
Mobile Online Gaming via Resource Sharing∗

Stefano Ferretti
sferrett@cs.unibo.it

Gabriele D’Angelo
g.dangelo@unibo.it

Department of Computer Science
University of Bologna

Mura A. Zamboni 7, I-40127 Bologna, Italy

ABSTRACT
Mobile gaming presents a number of main issues which re-
main open. These are concerned mainly with connectivity,
computational capacities, memory and battery constraints.
In this paper, we discuss the design of a fully distributed ap-
proach for the support of mobile Multiplayer Online Games
(MOGs). In mobile environments, several features might be
exploited to enable resource sharing among multiple devices
/ game consoles owned by different mobile users. We show
the advantages of trading computing / networking facilities
among mobile players. This operation mode opens a wide
number of interesting sharing scenarios, thus promoting the
deployment of novel mobile online games. In particular, once
mobile nodes make their resource available for the commu-
nity, it becomes possible to distribute the software modules
that compose the game engine. This allows to distribute
the workload for the game advancement management. We
claim that resource sharing is in unison with the idea of lu-
dic activity that is behind MOGs. Hence, such schemes can
be profitably employed in these contexts.

General Terms
Algorithms, Performance, Theory

Keywords
Multiplayer Online Games, Peer-to-Peer, Mobile Architec-
tures

1. INTRODUCTION
In the last years, Multiplayer Online Game (MOG) tech-

nologies have been widely studied. Several solutions have
been identified which are concerned with many aspects of
MOGs. An open aspect relates to the development of mo-
bile games. Nowadays, portable game consoles exist which
are quite powerful computing devices, equipped with net-
working technologies. For this reason, from a certain point
of view the player does not expect great differences between
playing using a mobile game console and using a PC (apart

0The publisher version of this paper is available at http:
//dx.doi.org/10.4108/icst.simutools.2012.247720.
Please cite this paper as: Stefano Ferretti, Gabriele
D’Angelo. Mobile Online Gaming via Resource
Sharing. Proceedings of 3nd ICST/CREATE-NET
Workshop on DIstributed SImulation and Online
gaming (DISIO 2012). In conjunction with SIMU-
Tools 2012. Desenzano, Italy, March 2012. ISBN:
978-1-936968-47-3.

from the obvious graphic limitations and the small screen
of a mobile device). He/she expects to be able to generate
inputs, perceive the evolution of the game in real-time, in-
teract with other distributed players in the (more or less)
same way when he/she uses a traditional PC/game console.
However, the truth is that several technical constraints limit
the gaming activities of mobile players.

Mobile devices are primarily constrained by the limited
battery capacity. Every task, computation or communica-
tion has a power cost; hence these activities should be lim-
ited as much as possible in order to preserve the battery
lifetime. Communications pass through wireless channels,
which can be less reliable and offer lower data rates than
traditional wired ones. This should be took into consider-
ation during the design of the game. In particular, differ-
ent alternatives are possible depending whether the game is
played among mobile players located in the same (limited)
geographical area rather than when distributed players and
nodes connected through the Internet must be reached. In
the first case, in fact, a Mobile Ad-Hoc Network (MANET)
can be built to optimize the game update distribution. In
the second case, these forms of interaction are usually based
on mobile devices that connect to their nearest access point
to access the Internet. However, the proliferation of hetero-
geneous devices with different capabilities gives rise to new
scenarios that promote the cooperation among individuals in
order to guarantee the provision of “always on” services [8].

Resource sharing and optimization opens novel interest-
ing scenarios for the deployment of mobile MOGs. There
are two ways to optimize the digital resources usage. First,
mobile users have many different portable devices in their
pockets and suitcase, each of them with specific hardware
and software characteristics. Quite often such devices are
not enabled for seamless interaction with other devices be-
longing to the same owner. Instead, the use of the network-
ing capabilities of a user mobile phone might, for instance,
relieve the gaming console from performing long-range com-
munications with other nodes participating to the game.
Hence, the game console might communicate with the user’s
mobile phone through a short range networking technology
(e.g. Bluetooth, ZigBee); in turn, the mobile phone relays
messages generated by (or directed to) the game console by
employing its long-range network technology (e.g. 3G, Wi-
Fi).

Then, there is the opportunity of sharing resources among
different people. The possibility for a user to exploit, in
a Peer-to-Peer (P2P) and altruistic way, computing facili-
ties owned by (known and trusted) neighbor players requires

ar
X

iv
:1

20
6.

