
Simulating Frame-Level Bursty Links in Wireless Networks

Daniel Lertpratchya
d.lertpratchya@gatech.edu

George F. Riley
riley@ece.gatech.edu

Douglas M. Blough
doug.blough@ece.gatech.edu

School of Electrical and Computer Engineering
Georgia Institute of Technology, Atlanta, Georgia 30332

ABSTRACT

In this paper, we propose a stochastic bursty-link model to
simulate bursty behavior observed in wireless communica-
tions. Our stochastic bursty-link model works at the frame
level where the probability of correctly receiving a frame
is dependent on the results of previous transmissions. To
accomplish this, our model uses a bursty probability adjust-
ment function to adjust the probability of correctly receiving
a frame based on the history of the link. When an appro-
priate trace file is available, our model can directly derive a
bursty probability adjustment function from the trace file.
When a trace file is not available, our model can simulate
different bursty characteristics by selecting a function from
a set of ideal bursty probability adjustment functions. We
show that our model can simulate different bursty behaviors
observed in real wireless links, using both trace file analy-
ses and ideal bursty probability adjustment functions. In
addition to studying the ability to simulate bursty behav-
iors observed in real wireless links, we also study the effect
of incorporating bursty behavior into wireless simulations.
We show that incorporating bursty behavior into wireless
simulation has a significant impact on the performance of a
wireless routing protocol.

Categories and Subject Descriptors

I.6.5 [Simulation and Modeling]: Model Development;
I.6.4 [Simulation and Modeling]: Model Validation and
Analysis; C.2.1 [Computer-Communication Networks]:
Network Architecture and Design—Wireless communication

General Terms

Algorithms, Verification

Keywords

ns-3, wireless simulation, bursty wireless channel

1. INTRODUCTION
Network simulations have been used extensively to eval-

uate the performance of wireless networks. With the scale
and complexity of the wireless ad-hoc networks and sensor
networks, network simulation has become an indispensable
tool in studying wireless network performances.

Several network simulators are readily available for use in
the research community and the industry. ns-2 [3], ns-3 [4],
OPNET [8], and GloMoSim [24] are examples of well known
network simulators. Most, if not all, network simulators
support wireless network simulation such as IEEE 802.11 to
some extent. One of the important components of wireless
network simulation is the signal propagation model. Most
of the network simulators support theoretical signal prop-
agation models such as Friis free-space model [10] and the
log-distance model [9]. A comparative study between dif-
ferent propagation models in ns-3 was done by Stoffers and
Riley [21]. Kotz et al. [13] showed that many of the com-
monly adopted assumptions in the wireless network simula-
tions are too simplistic. Among these simplistic assumptions
is the signal propagation model used in the simulators.

One of the characteristics of wireless communication is
that the wireless links are bursty. Multiple studies have
shown that wireless links are bursty and that the burstiness
affects the experimental results [6, 7, 12, 19]. A few stud-
ies have been done with the goal of quantifying the wireless
link burstiness. At the physical layer, coherence time is the
time during which the radio signal is considered to be sta-
ble. A Markov chain describing the burstiness of a link at
bit level was proposed by Mushkin and Bar-David [18]. One
of the first metrics to measure link burstiness was proposed
by Srinivasan et al. [20]. The authors defined a burstiness
metric, β, by using conditional probability delivery function
(CPDF), which can be obtained from packet delivery traces.
The burstiness metric measures if a link is closer to an in-
dependent link or an ideal bursty link. The authors showed
that most wireless links are bursty and β can be used to
predict network protocol performance on a bursty link.

Even though link burstiness is a widely recognized char-
acteristic of wireless communications, most of the currently
available network simulators do not provide support for mod-
eling wireless link burstiness. A few models have been pro-
posed to model burstiness [11,15,23]. Lee et al. [15] proposed
a noise model such that the level of noise depends on the
history of the previous noises. Gómez et al. [11] proposed
an auto-regression model to replicate a bursty behavior by
modeling received powers where the model is obtained from
analyzing trace files. A major limitation of modeling sig-

nal or noise variation is that obtaining accurate empirical
data is very difficult or impractical. Vlavianos et al. [22]
showed that getting an accurate measurement of received
signal strength indicator (RSSI) and signal-to-interference-
plus-noise ratio (SINR) is difficult due to many factors. For
example, according to 802.11 specifications, RSSI is only
measured during the PLCP preamble and not the whole
frame. Moreover, RSSI resolution is dependent on the de-
vice chipset [16] and often reported as an integer only. SINR,
which must be derived from RSSI, inherits all inaccuracies
from RSSI [22].

