
NS-3-Click: Click Modular Router Integration for NS-3

Lalith Suresh P.
Instituto Superior Tecnico

Lisbon, Portugal

lalith.puthalath@ist.utl.pt

Ruben Merz
Deutsche Telekom Laboratories

Berlin, Germany
ruben.merz@telekom.de

ABSTRACT

The Click Modular Router provides a flexible platform for
protocol development and testing. Integrating the Click
Modular Router with a network simulator offers the advan-
tage of bringing this flexibility into a simulation framework.
The existing integration of Click with ns-2 (nsclick) has sev-
eral limitations, namely it cannot be used with generic traf-
fic generators, transport protocols and NetDevices. For the
integration with ns-3, we address these limitations. Fur-
thermore, the design of ns-3 makes it much better suited for
embedding Click than does ns-2. This includes the closer
alignment of ns-3 with real world packet formats and de-
signs, and the handling of multiple interfaces per node. In
this paper, we describe ns-3-click, discuss its design and how
it improves over nsclick. Our experiments suggest that ns-
3-click does not incur significant performance hits as far as
wall clock run time is concerned, but uses more memory
than normal ns-3.

1. INTRODUCTION
The Click Modular Router [5] (or Click for short) is a

framework for creating flexible and configurable routers. A
user creates a router configuration by combining a group of
packet processing units called elements to create a so-called
Click graph. Click provides a platform for researchers to
experiment with novel protocols.
There are several motivations behind bringing this flexi-

bility to a simulation framework. Protocols developed using
Click can be tested on varying topologies and under differ-
ent configurations as per the needs of the user. Once a Click
configuration is validated, it can be deployed almost as-is on
an actual network. Apart from this bridging between simu-
lation and deployment, Click can allow nodes in a simulation
to use an extensive library of Click elements, thus expand-
ing the feature horizon for the simulator itself. Nsclick [7]
is the original integration of Click with ns-2 [1] that enables
several of these features. However, nsclick shows limitations
that make it cumbersome to use: Nsclick works only with

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Wns3 2011 March 25, Barcelona, Spain.
Copyright 2011 ACM ...$10.00.

ns-2 raw packet formats because the ns-2 simulator does not
implement real world packet formats. Consequently, nsclick
can not work with all kinds of traffic generators or trans-
port protocols. Nsclick also needs extensions to account for
different kinds of interfaces (i.e. NetDevices).

On the other hand, the design of ns-3 is well suited for
an integration with Click. Packets in ns-3 are serialised and
deserialised as they move up and down the stack. This allows
ns-3 packets to be passed to and from Click as they are, and
greatly favours such an integration. It also makes it easy to
run any traffic generator and transport protocol available in
ns-3 on top of Click. Furthermore, we would require very
little changes to the ns-3 link layer (LL) and medium access
control (MAC) code to allow Click to work seamlessly with
any kind of ns-3 device.

Ns-3-click takes advantage of all the above aspects of ns-3
design. Thus, unlike nsclick, ns-3-click can work with all of
the underlying simulator’s existing applications and NetDe-
vices. Furthermore, it offers the flexible packet processing
capabilities of Click, which would otherwise be harder to do
with ns-3 or ns-2 alone.

The rest of the paper is organised as follows; In Section
2, we briefly explain the architecture of the Click modular
router and of ns-3, and discuss different challenges of their
integration. Section 3 describes the integration itself. In
Section 4, we show results regarding the performance of ns-
3-click. Section 5 explains related work. Section 7 concludes
the paper and describes future work.

2. INTEGRATION OF CLICK AND NS-3
In this section, we briefly discuss Click and ns-3 individ-

ually, the two components of the integration. We then de-
scribe the integration with respect to architecture of ns-3.