27
74

v3
 [

cs
.N

I]
 3

0
Ju

l 2
01

4

http://dx.doi.org/10.4108/icst.simutools.2012.247720
http://dx.doi.org/10.4108/icst.simutools.2012.247720

mechanisms for automatic negotiation [8]. In this case, a
node might share its computation with its neighbor, for in-
stance when it updates the game state due to novel received
game events. Alternatively, a node might act as a relay for
other ones during the distribution of game updates.

In a recent paper, we have identified mechanisms to pro-
mote resource sharing among distributed nodes in wireless
communication environments [8]. In this paper, we describe
the main possibilities arising from resource sharing for the
deployment of novel mobile MOGs. Specifically, we review
the main software components composing an online game,
and discuss how and when these software modules can be
distributed and/or replicated at mobile nodes.

In fact, certain software modules have to be executed at
all nodes, such as those for managing inputs from the player,
rendering the game state evolution and performing basic net-
working to enable communication with other nodes. Other
software modules, instead, can be distributed (and repli-
cated) at different nodes such as those for the game state
management, the network overlay management (when the
communication occurs through a MANET), and several sub-
components of the game engine, such as those for simulating
the physics of game objects, identifying collisions, etc. Usu-
ally, such modules are implemented as event-driven software
components. This eases the distribution of these modules,
since the game engine becomes a discrete-event based dis-
tributed system.

It is clear that when a node executes a task, additional
communication is required to share the outputs of this mod-
ule with other nodes. This has an additional cost, besides
that required for executing the software module itself. Hence,
in certain cases these software modules might be replicated
to diminish the communication workload of the nodes with
other ones and also to improve scalability and fault-tolerance,
thus preventing that a single node becomes the bottleneck
of the system. When certain modules are replicated, syn-
chronization and consistency management techniques must
be employed [11, 21].

We claim that resource sharing is in unison with the idea
of ludic activity that is behind MOGs. Hence, such schemes
can be profitably employed in these contexts.

The rest of this paper is organized as follows. Section 2
discusses the main architectural solutions which may be em-
ployed to support MOGs, with specific attention to games
deployed for mobile devices. Section 3 discusses how effec-
tive mobile architectures for the support of mobile MOGs
may be devised, which resort to resource sharing and to the
distribution of software modules. Section 4 outlines some
main aspects to consider when allocating and distributing
software modules in a mobile MOG architecture. Finally,
Section 5 provides some concluding remarks.

2. WIRELESS MOG ARCHITECTURES
This section presents an overview of the distributed soft-

ware architectures that can be employed to build MOGs
on wireless networks. Basically, a first distinction can be
made between those gaming applications that involve mo-
bile users placed in a localized geographical area only, rather
than those games whose nodes need to communicate through
the Internet.

When players are all confined in the same Wireless Local
Area Network (WLAN), their mobile nodes might organize
in an ad-hoc manner, i.e. they form a MANET, and each

node reaches another node using a multi-hop relays. Hence,
all the communications remain within the MANET.

On the opposite case, nodes communicate through the
Internet using some structured communication architecture
such as, for instance, a 3G cellular networking technology
(e.g. UMTS), rather than some structured Wi-Fi network.
At the data-link layer, each node communicates with its ac-
cess point directly, as in all traditional wireless Internet-
based communications.

There is however a hybrid solution, according to which
mobile nodes on the same geographical area communicate in
an ad-hoc manner; but when needed, data can pass through
the Internet, usually to reach some server and/or other dis-
tributed nodes not belonging to the MANET. In such a
case, one or more (possibly all) nodes in the MANET must
be able to send messages outside the local network. Hence,
in this case some specific wireless communication technology
must be exploited which is different to the network technol-
ogy employed to interact in an ad-hoc fashion with other
mobile neighbor nodes. In other words, some mobile node
might exploit multiple network interfaces concurrently.

Despite the underlying communication architecture, at
the application layer different solutions are possible, rang-
ing from the client/server to the P2P scheme [13]. Our pro-
posed solution adopts a hybrid approach. Next sections are
devoted to describe this solution in detail.

Note that in this section, we consider each node is com-
posed of a unique device. Hence, we do not take into ac-
count that a player might have actually different devices
that might be coordinated. If this is the case, then the in-
teraction of this set of devices might be properly configured,
so that the mobile node forms a sort of “digital organism”
able to exploit all its devices effectively [8].

2.1 The Client/Server Scheme
The client/server scheme is widely employed in traditional

MOGs, where a fixed node is usually employed as the central
node that maintains the game state and interacts with all
other nodes in the network. It has been recognized that
such a solution is quite simple to implement but, on the
other hand, it raises several reliability and fault-tolerance
issues.