In this paper, we propose a stochastic bursty-link model
to simulate bursty behavior of the link at the frame level.
By modeling link burstiness at the frame level, we are able to
create bursty links and avoid the low-level inaccuracies and
complexities. The underlying idea of our stochastic bursty-
link model is that the probability of successfully receiving a
frame is dependent on the history of the previous receptions.
The model adjusts the probability of successfully receiving
a frame based on the results of previous frame receptions.
Our model can directly simulate a bursty behavior of a real
wireless link given that an appropriate trace file is available
to the model. Our model can also simulate bursty behavior
by using appropriate functions if a trace file is not available.
We show, through simulation, that our model can closely
simulate real wireless links with different bursty behaviors.

The rest of the paper is organized as follows. In Section 2,
we present the underlying idea of our stochastic bursty-link
model. In Section 3, we discuss the two important param-
eters of our model and how to obtain the appropriate pa-
rameters for link modeling. We present our detailed imple-
mentation in the ns-3 simulator in Section 4. We evaluate
our stochastic bursty-link model against other models and
present the simulation results in Section 5. Finally, Section 6
concludes the paper.

2. MODELING BURSTY LINK BEHAVIOR
In this section, we present the stochastic bursty-link model

for wireless simulation. Our model is motivated by the ob-
servation that, in a bursty link, the probability of correctly
receiving a frame depends on the frame reception history of
the link. Our goal is to mimic the same behavior where the
probability of successfully receiving a frame is also depen-
dent on the history of the link.

The high level idea of our stochastic bursty-link model
is as follows: the bursty-link model keeps track of trans-
mission results as observed by a receiver on each link in an
internal cache. When calculating the probability that the
current transmission will be successful, the model looks at
the history of the previous transmissions and adjusts the
probability according to the history. The model imposes a
time-to-live (TTL) limit for a cache entry to prevent very
old transmission results from affecting the probability value.
If the cache is empty, the model simply uses the probability
according to a default metric such as the distance between
the sender and the receiver.

The adjustment to the probability values is made by con-
sulting a function called a bursty probability adjustment
function (BPA(n)) since it changes the probability values if
the bursty behavior is taken into account. The parameter n
is the size of the burst where n > 0 represents the number of
consecutive received frames and n < 0 represents the num-
ber of consecutive missed frames. In other words, BPA(n)

is the change in probability of successfully receiving the next
frame given that the previous n consecutive frames were re-
ceived (when n > 0) or missed (when n < 0). Note that with
this definition, the burst size 0 is undefined. However, we
can use BPA(0) = 0 to represent the case where the cache is
empty and no adjustment is made to the probability value.

To summarize, the main ideas of our model are as follows.

1. The model keeps track of transmission results on each
wireless link in an internal cache.

2. The probability of successfully receiving a frame is ad-
justed based on the previous transmission results.

3. Time-to-live is introduced to limit the time during
which a previous transmission result can affect future
transmissions.

Two major components of our stochastic bursty-link model
are the bursty probability adjustment function and the time-
to-live of a cache entry. Since the choice of the two pa-
rameters will have significant impact on the behavior of our
model, it is important that they are picked carefully when
modeling a bursty link. In the next section, we discuss two
methods to obtain appropriate values for these parameters.

3. BURSTY PROBABILITY ADJUSTMENT

FUNCTION AND CACHE TTL
In this section, we present two methods to obtain appro-

priate bursty probability adjustment function and time-to-
live for a cache entry: from a trace file and from a set of
predefined functions. A trace file approach is suitable when
the goal is to simulate a specific link and it is possible to
get a trace file from that link. We present a set of simple
functions that can be used to simulate bursty link behavior
in the case where getting a trace file is not possible or the
goal of the simulation is simply to simulate bursty links that
are not modeled after specific links.

3.1 Trace File-based Values
The first method of obtaining a bursty probability adjust-

ment function and cache TTL is through the analysis of a
real trace file. By analyzing a real trace file, we can observe
the bursty characteristic of the wireless link and obtain ap-
propriate values for our model.

Since we are interested in analyzing burstiness of a link,
we need to be able to keep track of the number of consecu-
tive frames received or missed. One way is to keep track of
the sequence number in the 802.11 header. We have to make
sure that all frames of interest are sent with the same phys-
ical layer parameters; for example, wireless channel, modu-
lation scheme, and data rate. This requirement can be met
by looking at the Radiotap header.