2.1 The Click Modular Router
The Click Modular Router [5] is an architecture for design-

ing and deploying highly configurable and flexible routers,
written in C++. A router configuration describes an inter-
action between independent packet processing units known
as elements. Click provides an extensive library of elements
which can perform various functionalities ranging from IP
TTL decrementing and WiFi header encapsulation, to im-
plementing RED queues and performing traffic shaping. A
router configuration is called a Click graph, and is described
using a simple syntax in a file referred to as a Click file. El-
ements are configurable via arguments specified within the
Click file. To initialise a Click router, a Click file has to be
described. For ns-3-click, the simulation user would need to

Figure 1: Representation of a simple Ethernet
bridge as a Click graph, composed of individual
packet processing elements from Click. The corre-
sponding code is displayed in Figure 2.

//

// Ethernet-bridge.click

//

FromDevice(eth0) -> Queue -> ToDevice(eth1);

FromDevice(eth1) -> Queue -> ToDevice(eth0);

Figure 2: An Click file for the Ethernet bridge ex-
ample in Figure 1. In ns-3-click, the Click file a par-
ticular Click node is to use will be specified within
the simulation script using a helper function.

specify the Click graph a particular Click node is expected
to run. We describe how this is done in Section 3.5.
Every element has at least one port, which can be of type

input or output. Ports allow connections between elements,
and are the basis for packet flow through a Click graph.
These connections can be of two types; a push connection
or a pull connection. In a push connection, the upstream
element hands a packet to the downstream element. In a
pull connection, a downstream packet asks for a packet from
an upstream element.
Figure 1 depicts how a simple bridge is described as a

click graph. In this example, all packets arriving at eth0
are transferred to eth1 and vice-versa. In ns-3-click, as will
be described in the following sections, eth0 and eth1 in a
Click graph will correspond to the 0th and 1st net devices
on the ns-3 node. Figure 2 shows the representation of the
same Click graph in a Click file. The FromDevice and ToDe-

vice elements are used to receive and send out packets on
the network interfaces specified as their arguments. The
FromDevice element has a push output whereas the ToDe-

vice element has a pull input. A Queue element is used in
between acting as a push-to-pull converter.

2.2 Network Simulator 3 (ns-3)
The network simulator 3 (ns-3) [2] is a discrete-event sim-

ulator, and the proposed eventual replacement for the ns-2
simulator. Nodes in an ns-3 simulation are connected to each
other by means of NetDevices communicating over their re-
spective channels. A node can have multiple NetDevices.
Nodes may or may not have an IP stack (for instance, a
Layer 2 switch or an Ethernet bridge) or a mobility model
associated with it (stationary nodes). Packets in ns-3 are se-
rialised/deserialised to/from actual packet formats as they

traverse the network stack, making it well suited for real
world integration. This is largely different from ns-2, where
structs are passed between node objects. Furthermore, ns-
3 has IPv4/IPv6 addressing schemes available for network
specifications, something which ns-2 lacks and thus performs
implicitly.

2.3 Technical Challenges of the Integration
The main challenges of integrating Click into ns-3 are:

• Creating an interface between the simulator and Click.

• Time synchronisation between the simulator and Click.

• Maintaining compatibility with existing ns-3 traffic gen-
erators and transport protocols.

• Maintaining compatibility with the existing ns-3 Net-
Devices.

To interface between ns-3 and Click, we reuse the exist-
ing Click external simulator API originally developed for
nsclick [7]. This accounts for the time management com-
ponent as well. With this API, a Click router instance is
created for a node which wishes to use Click for routing.
The Click instance is aware of the simulation time as well.
The simulator advances time as it is supposed to, and every
time it has to run a Click router instance on a node, it in-
forms Click of the current time. Furthermore, if Click wants
the simulator to schedule a Click instance to run at a partic-
ular instant of time, it uses the API to schedule an event on
the simulator. The API also enables the use of Click’s han-
dlers from the simulator to read/write properties of different
elements. Thus we write ns-3 specific implementations for
the same API to interface between ns-3 and Click.

To maintain compatibility with ns-3 applications, trans-
port protocols and NetDevices, we strive to have Click run
entirely at layer 3 in the network stack. This is made possi-
ble by the fact that ns-3 design cleanly segregates the layer
3 functionality of a node into a class named Ipv4L3Protocol.
The class Ipv4L3Protocol talks to a routing protocol class
Ipv4RoutingProtocol in order to perform routing. Thus, by
talking to Click through a routing protocol object, we can
confine all our changes to the Layer 3 code itself. This allows
ns-3 traffic generators, transport protocols and NetDevices
to run with minor modifications in such a scenario.