In few words, client nodes execute the following two soft-
ware components: i) the user interface that collects inputs
from the user and to render the game state evolution; ii)
a software module in charge of managing the network com-
munication. The server has additional software modules to
manage the game state evolution (we neglect additional soft-
ware components that are used to perform offline operations,
e.g. accounting).

Figure 1 shows such an architectural approach. While in
common scenarios the server is in direct connection with all
the clients (Figure 1(a)), when a mesh overlay structure is
employed (like in a MANET) messages from certain client
nodes might require multiple hops before reaching the server
(Figure 1(b)). Note that in this case each node must run an
“overlayManagement” software module in charge of manag-
ing the overlay and control the routing of messages passing
through that node. This approach presents several disad-
vantages when employed over wireless networks. Indeed,
the communication among the server and clients might be
quite unstable. Nodes may move during their interactions;
this would require reconfigurations of the overlay, due to

Server

Interface

Game Engine

Communication

Client

Interface

Communication

Client

Interface

Communication

Client

Interface

CommunicationClient

Interface

Communication

(a)

Server

Interface

Game Engine

Communication

Overlay Management

Client

Interface

Communication

Overlay Management

Client

Interface

Communication

Overlay Management

Client

Interface

Communication

Overlay Management

Client

Interface

Communication

Overlay Management

(b)

Figure 1: Client-Server Model: a) all clients connected to the server; b) with overlay

the fact that some communication links may become un-
available. There are problems related to the fact that mobile
nodes have restricted battery power. When a node fails, also
the communications passing through it fails consequently. In
substance, the overlay management may require an intense
configuration and communication overhead.

2.2 The Peer-to-Peer Scheme
In a pure P2P system, each mobile node stores and man-

ages its own copy of the game state. Hence, each peer ex-
ecutes all the software modules which in the client/server
approach were executed on the server only (see Figure 2).

As concerns the overlay topology, a possibility is to or-
ganize nodes based on a fully connected network. Actually,
this approach is impractical (or even impossible) in certain
MANETs, since a node might not be able to reach all the
nodes with a single-hop message transmission. The adoption
of a mesh overlay network for disseminating game events
represents a viable and more scalable choice. Of course, a
careful management of the overlay is needed, so as to en-
sure that game events are delivered to all nodes in a timely
fashion and that the game advances in real-time.

A possible technical solution is to resort to broadcast (or
multicast) wireless communications in MANETs. The idea
is that a single wireless message can reach multiple mobile
nodes; this can be reasonably exploited in MOGs, since usu-
ally all game updates must be sent to all (or a subset of)
peers. Such broadcast schemes can be employed with multi-
hop communication protocols, in order to span the message
through the entire overlay.

The clear advantage of a P2P scheme is that it removes the
presence of a single server, which represents the bottleneck
and single point of failure of the system. However, every
node must execute all software modules, hence augmenting
the computational work at each node (this has consequences
on the battery consumption also). Moreover, since a P2P
architecture is structured typically as a mesh overlay, churns
must be viably managed.

2.3 Game Software Modules
In the figures above, for the sake of a simpler presentation

we referred to the game software modules by taking into con-
sideration a coarse range of generic functionalities such as
the“interface”, “game engine”, “overlay management”, “com-
munication”. Actually, a more detailed set of software mod-
ules can be listed, based on the tasks associated. Based on
their functionalities, some of them can be assigned to differ-
ent nodes to be executed in a distributed architecture.

• Input management.
This software module includes all the functionalities
needed to manage game events produced by the player,
which causes a game state update.

• Audio management and sound system.
This module is responsible to manage all the audio
sounds to be played, associated to particular game
events occurring during the game. It is also responsi-
ble for the background audio, which is usually played
during a game session. Mixing is required among audio
played in background and sounds associated to specific
game events.

• Scene graph engine.
Here, we include all the functionalities needed to ren-
der the game on the player screen. This includes man-
agement of (2D/3D) objects, skeletal animation, tex-
turing and imaging, lighting and shading, rendering of
the terrain, water, smoke, clouds and the like.

• Physics system.
This module includes point and rigid body dynamics,
soft body dynamics, fluid dynamics and kinematics
in general. In substance, this is a dynamics simu-
lation component, which is responsible for managing
and solving the simulated physical forces affecting the
simulated game objects.