Given a trace file, it is possible to calculate the condi-
tional probability delivery function (CPDF (n)) from the
trace file. CPDF (n) gives the probability of correctly re-
ceiving a frame for different burst sizes n. A positive burst
size represents a number of consecutive successful frame re-
ceptions while a negative burst size represents a number of
consecutive frames missed. One example of a CPDF (n)
from a real trace file is shown in Figure 1. As seen from Fig-
ure 1, the link exhibits a bursty behavior where the proba-
bility of successfully receiving a frame depends on the results

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

-20 -10 0 10 20 30 40

C
P
D
F
(n

)

Burst size

Figure 1: An example of CPDF from a trace file.

The link exhibits a bursty behavior since the prob-

ability of successfully receiving a frame depends on

the results of previous transmissions.

of previous transmissions. For example, if the source node
is sending two frames, the probability of correctly receiving
the second frame depends on the result of the first transmis-
sion. If the first frame was correctly received, the probability
of correctly receiving the second frame is 0.7484. If, how-
ever, the first frame was missed, the probability of correctly
receiving the second frame is only 0.5192.

A domain of CPDF (n) of a finite trace file is a finite set
since the number of consecutive frames received or missed
is finite. For example, the domain of CPDF (n) of the trace
file in Figure 1 is {−14,−13, . . . ,−1, 1, 2, . . . , 35} since the
largest number of consecutive frames missed is 14 and the
largest number of consecutive frames received is 35. Notice
that 0 is not included in the domain since the burst size 0
is undefined.

To obtain BPA(n) from CPDF (n) starting from a trace
file, we first calculate the average packet reception ratio
(PRR) from the trace file. The average PRR represents the
probability of correctly receiving a frame when bursty char-
acteristic of the link is not taken into account. Let D be the
domain of CPDF (n). Let � = max(D) (the largest num-
ber of consecutive frames received) and � = min(D) (the
largest number of consecutive frames missed). BPA(n) can
be defined as:

BPA(n) =

⎧⎪⎪⎨
⎪⎪⎩

CPDF (n)− PRR, n ∈ D

0, n = 0
CPDF (�)− PRR, n < �
CPDF (�)− PRR, n > �

We include the last two cases where n < � and n > � to
handle a case when simulating a burst size larger than the
bursts observed in the trace file.

An example of how to obtain BPA(n) from CPDF (n) is
shown in Figure 2.

To obtain the bursty probability adjustment function, we
first calculate the average PRR of the link. In Figure 2, the
average PRR of the link is 0.5. The next step is to calcu-
late CPDF (n) for different burst sizes n. The differences
between the average PRR and the CPDF (n) are BPA(n).
By analyzing the example CPDF (n) in Figure 2, we obtain
the following bursty probability adjustment function.

0.0

0.2

0.4

0.6

0.8

1.0

-2 -1 0 1 2 3

C
P
D
F
(n

)

Burst size

B
P
A

(-
2
)=

0
.3

5
-0

.5
0

B
P
A

(-
1
)=

0
.4

0
-0

.5
0

B
P
A

(1
)=

0
.6

0
-0

.5
0

B
P
A

(2
)=

0
.6

5
-0

.5
0

B
P
A

(3
)=

0
.7

0
-0

.5
0

Average PRR

Figure 2: An example of calculating bursty proba-

bility adjustment from CPDF.

BPA(n) =

⎧⎪⎪⎨
⎪⎪⎩

CPDF (n)− 0.5, n ∈ {−2,−1, 1, 2, 3}
0, n = 0

−0.15, n < −2
0.20, n > 3

To calculate the appropriate time-to-live for a cache en-
try, we use the burstiness metric (β) proposed by Srinivasan
et al. [20]. The burstiness metric is a scalar value between
−1 and 1 used to measure burstiness of a given link. A
value close to 0 means the link is more independent (the
probability does not change much when burst occurs) while
a value close to −1 or 1 means that the link is very bursty
(the probability changes rapidly when burst occurs). Links
with negative correlation have negative βs.