3. DESIGN AND ARCHITECTURE OF

NS-3-CLICK
In this section, we first briefly recall the architecture of

ns-3. We then explain the architecture of ns-3-click, and
finally proceed to outline the details of the implementation
itself.

3.1 Architecture of ns-3
The flow of a packet through an IPv4 network stack in ns-3

is depicted in Figures 3 and 4. When running a traffic gener-
ator on top of a node, the socket abstractionUdpL4SocketIm-
pl/TcpL4SocketImpl queries the routing protocol system to
find a source address to match the required destination ad-
dress for the packet. The routing protocol abstraction for
IPv4 is called Ipv4RoutingProtocol, and the two important
interfaces it provides are RouteOutput() and RouteInput(),
which are analogous to ip route output() and ip route in-
put() respectively on Linux.

Figure 3: Path of a packet going down the stack in
ns-3. The packet flows along the downward arrows,
via the method invocations indicated on the arrows,
with queries being made to the routing protocol and
ARP protocol at appropriate stages.

The socket independent protocol logic is implemented within
UdpL4Protocol/TcpL4Protocol, after which the packet en-
ters the Ipv4L3Protocol instance, which is the Layer 3 ab-
straction in ns-3. Depending on the route passed from the
Layer 4 protocol, Ipv4L3Protocol passes the packet to the
appropriate Ipv4Interface, which performs an ARP query if
required, before sending the packet out via the correspond-
ing network device (NetDevice object).

3.2 Architecture of ns-3-click
In ns-3-click, we need to provide a routing protocol ab-

straction that will talk to Click using the Simulator API
discussed in section 2.3. This abstraction is implemented
in the form of Ipv4ClickRouting (Figures 5 and 6). We also
replace Ipv4L3Protocol with Ipv4L3ClickProtocol, which is a
stripped down version of the former. This is because much of
the routing functionality is dependent on the packet travers-
ing the click graph corresponding to the node it is running
on. This is in stark contrast to an Ipv4RoutingProtocol in-
stance in ns-3, which merely responds to RouteOutput() and
RouteInput() queries from the Layer 4 and Layer 3 compo-
nents, as opposed to handling the packet itself. Thus, the ns-
3-click Layer 3 subsystem needs to hand the packet to Click
at appropriate points in the stack instead of merely query-
ing Click. In effect, ns-3-click handles Layer 3 and routing
functionality differently from ns-3 by performing them using

Figure 4: Path of packet going up the stack in ns-
3. The packet flows along the upward arrows, with
the protocol handler passing the packet to either
the ARP instance or the IP layer (shown above),
depending on the packet type. Forwarding decision
is made at Layer 3 using a RouteInput() query to the
routing protocol instance.

Click. The following sections explain how this is achieved.

3.3 Implementation of the integration
In this section we describe the implementation details of

the integration.

3.3.1 Ipv4ClickRouting and Ipv4L3ClickProtocol

As depicted in figures 5 and 6, Ipv4ClickRouting imple-
ments the interfaces required to communicate between Click
and ns-3. If a user wants to run an application on top of
a node running Click, a routing table element needs to be
included in the Click graph and be specified in the simula-
tion script as well. This is necessary for the RouteOutput()
functionality, where the socket implementation queries the
routing subsystem to find a matching source IP address for
a given destination. For sending packets down the stack,
Ipv4L3ClickProtocol hands the packet to Ipv4ClickRouting
upon invocation of Ipv4L3ClickProtocol::Send(). Ipv4Click-
Routing then passes the packet to Click, and the packet
flows through the Click graph of the node it is running
on. The packet is then received from one of the Click in-
terfaces (say eth0). Depending on the receiving interface,
Ipv4ClickRouting makes the decision of which NetDevice of
the node the packet is to be sent out from. Forwarding
of packets work in the same manner, except that the packet