Peer

Interface

Game Engine

Overlay Management

Communication

Peer

Interface

Game Engine

Overlay Management

Communication
Peer

Interface

Game Engine

Overlay Management

Communication

Peer

Interface

Game Engine

Overlay Management

Communication

Peer

Interface

Game Engine

Overlay Management

Communication

Peer

Interface

Game Engine

Overlay Management

Communication

Figure 2: Peer-to-Peer Model

• Collision detection.
This is the module in charge for determining when
two game objects collide during their movement. For
the purpose of reducing the computation needs, usu-
ally simplified objects are employed; then, these sim-
plified meshes (bounding boxes, spheres, convex hulls)
are used for determining collisions. Besides these men-
tioned simplifications on the game objects’ represen-
tations, such a task is computation demanding, nev-
ertheless. Such calculations must be performed pe-
riodically, at a constant frame-rate. The higher the
frame-rate the more accurate the model for determin-
ing collisions. Hence, this software modules should be
executed on computationally efficient nodes.

• Game state management.
This module maintains the state of all the game objects
(characters and other virtual objects) on the game map
and, based on the events produced by all participants,
updates it. It checks the validity of game events pro-
duced by players and works in strict collaboration with
the collision detection module and the physics system.
Indeed, in certain cases we might think that the two
modules mentioned here above are included in this one,
being their tasks employed for computing game ad-
vancements.

• Virtual map and scene storing service.
Usually, the information that describes the virtual map
area is replicated on each host. However, especially
when the game has a huge virtual map, then each node
can maintain only the part of the virtual world where
its character is located at that time; as soon as the
character moves on another region, then the novel vir-
tual area is downloaded on the terminal. If this is the
case, then a server (or a set of servers) is responsible to
maintain the complete virtual world; this is necessary
to ensure that the node can download the virtual world
description when it needs it. When a distributed P2P
architecture is employed, a server node might still be

employed that maintains the whole virtual map, rather
than distributing the map among different nodes. Of
course, parts of the map might be replicated for the
purposes of reliability and of an easier and more effi-
cient data distribution.

• Artificial intelligence.
This software module is responsible for the manage-
ment of virtual bots interacting with users in the vir-
tual world. Some node executes the Artificial Intel-
ligence (AI) module that decides the moves each bot
performs during the game evolution. Usually, all these
tasks are in charge to the server. When a decentral-
ized solution is employed, the management of different
virtual bots can be delegated to different nodes, such
as in a mobile multi-agent system.

• Finite state machine management.
This module governs the evolution of the game as de-
termined by users’ actions. Based on the actual game
state and on the events generated by users, the game
can evolve based on certain rules. All this can be im-
plemented through a finite state machine. (Actually,
finite state machines can be employed also to spec-
ify the behavior of virtual bots; thus, they represent
a possible tool employed to realize the AI of virtual
players.)

• Prediction schemes and dead reckoning.
Dead reckoning is a technique employed in MOGs to
reduce the effects of network induced delays and losses
by applying prediction schemes [22]. Each node rou-
tinely uses dead reckoning to predict where an actor
might be located at a given time, based on past in-
formation on its last known kinematic state. When
correctly employed, it allows to avoid that each node
sends game state updates that can be easily inferred
from previous information. By resorting to such an
approach, the use of the network is reduced and the

game advancement fastened. The quality of the pre-
diction is thus quite important in order to ensure that
all players perceive the game evolution in a consistent
way.

• Accounting and Score Management.
These functionalities, concerned with the management
of accounts and scores of players participating to the
game, are prone to cheating. Hence, when executed
on a P2P architecture, proper strategies must be took
into account so as to prevent that some malicious ac-
tor alters some information, or acquires data it is not
allowed to access [6, 10].

• Networking.
Common communication capabilities are required to
let mobile nodes to communicate. Depending on the
game implementation both UDP or TCP transport
level protocols can be employed. Indeed, while UDP is
recognized as the typical choice for transporting data
of real-time multimedia applications, some works sug-
gest that some sort of tuned TCP represents an inter-
esting alternative [15, 21]. While in typical situations
the mobile node is configured to exploit a single net-
work interface card, in general situations it might be
the case when the mobile node is enabled to concur-
rently exploit multiple network interface cards. This
would promote interesting novel communication sce-
narios; for instance, it would allow a node to inter-
act with other nodes geographically located near it
through some short range communication technology,
while using at the same time long range communica-
tion technologies to reach other hosts on the Internet.
Not only, sophisticated communication schemes can be
employed to let the node to exploit different network
interface cards to communicate with another host, in
order to guarantee seamless interactions with it [14].

• Overlay management.
We already mentioned that in a MANET, nodes oper-
ate as both end hosts and routers, forwarding packets
wirelessly towards other mobile nodes that may not be
within the direct transmission range of each other [5].
Thus, routing strategies are needed which are able to
adapt depending on the availability and position of
nodes. Each node must thus maintain a table with
its neighbors, in order to relay messages. Moreover,
reconfiguration strategies are needed to adapt to the
overlay changes.

