopted is a hemisphere (instead of a
cube, as usual), in order to improve the degree of realism.
The skydome could be fixed, but a realistic virtual environ-
ment should include the possibility of reproducing dynamic
skydomes. Our system introduces a novel approach to simu-
late the day-night cycle, also including a dynamic represen-
tation of clouds, sun/moon lighting and realistic positioning,
astronomically correct starfield, and much more.

4.4.1 The Caelum Library

Caelum is an open-source library developed as a plug-in
for OGRE which aims to support a photo-realistic repre-
sentation of the skydome. It introduces the possibility of
managing objects such as the sky (e.g. dynamic color modi-
fication), clouds, sun and moon, the starfield, etc. Through
the integration of this library within the framework we ob-
tained a more attractive representation of the sky.

Several modifications to the core of this library have been
introduced in order to: i) integrate Caelum with the Weather
library we developed (e.g. to produce more realistic at-
mospheric events); ii) exploit the particle system (e.g. for
generating clouds); iii) communicate with the Hydrax li-
brary for interchanging information about the position of
the sun/moon (e.g. for generating effects of reflection of
lighting on the water).

4.4.2 CaelumManager

CaelumManager is the class we developed to integrate
the functionalities of the Caelum library, which works as
a wrapper. This class provides methods to access objects
and properties required to implement the elements we pre-
viously described. It integrates methods for communicating
with the WeatherManager, for managing the clouds, and
with the HydraxManager, for reproducing the effect of in-
teraction among the sun/moon, skydome and starfield with
the water. Some additional minor modifications include in-
terfacing this library with the scene manager and with the
camera, for setting/getting the visibility of the sun or the
moon with respect to the position of the character and the
camera in the environment.

4.4.3 The Day-Night Cycle

After instantiating, the CaelumManager loads a set of pa-
rameter for initializing and managing related objects. Com-
ponents managed by the library, after our improvements, are
the followings: i) CAELUM_COMPONENT_SKY_DOME;
ii) CAELUM_COMPONENT_SUN; iii)) CAELUM_COMPO-
NENT_CLOUDS; iv) CAELUM_COMPONENT_MOON and,
finally, v) CAELUM_COMPONENT_POINT_STARFIELD.

Because of our custom implementation of WeatherMan-
ager, we do not manage the weather component included by
default in the Caelum library. Several parameters are ini-
tialized, for example the time scale, which is a multiplier for
representing the time passing in the game.

Figure 6: The day-night cycle simulation

In our demo show-case this value is set to 8, so as repre-
senting 1 minute in real as 8 minutes in game. We introduce
also the possibility of setting latitude and longitude of the
environment positioning, and the Gregorian calendar date
of the simulation. In order to simulate the natural lighting
we have also set a range for the ambient light, lying in the
interval from the darkest blue (for the night) to the lightest
yellow (for the day). Figure 7?7 depicts a dusk panorama,
while several other figures within this section illustrate dif-
ferent condition of lighting.

4.5 The Particle System

A particle system is helpful to simulate several fuzzy phe-
nomena (e.g. fire, water, fog, rain, clouds, etc.) otherwise
not easily and realistically reproducible with standard ren-
dering techniques. There are several tools to render particle
systems, usually adopting scripts to initialize, start and stop
certain particle effects, able of contemporary manage differ-
ent objects on the scene, hierarchies, etc.

Simulated particle systems should also be subjected to
physics in order to reproduce a more realistic virtual world.
Thus, in our project we implemented a particle system man-
ager exploiting an existing library, namely ParticleUniverse.
We integrated, through some modifications, its functionali-
ties with those provided by other components of the frame-
work. In our demo show-case this system is mainly used to
create clouds, rain, hail and snow (see Figures 77 and ?77).

4.5.1 The ParticleUniverse Library

ParticleUniverse is a library which can be incorporated
inside the OGRE rendering engine to support particle sys-
tems. This plug-in consists of an efficient run-time dynamic-
link library, developed in C++, which enable the rendering
engine to simulate particle systems running specific scripts.

We exploited this library for generating realistic weather
effects (e.g. rain, snow, clouds, etc.). Moreover, we intro-
duced some modifications in order to integrate this library
with Caelum, Hydrax and PhysX, for representing dynamics
among particle systems and the physics.

4.5.2 ParticleListManager

ParticleListManager is the simple wrapper class we de-
veloped to integrate the library in our framework. It is an
efficient manager of the list of particle systems instantiated
at a given time in the virtual world. This class provides the
methods to manage existing particle systems and to dynam-
ically create new ones.

Moreover, it includes the interface to NxOGRE to man-
age the physics of interactions among particle systems, or
between a particle system and other physical objects on the
scene.

4.6 The Weather

Commercial middleware tools like Simul Weather ? pro-
vide realistic simulation and management of the weather
condition within the reproduced virtual worlds. Usually
some commonly supported features are the possibility of
simulating clouds and related atmospheric effects (e.g. rain,
snow, lightning, etc.).