Figure 5: Path of a packet going down the stack in
ns-3-click. The flow is similar to Figure 3 except at
Layer 3, where the packet is actually passed to the
Click router and back via Ipv4L3ClickProtocol and
Ipv4ClickRouting, so as to have the packet traverse
the Click graph. All Layer 3 functionality including
ARP is handled by Click.

hand-off between Ipv4L3ClickProtocol and Ipv4ClickRouting
occurs at Ipv4L3ClickProtocol::Receive(). In this case, de-
pending on the packet and the Click graph, a packet can
be delivered locally as well. This happens when a packet
sent to Click is received back via Click tap0 interface. Thus
Ipv4L3ClickProtocol defers all forwarding decisions to Click,
and works around the need for an Ipv4ClickRouting specific
RouteInput() implementation.
The Click interface naming convention has been fixed ar-

bitrarily, with tap0 corresponding to the Operating System,
and eth0, eth1 and so forth referring to the network inter-
faces of the node.

3.3.2 Packet Hand-off between ns-3 and Click

Packet hand-off between ns-3 and Click happens at four
points:

• Layer 4 to Layer 3

• Layer 3 to Layer 4

• Layer 3 to Layer 2

• Layer 2 to Layer 3

In the above, the first two kinds of hand off have to en-
sure that ns-3 applications run unmodified on top of Click,

Figure 6: Path of a packet going up the stack in ns-3-
click. ns-3-click handles all Layer 3 functionality in-
cluding ARP via Click itself, so the protocol handler
always passes packets up to Ipv4L3ClickProtocol. In-
stead of a call to RouteInput() as in Figure 4, the for-
warding is performed by passing the packet through
the Click graph.

while the last two have to be performed such that any ns-3
NetDevice can run underneath Click.

3.3.3 Application/Transport Compatibility

The socket implementations in ns-3-click continue to per-
form the calls to RouteOutput(), and at Layer 3, Ipv4L3Clic-
kProtocol passes an IP encapsulated packet to Click, which
then flows through the click graph. For a packet going up
the stack, a packet that Click decides to deliver locally is
delivered to the appropriate Layer 4 protocol and then to
the application. Unlike nsclick [7], which was restricted to
only raw sockets, ns-3-click thus allows for all kinds of traffic
generators to run on top of Click.

3.3.4 NetDevice Compatibility

A packet going down the stack, received from one of Click
interfaces, is passed to the appropriate NetDevice in order
to be sent out to the channel. The use of MAC layer spe-
cific elements in the Click graph is avoided, and the Eth-
ernet header attached to a packet by Click interfaces is
stripped off before making the call to NetDevice::Send().
Packets going up the stack make their way through the ns-
3 MAC models and NetDevice code, before being received
at Ipv4L3ClickProtocol. An ethernet header is then ap-
pended to the packet before being handed over to Click via

Ipv4ClickRouting. This architecture allows the same Click
graph to run unmodified on top of any ns-3 NetDevice.

3.4 Packet Flow Example
We now provide a walk through of how a packet would

flow through the stack in case of an application running
on one Click based node sending a UDP packet to another
instance of the application on a another Click based node.
As shown in Figures 5 and 6, running TCP in this case
would be exactly the same, except for the kind of socket
implementation and Layer 4 instances running on the node.