3. ON THE OPTIMAL ORGANIZATION OF
RESOURCES

In this section, we propose a distributed solution for the
deployment of ubiquitous gaming applications. All devices
available to each player are dynamically and adaptively con-
figured depending on:

1. the devices themselves,

2. the environment in which they are deployed, and

3. the computational and communication capabilities of
devices of other players.

The architecture must thus provide configuration proto-
cols for the intra Personal Area Networking (PAN), to au-
tomatically organize all devices belonging to a single player.
At the same time, it is necessary to identify algorithms and
mechanisms for the simultaneous and adaptive use of differ-
ent communication networks in an opportunistic fashion. In
fact, the overall goal is to optimize the interactions across all
players in the wireless overlay. Finally, we need mechanisms
for the efficient distribution of software modules compos-
ing the game engine. This allows to create a distributed
game engine whose execution spans through the whole mo-
bile MOG architecture.

In essence, the idea is to resort to a hybrid architecture,
where each software module can be executed on a specific
node, depending on its computational and communication
capacities. Hence, computation is distributed among differ-
ent nodes. Similarly to a client-server approach, these ser-
vices (e.g. computation of the game state evolution) must
be made available to other nodes that do not have that
software module locally active. Software modules might be
replicated, so as to augment reliability and distribute the
communication load with other nodes that require the ser-
vice.

When needed, also the game engine can be divided into
subcomponents, so as to distribute the computational load
even further among players. For instance, while a node
might be selected to perform collision detection, another
node might be in charge of performing the AI of some vir-
tual bots, and so on. (This specific example might lead to
several security concerns, and in this case cheating preven-
tion schemes would be required.) Each node must run the
interaction and communication modules, so as to permit in-
teractions with the user and other nodes, respectively.

Several heuristics and optimization strategies can be im-
plemented to distribute and replicate all the software mod-
ules and the virtual world map. These schemes must take
into account:

• the geographical location of players, and thus the over-
lay topology that may be built, based on players’ po-
sition;

• the node capabilities in terms of computation capacity,
communication, memory, status of the battery;

• the need to interact with nodes external to the MANET,
i.e. Internet nodes. This depends on the specific game
application.

To make this possible, we need to manage and optimize i)
the interactions among the different devices that each single
player has in his/her hands while playing and, ii) the interac-
tions among different players in the overlay mesh. Then, it is
possible to distribute all the software modules and create a
smart game management architecture that may improve the
quality of the gaming experience to all the mobile players.

3.1 Optimizing the Player’s Devices
Full interaction among all digital devices hold by each

single player might promote the deployment of effective mo-
bile MOGs [8]. This implies to optimize the use of available
networking technologies, such as short-range communication
technologies, e.g. Bluetooth, infrared, ZigBee, etc., for com-
municating with other players which are located near the
considered node. The goal is to find the best configuration

Node 1

Interface

M1

Communication

Node

Interface

Communication

Node 3

Interface

M2

Communication

Node 2

Interface

M3

Communication

Node

Interface

Communication

Node 4

Interface

M1

Communication

Node

Interface

Communication

Node

Interface

Node

Interface

M3

CommunicationNode

Interface

Communication

Communication

Figure 3: Distribution of Software Modules on the Mesh

for all the devices in use at each player. Specifically, based on
the computational capacities of each device within the PAN,
the battery levels, and the available network interfaces, de-
vices must be configured so as to identify a primary compu-
tation entity, a primary gateway to send/receive data from
the outside world, secondary network interfaces (e.g. short
range ones) to allow communications with neighbor players.

According to our architecture, all devices exchange their
profiles among each other, in order to enable a proper sys-
tem configuration. Different alternatives exist to character-
ize profiles of devices, such as, for instance, CC/PP [1]. Such
information is exploited to identify the coordinator, i.e. the
device that acts as the resource manager of the player’s de-
vices. To accomplish this task, all devices’ profiles must
be distributed among the whole local device set, and some
distributed algorithm must be executed to elect the coor-
dinator. A similar approach must be employed to identify
which device is to act as the primary gateway that manages
communications with the outside world.

Upon a proper organization of the user’s devices, that
device set might be seen as a unique computation/communi-
cation node with a set of features which is composed by the
aggregation of featured of single devices.

3.2 Optimizing Interactions Among Nodes
Peer players must be provided with a set of protocols to

interact with others within their MANET. These proto-
cols would allow a peer to opportunistically and dynami-
cally adapt the interaction with its neighboring peers, by
selecting the best communication protocol among the avail-
able ones (e.g. Always Best Connected, ABC) [12, 14]. The
identification of the best available network may be based on
different criteria such as bandwidth, connection cost, bat-
tery level and so on. Any of these criteria, alone or together
with the others, can be used for assessing the best available
network at any time.