During our development we noticed a lack of open-source
products to this purpose. Thus, we decided to develop a new
library from scratch, to be included as a plug-in in OGRE,
but virtually independent from the platform in which it
should run. This library should be integrated with the par-
ticle system, because atmospheric effects are better repro-
duced this way; it should also be connected to the physics
engine, in order to reproduce physics effects; finally an in-
terface to the scene manager is required to locate effects on
the scene.

4.6.1 WeatherManager

Our WeatherManager class provides methods to manage
the simulation of atmospheric effects on the scene. It extends
the OGRE:FrameListener class overloading several impor-
tant methods; it includes a list of particle systems (via Par-
ticleUniverse), provides several attributes for personalizing
the weather simulation and, finally it instantiates a couple
of objects; the three most important objects are: i) Clouds;
ii) Lightning and, iii) Rain. Its most important methods
include the fader between different atmospheric condition,
the wind simulator and the random precipitation generator.
Finally, two methods for saving and loading the state of the
system have been included.

4.6.2 Clouds and ManageClouds

The Clouds class implements the cloud systems. Clouds
can be distributed over an arbitrary number of different lay-
ers. This class provides generative methods for instantiating
a new cloud system, setting several attributes (e.g. the cov-
erage of the clouds, the starting speed of each layer, etc.)
and the methods for dynamically managing the system in
real-time. The realistic effect of transition from an atmo-
spheric condition to another is obtained using some fad-
ing methods. Clouds strictly depend from the simulation
of the weather condition (e.g. the wind) reflecting these
changes, and additionally from some dynamically random
calculated parameters which reproduce humidity, chance of
raining, etc. In Figure 7?7, as in several other snapshots in
this section, we show examples of the cloud system.

4.6.3 Lightning and ManageLightning

The Lightning class implements lightning and thunders.
Each instance represents a single lightning event, with the
related thunder. The lightning is managed as a particle sys-
tem, while the thunder is just the associated sound event.

The sound of thunders is reproduced with a time delay
calculated with respect to the distance of the lightning from
the camera.

Zhttp://www.simul.co.uk/weather/

Figure 7: Clouds and the skydome

Figure 8: The effect of raining

4.6.4 Rain and ManageRain

Despite the name, the Rain class represents all the kind of
precipitations (e.g. rain, hail, snow, etc.). Similarly to the
previous class, Rain owns a proper list of sounds, a particle
system, a scene node and a reference to the camera system.

To increase the efficiency of this system, each precipitation
is not executed over the whole scene, but just over the box
containing the scene node the camera is currently pointing
to. This way, precipitations just follow the character and
the camera, increasing performances.

This class exposes methods to dynamically manage atmo-
spheric events, to configure the precipitation particle system
at run-time and, finally, to reproduce sounds connected to
precipitations. Figure ?? is a snapshot of a rainy panorama.

4.7 Dynamic Simulation of Fluids

Several work [?, ?] covers the problem of simulating
dynamic fluids in videogames; moreover, some commercial
middleware engines have been specifically developed to man-
age fluid dynamics (e.g. HydroEngine). In our project
we integrated the Hydrax library, an open-source solution
adopted to simulate the dynamics of water and, potentially,
other fluids. In our show-case it performs at its best because
the whole scene is located in a peninsula surrounded by the
ocean (see Figures 7?7 and ?? for some eye-candy effects).

4.7.1 The Hydrax Library

Hydrax is developed as an open-source add-on for OGRE,
which provides an intuitive library in order to render photo-

3http://www.darkenergydigital.com/hydroengine.php

Figure 9: Lighting and reflection on water

realistic water scenes. This library is highly configurable,
thus the most of the effects which do not directly depend on
shaders can be generated and managed in real-time. This
includes water depth and foam effects, smooth transitions
and caustics, underwater light rays, etc.

Our improvements to the library include the possibility
to manage the RTT (“Render To Texture”) texture qual-
ity (e.g. to apply additional effects before displaying the
final texture), the Hydrax geometry (e.g. in order to calcu-
late atmospheric effects on the water), etc. This was possi-
ble because Hydrax is based on a modular interface which
supports several different water geometries: i) the infinite
ocean module (i.e. a projected-grid-based algorithm); ii)
the simple-grid module; iii) the radial-grid module.

4.7.2 HydraxManager

This is the wrapper class we developed to integrate the
library in the framework. Moreover, it acts as an inter-
face connecting Hydrax with the CaelumManager and the
WeatherManager. Finally, it connects the library with other
fundamental modules of the framework like the scene man-
ager, the camera, etc.

HydraxManager provides several methods to manage the
grids (i.e. projected, simple and radial ones).

4.7.3 Caelum and Weather on Water

The interaction among Hydrax and other components is
managed by two methods we introduced from scratch, up-
dateWeatherOnWater() and updateCaelumOnWater().

Their update is synchronized with the timeScale factor of
the simulation, thus reducing the overload of the renderer
without burdening on the graphics quality level and perfor-
mances. The first method deals with managing the effects
of interaction between the dynamic skydome and the water.
For example it is involved in computing the reflection of the
sun on the ocean, while it moves (thus, simulating the day-
night cycle) and changes its position, color and intensity.