3.4.1 Transmission of a Packet in ns-3-click

In Figure 5, a packet generated by an application will be
sent out via a socket using Socket::Send(). The UdpSock-
etImpl instance of the node queries the Click router running
on the node for the matching source address of the node for
the destination of the packet. This query is performed us-
ing Ipv4ClickRouting::RouteOutput(), which internally uses
a Click read handler to read the required route from the
Click instance. Any Click node which runs an application
has to use a routing table element for this step. Once
UdpSocketImpl receives a suitable response for the route
query, it follows up with a call to UdpL4Protocol::Send(),
where the UDP header is added to the packet. Next, a
call is made to Ipv4L3ClickProtocol::Send(), which adds an
IP header to the packet (using the source and destination
addresses specified in the route passed down by the UDP
layer). A call is then made to Ipv4ClickRouting::Send()
which sends the packet to Click to be passed down via the
FromSimDevice(tap0) element. This corresponds to a Click
graph receiving a packet from the Operating System. The
packet then traverses the Click graph, and is ultimately re-
ceived via a Click interface (ultimately via Ipv4ClickPro-
tocol::HandlePacketFromClick()). This method then identi-
fies the appropriate interface for sending out the packet, and
makes a call to Ipv4L3ClickProtocol::SendDown(). Based
on the information received from Ipv4ClickProtocol, Ipv4L3-
ClickProtocol uses the NetDevice::Send() method of the ap-
propriate network device to ultimately send a packet out of
the node. All Layer 3 functionality is implemented via Click,
including ARP.

3.4.2 Reception of a Packet in ns-3-click

At the receiving end (Figure 6), a packet received at Layer
2 is directly passed to Ipv4L3ClickProtocol as explained in
Section 3.3.4. This holds for all kinds of Layer 3 pack-
ets, including ARP. The method that receives the packet is
Ipv4L3ClickProtocol::Receive(), which passes the packet to
the appropriate Click interface via Ipv4ClickRouting::Rec-
eive(). The Click graph is then traversed, and the packet is
received at one of Click interfaces again. Based on the inter-
face ID of this Click interface, Ipv4ClickRouting then decides
whether the packet is to be locally delivered or forwarded.
In case of the former, Ipv4L3ClickProtocol::LocalDeliver() is
then used to pass the packet up the stack, to the application
via the UDP layer. Otherwise, the packet is sent out of a
network interface as specified in the previous section.

3.5 ns-3-click Usage
Users of ns-3-click can setup a Click node using the Click-

InternetStackHelper class. The most important configura-
tion to be done is to specify a Click file for each Click node

 0

 5

 10

 15

 20

 25

32 nodes 64 nodes 128 nodes

R
u

n
ti
m

e
 i
n

 s
e

c
o

n
d

s

Scenario

Runtime of ns-3 versus ns-3-click

Normal ns-3
ns-3-click

Figure 7: Average wall clock running time of ns-3
versus ns-3-click for running an IP Router configu-
ration. Results indicate that ns-3-click benefits from
improved running time by performing Layer 3 func-
tionality in Click.

in the simulation. This is done through the ns-3 simulation
script. An example snippet is shown below:

NodeContainer n;

...

ClickInternetStackHelper clickinternet;

clickinternet.SetClickFile (n, "router.click");

clickinternet.SetRoutingTableElement (n, "rt");

clickinternet.Install (n);

This example shows the use of the SetClickFile() method
of the ClickInternetStackHelper class to specify a Click file
named ”router.click” for a group of nodes. The method is
also overloaded so as to specify a Click file for individual
nodes as well. The path to the Click file is specified as an
absolute path, or a path relative to ns-3-click’s top level
directory. Furthermore, every Click node which is to run an
ns-3 traffic generator has to have a routing table element in
Click so as to enable an Ipv4RoutingProtocol::RouteOutput()
query from the socket layers. This is faciliated through the
SetRoutingTableElement() method provided by the helper
method.

4. SIMULATION RESULTS
In this section, we perform several simulations to compare

the performance of ns-3 and of ns-3-click. In both cases, we
simulate an IP router configuration. We used the latest revi-
sion of ns-3-click (revision 6543 as of this time) [3], running
on Ubuntu 10.04 on an x86 architecture with a 2.10 GHz
Intel(R) Core(TM)2 Duo CPU T6500 processor and 4GB of
RAM. We consider three scenarios where we perform simula-
tions using either a CSMA NetDevice or a WiFi NetDevice.
For each simulation result, we conducted ten runs. The wall-
clock running times, memory consumption and throughput
results are average results. The wall-click running times and
memory consumption statistics for each simulation run was
measured using the /usr/bin/time utility in Linux.