4. DISTRIBUTION OF SOFTWARE MODU-
LES OVER THE MESH

Figure 3 shows an example of a mobile MOG architecture,

where nodes are connected through a mesh overlay (small,
continuous lines). Every node executes the software module
interface, that refers to the capabilities of managing inputs
from the user and outputs to be shown to the user; more-
over, every node executes the communication module, which
allows to interact with other nodes. As already mentioned,
these two modules are mandatory to every node.

Then, other modules are distributed to be executed on
certain nodes on the overlay only. Since the figure refers to
an hypothetical example, we avoided to list specific names
of modules composing the game engine. Hence, in the figure
we used generic names M1,M2, . . . Some of these modules
are replicated (see larger, dashed lines in the figure). In this
case, other nodes select to which node refer for that service.
For instance, node 1 and node 4 both execute module M1.
Hence, others select the one that requires less distance hops.

In substance, when configuring such an architecture, there
are some main aspects to take into consideration, i.e. allo-
cation of software modules, generation of the overlay mesh,
distribution of nodes acting as clients for a given service ex-
ecuted at another node, synchronization of states managed
at replicated services so as to ensure state consistency.

4.1 Modules Distribution
Here, we discuss which software modules can be distributed

and or replicated, among those mentioned in the previous
section.

• Input management, Audio management and sound
system, Scene graph engine.
As already outlined above, and shown in Figure 3,
these modules must be executed on each node.

• Physics system, Collision detection, Game state
management.
These are main modules that can be distributed on
some nodes. They can be replicated also, for the sake
of scalability and fault tolerance. However, the out-
puts of each of these modules are important for other
modules. In substance, these modules form a sort of
core game engine. Hence, probably the best choice is

to execute them on the same nodes.

• Virtual map and scene storing service.
As already mentioned, this module (and mostly, the
data composing the game virtual map) can be assigned
to a third server rather than being distributed on dif-
ferent nodes.

• Artificial intelligence.
Each virtual bot and its AI can be executed on a given
peer node, and possibly different bots might be man-
aged at different peers.

• Finite state machine management.
Being one of the main functionalities of a server (in
a client/server architecture), this module can be dis-
tributed.

• Prediction schemes and dead reckoning.
This module is client-specific, executed to hide commu-
nication latencies, hence it must be executed on every
node.

• Accounting and Score Management.
It can be assigned to a distributed (trusted) node.

• Networking.
It must be executed on each node.

• Overlay management.
It can be distributed on nodes that would be in charge
of deciding how to organize the overlay.

4.2 Allocation of Software Modules
When distributing software modules, several mechanisms

can be employed to have a fair allocation over distributed
nodes, taking into account the computation and communi-
cation capacities of the nodes. One possible solution is to
employ simple heuristics. For instance, having an estimation
of the workload of a software components, which depends on
the number of users to be served, given the number of nodes
it is possible to identify the number of replicated nodes act-
ing as “servers” for that service. Then, such distribution
can be performed by ranking nodes based on their compu-
tation/communication/battery capacities and on their geo-
graphical location (probably, it would be preferable to uni-
formly distributing the services on the overlay). This task
should be repeated for each service.

Another option is to optimize the allocation by match-
ing demands for executing different services and offers, us-
ing some kind of market-based approach in which requests
are handled through ascending clock auctions [2, 16, 18, 24].
Such an approach can be performed by running a distributed
algorithm to carry on the auction; then, the resource al-
location problem can be treated as a classic optimization
problem, which is used to compute the maximum number of
allocations that can be matched.

It is clear that when several software modules are dis-
tributed over different nodes, there are several security con-
cerns that must be considered. Cheating is a main prob-
lem in P2P MOGs; hence viable strategies must be enforced
to prevent and detect cheats [10]. Moreover, some form of
authentication and authorization must be considered in or-
der to identify players that ask services to other distributed
nodes.

4.3 Management of the Overlay Mesh
The task of generating and managing the overlay mesh

can be performed by resorting to one among the plethora of
proposals that manage mesh overlays in a MANET. Exam-
ples are works presented in [4, 5, 19, 25].