The burstiness metric of the link reduces as the duration
between packets increases [20]. By decreasing the sampling
rate when calculating β, the value of β decreases. To calcu-
late the appropriate cache TTL, we decrease the β sam-
pling rate until β is sufficiently close to 0, which means
that the transmissions are almost independent of each other.
The time between samples is now representing the duration
where the results of previous transmissions have only a slight
effect on the outcome of the next transmission. Thus, the
time-to-live is equal to the time between samples.

The advantage of getting BPA(n) and TTL from a real
trace file is that the bursty characteristics of the simulated
link will be almost identical to the real wireless link. The
drawback of the trace-file based approach is that appropri-
ate trace files must be available. However, getting trace
files may not be feasible in all scenarios, for example, when
the number of nodes is large. If the network consists of N
nodes, we need to obtain O(N2) trace files, which may not
be feasible. We would like to be able to incorporate bursty
characteristics when simulating arbitrary links.

3.2 Synthetic-link Values
As discussed earlier, using a real trace file is the most

accurate method of simulating a link. However, obtaining a
trace file may not be feasible in all cases. The other method
of obtaining a bursty probability adjustment function is to
select one from a set of predefined functions. This method

(a) Scaled-error function

scale=s

stretch=σ

(b) Ideal bursty link

b+

b−

(c) Ideal negative bursty link

b+

b−

(d) Linear bursty link

slope=k

Figure 3: Examples of possible synthetic bursty

probability adjustment functions. The x-axis is the

burst size and the y-axis is the BPA(n).

is suitable for a simulation where obtaining trace files is not
possible or not feasible. The method is also suitable for a
simulation where the goal is not to model links after specific
real world links, but to incorporate bursty links into the
simulation. We propose a set of functions in Figure 3.

Figure 3 (a) represents a BPA function that resembles the
error function (erf). Figure 3 (b) and (c) represent the ideal
bursty links where the bursty probability changes rapidly
when a burst occurs. A BPA function in Figure 3 (c) shows
a link with negative correlation, which has been observed in
real wireless link [20]. Figure 3 (d) represents a linear bursty
link where burstiness gradually increases.

The parameters b+, b− of the ideal bursty functions and
the slope k of the linear bursty function, can be selected de-
pending on the burstiness level desired. We note that there
is no limitation on the actual values of the bursty proba-
bility. The only real limitation is the validity of the values
and that the values returned by the model will be within
a reasonable range. It is possible to use any function or a
set of discrete values as a bursty probability adjustment. As
mentioned previously, analyzing a trace file will result in a
set of discrete values. A closed-form function, if desired, can
be obtained by applying an appropriate statistical method.

The scaled-erf bursty function in Figure 3 (a) deserves spe-
cial attention. We use an error function that has been scaled

and stretched to obtain the bursty probability adjustment
function. Our scaled-erf function takes two arguments: a
scale (s), and a stretch (σ). In the standard error function,
the function range is from −1 to 1. We scale the range of erf
function by using s so that the range is not limited to be-
tween −1 and 1. The scaling s represents the limit to where
the bursty probability adjustment function converges. We
include the stretching factor, σ, to stretch the error function
along the x-axis. The stretching factor changes the step sizes
between bursts. The differences between two burst sizes in
a function with large σ will be smaller than a function with
small σ. Figure 4 shows examples of different scaled-erf func-
tions with different parameters.

As seen in Figure 4, the effect of the scale, s, is to change
the limit of the erf function. In other words, s represents
the maximum probability change due to bursty behavior.
The effect of the stretching factor, σ, is to stretch out the

-1.0

-0.5

0.0

0.5

1.0

-10 -5 0 5 10

s = 1.00, σ = 1.0
(standard erf)

s = 0.75, σ = 3.0
s = 0.50, σ = 1.0

Figure 4: Examples of different scaled-erf functions

with different scaling (s) and stretching (σ).

erf function along the x-axis. A large σ means that the
probability differences between two burst sizes is small. For
example, the probability difference between burst size 2 and
burst size 1 of the standard error function is 0.2718 while
the difference is 0.2338 when σ = 3.

By using s and σ to modify the shape of the error func-
tion, we can use the scaled-erf function to approximate the
remaining three functions by selecting the appropriate pa-
rameters. For instance, to approximate an ideal bursty func-
tion with b+ = b−, we set s to b+ and select a small σ such
that the burst size 1 and -1 have values sufficiently close to
b’s (i.e. BPA(1) → b+ and BPA(−1) → b−). We can use a
negative scale to get a function like the one in Figure 3 (c).
For a linear bursty function, we can select a very large σ to
stretch out the error function.