 70000

 75000

 80000

 85000

 90000

 95000

 100000

 105000

 110000

32 nodes 64 nodes 128 nodes

R
e

s
id

e
n

t
S

e
t
S

iz
e

 i
n

 K
B

Scenario

Memory Consumption of ns-3 versus ns-3-click

Normal ns-3
ns-3-click

Figure 8: Average memory Consumption of ns-3
versus ns-3-click for running an IP Router config-
uration. Ns-3-click consumes slightly more memory
than normal ns-3.

Scenario 1: CSMA NetDevice with Star Topology.
For our first scenario, we begin with a simple star topol-

ogy (see Figure 9), with the IP router routing traffic be-
tween end-points of the topology. The links between the
leaf nodes and the router are CSMA links. We run the Udp-
ClientServer application, with N/2 nodes acting as clients,
and N/2 nodes acting as servers, each node acting either as
a client or as a server (but not both). Clients generate pack-
ets of size 1024 bytes every 0.05 seconds (with an equivalent
data rate of 20 KB/s), and send up to 320 packets in total.
The total simulation time of the simulations is 100 seconds.
In the ns-3-click version, we used the IP Router con-

figuration used in [5], adapted for ns-3-click (by replacing
FromDevice and ToDevice elements with FromSimDevice
and ToSimDevice elements respectively). Routing was per-
formed statically in either case. For ns-3-click, this is done
using the StaticIPLookup element, and in ns-3, this corre-
sponds to an Ipv4StaticRouting instance initialised as the
routing protocol on the node. We consider a varying num-
ber of leaf nodes in the star topology, with 32, 64 and 128
nodes.

Figure 9: A simple star topology with eight leaf
nodes.

 0

 5

 10

 15

 20

 25

32 nodes 64 nodes 128 nodes

R
u

n
ti
m

e
 i
n

 s
e

c
o

n
d

s

Scenario

Runtime of ns-3-click (with Bandwidth Shaping)

ns-3-click

Figure 10: Average wall clock running time of ns-
3-click for running an IP Router configuration with
bandwidth shaping.

Figure 8 shows the total memory consumption of the sim-
ulation for each case. Ns-3-click consumes more memory
because of the Click router initialised in the simulation. De-
pending on the size of the Click graph, more elements are ini-
tialised, and this leads to increased memory usage. Figure 7
shows the total wall clock running time of the simulations.
The results in Figure 7 suggests that the wall clock running
time of ns-3-click is better than ns-3, suggesting that Click’s
StaticIPLookup performs better than Ipv4StaticRouting in
ns-3. Hence, this shows that ns-3-click benefits from im-
proved performance by using Click for routing, and at the
same time providing the flexibility associated with Click.

Scenario 2: CSMA NetDevice with Star Topology and
a Bandwidth Shaping Element in ns-3-click.

For our second scenario, we add bandwidth shaping func-
tionalities into the IP router configuration. This is done
using Click BandwidthShaper element, which accepts a rate
value as an argument. All packet flows through this element
are limited to the specified rate. By inserting this element
in the output path of a packet in the Click graph, we en-
sure that all data flows through the IP router are bandwidth
shaped to 15 KB/s. Traces show that the rate at which pack-
ets are received at the receiver end is indeed limited to 75%
as expected (15 KB/s after shaping versus 20 KB/s before
the same). The wall clock running time and memory mea-
surements of the simulation are shown in Figures 10 and 11.
We note that the wall clock running time for running an IP
Router with bandwiwdth shaping does not vary much from
running a simple IP Router on ns-3-click (Figure 7 versus
Figure 10). To perform the same operation using normal
ns-3, we would have to implement rate controlling queues
at appropriate points in the stack. On the other hand, with
ns-3-click, it is merely a matter of inserting the required el-
ement at the desired point in the Click graph. It is exactly
this kind of flexibility that Click brings into ns-3, along with
the extensive library of packet processing elements.