4.4 Associating Clients to Software Modules
Once software modules have been distributed and a mesh

overlay has been built, nodes not running a given module
must ask for updates to a node running the service. Also in
this case, several options are possible, each one with its pros
and cons. Each node might ask to its nearer node running
the service. Thus, upon a novel update to be disseminated,
that node would receive the update in the fewest number of
hops. However, several updates from different services travel
through a path; moreover, a given node might be overloaded
with too many nodes to serve. These issues might influence
the performance of this approach. Moreover, since an up-
date must be multicast to several nodes, effective strategies
might be employed that ensure that the mesh overlay is cov-
ered in a minimal number of hops.

In substance, the problem here refers to building a publish-
subscribe scheme over a mobile overlay. Works that deal
with this issues have been presented in [3, 9, 17, 23].

4.5 Synchronization
Replicating software modules at distributed nodes pro-

vide several advantages. Indeed, this approach augments
the scalability of the system, its fault-tolerance and might
improve the responsiveness of the interaction between the
client node and that running the service, due to the fact that
this node has to manage a lower number of client nodes.

However, when the replicated software module deals with
the game state management, then synchronization algorithms
must be executed between nodes running the service. This is
important to guarantee that each node perceives a consistent
evolution of the game state. There are different alternatives
in this case, such as [7, 11, 20, 21].

5. CONCLUSIONS
Mobile MOG architectures may benefit from viable re-

source sharing strategies. In this paper, we have discussed a
methodology to optimize the interactions of mobile players
into dynamic and heterogeneous environments. The idea is
to optimize the use and interaction of the devices available
to each player, through dynamic and adaptive configura-
tion strategies (optimization of the PAN). Then, interactions
among players can be optimized using both the available
communication infrastructures and P2P ad-hoc interactions.
Based on these resource sharing mechanisms, software mod-
ules composing the game engine can be distributed (and
replicated) across the whole gaming network. This would
distribute the workload needed for the game advancement,
hence resulting in an improved resource usage in a mobile
environment.

As concerns the general deployment of the proposed scheme
in a real distributed system, there are some open problems
that require further investigation. Security issues are partic-
ularly important: for instance, cheating is a primary issue
to deal with in this case. Moreover, authorization and au-
thentication must be enforced to verify the identity of users
that exploit resources of their neighbor players.

6. REFERENCES
[1] CC/PP Information Page,

http://www.w3.org/Mobile/CCPP/, December 2010.

[2] L. M. Ausubel and P. Cramton. Auctioning many
divisible goods. Journal of the European Economic
Association, 2(2-3):480–493, 2004.

[3] S. Baehni, C. S. Chhabra, and R. Guerraoui. Frugal
event dissemination in a mobile environment. In
Proceedings of the ACM/IFIP/USENIX 2005
International Conference on Middleware, Middleware
’05, pages 205–224, New York, NY, USA, 2005.
Springer-Verlag New York, Inc.

[4] L. Canourgues, J. Lephay, L. Soyer, and A.-L. Beylot.
A scalable adaptation of the olsr protocol for large
clustered mobile ad hoc networks. In P. Cuenca,
C. Guerrero, R. Puigjaner, and B. Serra, editors,
Advances in Ad Hoc Networking, volume 265 of IFIP
International Federation for Information Processing,
pages 97–108. Springer Boston, 2008.

[5] M. C. Castro, A. J. Kassler, C.-F. Chiasserini,
C. Casetti, and I. Korpeoglu. Peer-to-Peer Overlay in
Mobile Ad-hoc Networks. In X. Shen, H. Yu,
J. Buford, and M. Akon, editors, Handbook of
Peer-to-Peer Networking, chapter 37, pages
1045–1080. Springer US, 2010.

[6] C. Chambers, W.-c. Feng, W.-c. Feng, and D. Saha.
Mitigating information exposure to cheaters in
real-time strategy games. In Proceedings of the
international workshop on Network and operating
systems support for digital audio and video, NOSSDAV
’05, pages 7–12, New York, NY, USA, 2005. ACM.

[7] E. Cronin, A. R. Kurc, B. Filstrup, and S. Jamin. An
efficient synchronization mechanism for mirrored game
architectures. Multimedia Tools Appl., 23:7–30, May
2004.

[8] G. D’Angelo, S. Ferretti, V. Ghini, and F. Panzieri.
Mobile computing in digital ecosystems: Design issues
and challenges. In IEEE, editor, Proceedings of the 7th
International Wireless Communications and Mobile
Computing Conference (IWCMC 2011), July 2011.

[9] A. Emmanuelle, A. K. Datta, M. Gradinariu, and
G. Simon. Publish/subscribe scheme for mobile
networks. In Proc. of the second ACM international
workshop on Principles of mobile computing, POMC
’02, pages 74–81. ACM, 2002.

[10] S. Ferretti. Cheating detection through game time
modeling: A better way to avoid time cheats in p2p
mogs? Multimedia Tools Appl., 37(3):339–363, 2008.