The latter, instead deals with simulating the tidal wave
as a function of the weather conditions; thus, requiring the
computing of the interaction between the wind (and, possi-
bly, other atmospheric agents) with the water.

4.8 Outdoor Scenes

Industrial tools like speedtree * are specifically designed
to deal with large-scale outdoor environments. There are

“http://www.speedtree.com/

several techniques which can be adopted to manage such
large virtual environments; for example, it is possible to dy-
namically load only the specific areas of the scene which are
visible to the character. Another interesting approach is to
dynamically balance the level of details (LOD) of the objects
on the scene, with respect to the distance from the camera;
intuitively, it is unnecessary to reproduce high quality ob-
jects which are hardly visible because far from the camera;
this way, it is possible to reduce the depth of field in order to
decrease the number of objects to be rendered. To efficiently
manage outdoor scenes we exploited the Paged Geometry li-
brary, extending some limited features and integrating them
within the framework. These features improve the realism of
reproduced outdoor environments, thus allowing developers
to design large scale virtual worlds.

4.8.1 The Paged Geometry Library

The Paged Geometry engine is an open-source add-on to
OGRE which provides highly optimized methods for ren-
dering massive amounts of small meshes, covering a possibly
infinite area. It is particularly suited for representing forests
and outdoor scenes, containing millions trees, grass, rocks,
etc. Paged Geometry introduces the main advantage, with
respect to plain entities, of allowing a dynamic balancing of
the level of detail. This efficient approach ensures better per-
formances in particular with outdoor scenes, which can ben-
efit of a frame rate increase of an order of magnitude. The
algorithm relies on paging the geometry: only entities which
are immediately visible are loaded. This drastically reduces
the memory requirement and avoids memory leaks for very
large outdoor scenes. In details, Paged Geometry relies on
three different paging systems: i) BatchPage; ii) WindPage;
iii) ImpostorPage. The first is adopted to render elements
near to the camera; it supports the dynamic lighting system.
The second is similar and supports the animation of effects
of the wind on the foliage. The latter is adopted to render
objects far from the camera, using static billboards instead
of three-dimensional meshes; this system does not natively
support the dynamic lighting, thus introducing graphics ar-
tifacts in an environment completely based on this lighting
system. We extended the library to support the dynamic
lighting of ImpostorPage-based elements.

4.8.2 PagedGeometryManager

We developed a wrapper class, namely PagedGeometry-
Manager, which integrates the library within the framework.
This class provides connection to the scene manager, the
camera manager, and to objects to be rendered. It deals
in particular with the initialization of two components, the
TreeLoader and the GrassLoader. Finally, we defined meth-
ods to provide support to dynamic lighting, a feature not
natively supported by the engine.

4.8.3 TreeLoader and GrassLoader

The first technique introduced in the library is the random
generation of a ’forest’, adopting density maps (Figure 77,
top right). A density map is a grayscale image whose areas
represent positions of the map in which the TreeLoader and
the GrassLoader can dynamically instantiate objects. Our
TreeLoader supports the random generation of a plethora of
defined tree meshes, in a random scale lying in a given inter-
val. The original library provides methods for setting an in-
finite grid or, otherwise, some boundaries for paging the size

Figure 10: LOD balancing and paged geometry

Figure 11: Dynamic lighting and fluid dynamics

of blocks which represent the grid map. The level of detail
is configured via methods to manage the BatchPage, Wind-
Page and ImpostorPage sizes. The GrassLoader, instead,
adopts only one level of detail (GrassPage). In Figures 77
and 7?7, we show the dynamic level of detail balancing.

4.8.4 Dynamic Lighting

We introduced the support to dynamic lighting in Paged
Geometry, in particular on entities based on the Impostor-
Page paging system. This technique is implemented using
shaders. Our algorithm relies on the Per-Vertex lighting
model, implemented on four light components: i) emissive
light; ii) ambient light; iii) diffuse light and, finally, iv) spec-
ular light. Dynamic lighting affects reflections (Figure 77).

S. CONCLUSIONS

In this work we introduced novel extensions to our frame-
work for supporting the game development process. It com-
pletely relies on state-of-the-art open-source solutions. All
the source-code has been released as open-source for possi-
ble further improvements °. Our first contribution consists
of improving existing libraries. We provided an integration
interface to several components, obtaining, de facto, a valid
middleware framework for supporting the development of
3D videogames set in virtual environments. Moreover, we
developed from scratch a library providing features for the
simulation of weather conditions in this environment. This
work is testified by developing and illustrating a show-case

®http://informatica.unime.it/velab/

demonstration which depicts some of the features our frame-
work provides. This project could be still extended introduc-
ing new features. Some future work will focus on increasing
even more the degree of realism of the rendering engine,
including new rendering techniques such as the tessellation
[?]. Additional environmental and atmospheric agents will
be included, e.g. effects of the wind such as tornadoes, sand-
storms, etc. Another important aspect to be introduced is
the volumetric cloud simulation [?], thus improving the re-
alism of these atmospheric agents.