Scenario/ Avg. Throughput: ns-3-click Avg. Throughput: ns-3
Number of Nodes 32 64 128 32 64 128

CSMA 20.07 20.07 20.07 20.07 20.07 20.07
B/w shaping 14.11 14.11 14.11 N/A N/A N/A

WiFi 20.10 20.14 20.24 20.10 20.14 20.23

Figure 14: Validation tests: Measured average throughput in for the CSMA, bandwidth shaping and WiFi
scenarios with ns-3-click and ns-3. Reported results are average results over ten simulation runs.

 70000

 80000

 90000

 100000

 110000

 120000

 130000

 140000

 150000

32 nodes 64 nodes 128 nodes

R
e
s
id

e
n

t
S

e
t
S

iz
e

 i
n

 K
B

Scenario

Memory Consumption of ns-3-click (with Bandwidth Shaping)

ns-3-click

Figure 11: Average memory consumption of ns-3-
click for running an IP Router configuration with
bandwidth shaping.

Figure 12: Simulation topology for a wireless ad hoc
network. Routing is static, with the packet being
forwarded in the Y direction first, and then along
the X direction.

Scenario 3: WiFi NetDevice with Two Dimensional Grid
Topology.
To demonstrate the working of the WiFi NetDevice work-

ing on ns-3-click, we perform simulations on a wireless ad
hoc network. The topology we use is that of a two dimen-
sional grid, with all the nodes split across two lines. We
use static routing to model a simple X-Y routing scheme.
Figure 12 describes the topology and shows routing done
first along the Y direction, and then along the X direction.
We perform static routing in ns-3-click using the StaticI-
PLookup element, and the same is done in ns-3 using each
node Ipv4StaticRouting instance. As indicated in the figure,
a single UDP source sends packets to the node situated dia-
metrically across it in the topology. Packets with a length of
1024 byte are generated by the source at a rate of 20 KB/s.
Figure 13 compares the wall clock running times of ns-

3-click and ns-3 for the simulations. We observe that for

 0

 50

 100

 150

 200

 250

32 nodes 64 nodes 128 nodes
R

u
n
ti
m

e
 i
n

 s
e

c
o

n
d

s

Scenario

Runtime of ns-3 versus ns-3-click

Normal ns-3
ns-3-click

Figure 13: Average wall clock running time of ns-3-
click for running a wireless ad hoc network.

lightly loaded traffic scenarios such as this, the wall clock
running times of ns-3-click are close to that of ns-3 itself.
Figure 15 compares the memory consumption of ns-3-click
with ns-3. We note from these results that ns-3-click con-
sumes more memory than ns-3 as was the case with the
CSMA simulations as well.

Throughput for Each Scenario.
Figure 14 indicates the observed throughput at the re-

ceiver end measured at the end of each simulation scenario.
These results validate the functioning of ns-3-click. In case
of CSMA, the simulation traces are exactly the same for
ns-3 and ns-3-click. But with the WiFi simulations, there
are slight differences stemming from the fact that ns-3-click
uses Click ARPQuerier/ARPResponder elements for han-
dling ARP, whereas normal ns-3 uses its own ARP imple-
mentation. Inspection of the code explains the observed
difference. Click ARPQuerier sends out a maximum of only
one ARP query for each packet entering its input for which
a destination MAC address isn’t available in the ARP table.
On the other hand, the ARP module in ns-3 performs more
than one attempt for the same packet in case a response is
not received immediately. This leads to a minor difference
in the traces in the Wifi scenario.

5. RELATEDWORK
Nsclick [7] was developed by integrating the Click Modular

Router with ns-2 [1]. The integration was performed by
developing a glue layer between ns-2 and Click. Some of the

 70000

 80000

 90000

 100000

 110000

 120000

 130000

 140000

32 nodes 64 nodes 128 nodes

R
e

s
id

e
n

t
S

e
t
S

iz
e

 i
n

 K
B

Scenario

Memory Consumption of ns-3 versus ns-3-click

Normal ns-3
ns-3-click

Figure 15: Average memory consumption of ns-3-
click for running a wireless ad hoc network.

incompatibilities between the two tools are the following:

• ns-2 packets are represented as structs being exchanged
between nodes whereas Click, being a real software
router, processes packets in wire frame format.