[11] S. Ferretti. A synchronization protocol for supporting
peer-to-peer multiplayer online games in overlay
networks. In DEBS ’08: Proc. of the second
international conference on Distributed event-based
systems, pages 83–94. ACM, 2008.

[12] S. Ferretti and V. Ghini. A web 2.0, location-based
architecture for a seamless discovery of points of
interests. In Proc. of the 2009 Fifth Advanced
International Conference on Telecommunications,
pages 226–231, Washington, DC, USA, 2009. IEEE.

[13] S. Ferretti and M. Roccetti. Fast delivery of game
events with an optimistic synchronization mechanism
in massive multiplayer online games. In ACE ’05:
Proc. of the 2005 ACM SIGCHI International

Conference on Advances in computer entertainment
technology, pages 405–412. ACM, 2005.

[14] V. Ghini, S. Ferretti, and F. Panzieri. The ”always
best packet switching” architecture for sip-based
mobile multimedia services. Journal of Systems and
Software, 84(11):1827–1851, 2011.

[15] C. Griwodz and P. Halvorsen. The fun of using tcp for
an mmorpg. In Proceedings of the 2006 international
workshop on Network and operating systems support
for digital audio and video, NOSSDAV ’06, pages
1:1–1:7, New York, NY, USA, 2006. ACM.

[16] J. Huang, Z. Han, M. Chiang, and H. V. Poor.
Auction-based distributed resource allocation for
cooperation transmission in wireless networks. In
Proceedings of the Global Communications Conference,
GLOBECOM ’07, pages 4807–4812. IEEE, 2007.

[17] Y. Huang and H. Garcia-Molina. Publish/subscribe in
a mobile environment. Wirel. Netw., 10:643–652,
November 2004.

[18] T. Kelly. Generalized knapsack solvers for multi-unit
combinatorial auctions: Analysis and application to
computational resource allocation. In Agent-Mediated
Electronic Commerce VI, Theories for and
Engineering of Distributed Mechanisms and Systems,
volume 3435 of Lecture Notes in Computer Science,
pages 73–86. Springer, 2005.

[19] Y. Li, S. Peng, and W. Chu. K-tree trunk and a
distributed algorithm for effective overlay multicast on
mobile ad hoc networks. In Parallel Architectures,
Algorithms, and Networks, 2008. I-SPAN 2008.
International Symposium on, pages 53 –58, may 2008.

[20] M. Mauve, J. Vogel, V. Hilt, and W. Effelsberg.
Local-lag and timewarp: providing consistency for
replicated continuous applications. Multimedia, IEEE
Transactions on, 6(1):47 – 57, feb. 2004.

[21] C. E. Palazzi, S. Ferretti, S. Cacciaguerra, and
M. Roccetti. Interactivity-loss avoidance in event
delivery synchronization for mirrored game
architectures. IEEE Transactions on Multimedia,
8(4):874–879, 2006.

[22] L. Pantel and L. C. Wolf. On the suitability of dead
reckoning schemes for games. In Proc. of the 1st
workshop on Network and system support for games,
NetGames ’02, pages 79–84. ACM, 2002.

[23] C. G. Rezende, B. P. S. Rocha, and A. A. F. Loureiro.
Publish/subscribe architecture for mobile ad hoc
networks. In Proceedings of the 2008 ACM symposium
on Applied computing, SAC ’08, pages 1913–1917,
New York, NY, USA, 2008. ACM.

[24] M. Stokely, J. Winget, E. Keyes, C. Grimes, and
B. Yolken. Using a Market Economy to Provision
Compute Resources Across Planet-wide Clusters. In
Parallel and Distributed Processing Symposium, 2009.

[25] T. Wongsaardsakul and K. Kanchanasut. A structured
mesh overlay network for p2p applications on mobile
ad hoc networks. In Distributed Computing and
Internet Technology, volume 4882 of Lecture Notes in
Computer Science, pages 67–72. Springer, 2007.

	1 Introduction
	2 Wireless MOG Architectures
	2.1 The Client/Server Scheme
	2.2 The Peer-to-Peer Scheme
	2.3 Game Software Modules

	3 On the Optimal Organization of Resources
	3.1 Optimizing the Player's Devices
	3.2 Optimizing Interactions Among Nodes

	4 Distribution of Software Modules over the Mesh
	4.1 Modules Distribution
	4.2 Allocation of Software Modules
	4.3 Management of the Overlay Mesh
	4.4 Associating Clients to Software Modules
	4.5 Synchronization

	5 Conclusions
	6 References