To get an appropriate time-to-live for a cache entry in a
synthetic bursty link, we have to use a value within a range of
suggested values, since we do not have a trace file to analyze
like we did in Section 3.1. In [20], the authors suggested that
the duration of correlation is usually around 500ms. We
present our own observation regarding the appropriate TTL
from the trace files we generated for simulation in Section 5.

The advantage of using a predefined function is that it
does not require a trace file. The predefined functions can
be used in a simulation with a large number of nodes where
obtaining trace files is not feasible. The drawback of using
a function is that the characteristics of the simulated link
may not match exactly to real wireless links.

3.3 Algorithm Complexity
We end this section with some discussion regarding the

complexity of the stochastic bursty link model.
Since the probability of correctly receiving a frame in our

model is dependent on the results of previous transmissions,
each node in the simulation has to keep track of transmission
results from all other nodes in the network. In other words,
if there are N nodes in the network, each node has to keep
track of all previous transmission results from the remaining
N − 1 nodes.

To reduce the memory requirement, the following two
methods may be used. First, the model may ignore links
with average PRR below a certain threshold. The model
simply returns the probability of correctly receiving a frame
without considering burstiness, which means that the model
does not need to keep track of the history of that link.

For example, the model may choose to ignore all links that
have average PRR less than 0.1. In practice, applying this
method means that the model will exclude all links where
the two nodes are too far apart.

The second method to reduce memory requirement is to
purge the history whenever it is possible. For instance, all
cache entries older than the cache TTL can be removed.
Moreover, the history can be purged when the transmission
results switched between success or failed since a burst is
defined as consecutive successful or failed frame receptions.

4. ns-3 IMPLEMENTATION
Next, we present our implementation of the stochastic

bursty link model in the ns-3 simulator. We start by present-
ing a quick overview of the standard WiFi module in ns-3
then proceed to explain our modification to incorporate the
stochastic bursty link model.

The current WiFi model in ns-3 consists of multiple com-
ponents working together. The two components that are
directly related to our work are WifiChannel and Wifi-

Phy [14]. Every WiFi device has its own WifiPhy while a
single WifiChannel object serves as a channel that glues all
WifiPhys operating in the same wireless channel together.

The main responsibility of WifiChannel is to pass the sig-
nal between WifiPhys when transmission occurs. Given the
signal, each receiving WifiPhy can calculate the signal-to-
interference-plus-noise ratio (SINR) of the receiving packet.
Packet error rate (PER) is then calculated based on the
SINR and other physical layer parameters. Finally, PER is
used to determine if the transmission is successful or not.

To summarize, the current steps to determine a transmis-
sion result in ns-3 WiFi module are as follows.

1. Calculate SINR of the packet

2. Calculate PER from the SINR

3. Determine if the transmission is successful

To incorporate the stochastic bursty link model in ns-3,
we made changes to the default WiFi module in ns-3. We
introduce a new object called BurstyHelper to the WiFi
module. BurstyHelper serves as the brain of the model
with two important functions. First, BurstyHelper acts as
a memory module by keeping track of history of transmis-
sion results between all WifiPhys. Second, BurstyHelper is
responsible for readjusting the PER when burst is detected.
Every WifiPhy holds a pointer to the BurstyHelper object.

At the end of the reception, WifiPhy first calculates the
PER based on the SINR. WifiPhy then consults Bursty-

Helper by calling ReadjustPer. BurstyHelper looks at the
cache of previous transmissions from the sending WifiPhy to
the receiving WifiPhy to see if there was a burst prior to the
current packet. If there was a burst, BurstyHelper adjusts
the PER by consulting the bursty probability adjustment
function and returns the new PER to WifiPhy. WifiPhy

then determines the result of the reception using the ad-
justed PER value. Finally, WifiPhy reports the result of the
reception to BurstyHelper so that BurstyHelper can cache
the result for future use.

Overall, the following changes were made to WiFi module.

1. A new object called BurstyHelper is included in the
WiFi module

2. BurstyHelper keeps track of transmission history be-
tween all pair of WifiPhys

3. WifiPhy stores a pointer to the BurstyHelper object

4. WifiPhy::EndReceive now takes a pointer to the send-
ing WifiPhy

5. WifiPhy calls BurstyHelper to check if any adjustment
to the default PER is required

6. WifiPhy determines the outcome of the reception and
reports the result to BurstyHelper

The new steps to determine a transmission result in the
modified WiFi module are as follows.