• Nodes in ns-2 are not assigned IP and MAC addresses
explicitly, but Click requires IP and MAC addresses
to function correctly. Thus in nsclick, the simulation
script has to configure IP and MAC addresses for each
node using some extra Tcl commands, added for this
very purpose.

• Extensions had to be written to allow nsclick to work
with different kinds of network devices [6] (for instance,
IEEE 802.11).

One of ns-3 design goals is to be transparent to real world
protocols and networks. As a result of this objective, pack-
ets in ns-3 are always serialised/deserialised into real world
packet formats depending on the direction of the packet flow
in the network stack. Furthermore, nodes in ns-3 are as-
signed IP and MAC addresses, which further facilitate an
integration with Click. By striving to implement ns-3 fully
at Layer 3, we avoid having to write entire extensions so as
to keep ns-3-click compatible with different kinds underlying
of network devices.
Another example of embedding router software into sim-

ulators is the GNS3 Network Simulator [4], which enables
users to experiment with Cisco IOS and Juniper JunOS
router configurations.

6. CURRENT LIMITATIONS
A current limitation of ns-3-click is that some of Click’s

MAC specific elements cannot be used yet. This is because
ns-3-click focuses on running the same Click graph unmod-
ified on any kind of ns-3 NetDevice. Furthermore, some of
Click’s Wifi elements expect radiotap or atheros descriptor
headers, which are features that ns-3 does not yet support.
One possible step towards supporting this would be to al-
low ns-3 to support monitor mode for Wifi devices, and thus
pass L2 packets directly to Click.

7. CONCLUSIONS AND FUTUREWORK
In this work, we have integrated Click with ns-3, and have

enabled a flexible platform for network protocols develop-
ment, testing and experimentation. Furthermore, it allows
us to expand the feature horizon of ns-3, by enabling the
use of Click wide range of elements within ns-3 simulation
environment. Experimental tests suggest that adding Click
to ns-3 scenarios can be done without significant run-time
performance hits, but the improved flexibility comes at the
cost of increased memory consumption, and therefore more
requirements. We are currently working to extend this to
support Click MAC layer functionality as well: this would
involve making Click directly bind to ns-3 network devices,
with Click handling the MAC high layer models. This would
be a stronger framework for protocol experimentation. In
addition, because both Click and ns-3 support IPv6, extend-
ing ns-3-click to support IPv6 is another direction to follow.
Finally, the integration of ns-3-click with the emulation fea-
tures of ns-3 may create a powerful platform for transparent
protocol development in both simulation environment and
testbeds.

8. ACKNOWLEDGEMENTS
The work in this paper was supported by the Google Sum-

mer of Code 2010 (GSOC) program.

9. REFERENCES
[1] Network Simulator 2 (ns-2),

http://www.isi.edu/nsnam/ns, November, 2010.

[2] Network Simulator 3 (ns-3), http://www.nsnam.org,
November, 2010.

[3] NS-3 Click Integration (ns-3-click),
http://code.nsnam.org/lalith/ns-3-click, December,
2010.

[4] The GNS3 Graphical Network Simulator,
http://www.gns3.net/, February, 2010.

[5] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F.
Kaashoek. The click modular router. ACM
Transactions on Computer Systems, 18(3):263–297,
August 2000.

[6] N. Letor, P. De Cleyn, and C. Blondia. Enabling cross
layer design: adding the madwifi extensions to nsclick.
In Proceedings of the 2nd international conference on
Performance evaluation methodologies and tools,
ValueTools ’07, pages 19:1–19:10, ICST, Brussels,
Belgium, Belgium, 2007. ICST (Institute for Computer
Sciences, Social-Informatics and Telecommunications
Engineering).

[7] M. Neufeld, A. Jain, and D. Grunwald. Nsclick::
bridging network simulation and deployment. In
MSWiM ’02: Proceedings of the 5th ACM international
workshop on Modeling analysis and simulation of
wireless and mobile systems, pages 74–81, New York,
NY, USA, 2002. ACM.