1. Calculate SINR of the packet

2. Calculate the default PER from the SINR

3. Look at the history of the transmissions

4. Adjust the PER if necessary

5. Determine if the transmission is successful

6. Save the result of the transmission

5. EVALUATION
We evaluate our stochastic bursty-link model by using the

implementation in ns-3. We evaluate our stochastic bursty-
link model in three different aspects. First and most impor-
tantly, we evaluate how well our model is able to replicate
the bursty behavior observed in real wireless links. Second,
we study how well our stochastic bursty-link model can sim-
ulate real wireless links with different bursty characteristics.
Our goal is to study the difference between using a discrete
BPA function and using a synthetic function to simulate
wireless links. Finally, we study how our stochastic bursty-
link model affects the routing protocol performance.

5.1 Trace Files Generation
As stated earlier, the most important goal of our model

is to replicate bursty characteristics observed in real wire-
less links. To evaluate our model against real wireless links,
we obtained trace files from an indoor office environment.
We used three laptops and one desktop to gather traces
files. BackTrack 5 R1 was installed on all devices. One lap-
top equipped with a wireless adapter based on the Atheros
chipset [5] was selected as a packet sender. An application
that continuously broadcasts UDP packets at the rate of 100
packets per second using 802.11g was installed on the packet
sender. Transmission power and data rate were kept con-
stant throughout the trace files collection. The remaining
machines were used to capture the packets. One capturing
laptop was equipped with Atheros-based wireless adapter
while the other laptop was equipped with a RaLink-based
wireless adapter [2]. The capturing desktop was equipped
with a RaLink-based wireless adapter.

We created trace files using tcpdump. All wireless inter-
faces were switched to monitor mode with airmon-ng [1].
The trace files contain information about the received sig-
nal strength of each frame provided by the Radiotap header.
All captures were done within the Klaus Advance Comput-
ing Building on the Georgia Institute of Technology campus
with a duration of one hour per trace file. We obtained
about 100 trace files for the simulations.

5.2 Evaluation Against Real Wireless Links
We evaluate two variations of our stochastic bursty link

model: using discrete BPA functions directly analyzed from
trace files and using a scaled-erf BPA function. We used
MatrixPropagationLossModel as a base propagation loss
model for both variations. We set the loss such that the
average PRR of the link is equal to the PRR of each trace
file. For the discrete BPA function, we followed the steps
described in Section 3.1 to obtain the BPA function. First,
we calculated cache TTL for each trace file by decreasing β

sampling period until |β|< 0.1 and then used the TTL as a
parameter to our model. Finally, the discrete BPA function
of each trace file was obtained by analyzing the CPDF of
the trace file.

For the scaled-erf BPA function, we manually tuned the
two parameters of the scaled-erf function (s and σ) to match
with the shape of the CPDF from the trace file. To obtain
the TTL, we analyzed the 100 trace files. We varied the β

sampling period of the 100 trace files and looked at the dis-
tributions of β’s. At the sampling period of 10ms (count-
ing every packet), all 100 trace files had |β|> 0.1. When
the sampling period decreased to 100ms (counting every 10
packets), the number of trace files with |β|> 0.1 dropped
to 28. At the sampling period of 500ms (counting every
50 packets), only 4 trace files still had |β|> 0.1. Thus, we
used the TTL of 500ms for the scaled-erf BPA function.
The value of 500ms is also in agreement with the previ-
ously suggested value [20]. Note that this TTL is used in
all scaled-erf BPA functions. In the case of discrete BPA
function, the TTL is different for different trace files.

We compared the results of our model with the trace file
and two other models: the default ns-3 model and BEAR [11].
For the default model, we used the MatrixPropagation-

LossModel. We set the loss such that the average received
signal strength is equal to the average received signal strength
of each trace file. We added a fading effect by adding a Ran-

domPropagationLossModel with a NormalRandomVariable

with mean 0 and variance corresponding to the trace file.
For BEAR, the parameters were tuned using the received
power traces from the trace files with the order of 3.

We presented the simulation results by using the β val-
ues. We selected a representative subset of the trace files
with varying β values. All results from simulated links were
averaged from 1000 simulations. The simulation results are
reported in Figure 5.

As seen from Figure 5, our model can simulate burstiness
of the trace file from very bursty links (β → 1) to almost in-
dependent links (β → 0). The β values of both the discrete
BPA function variations and the scaled-erf BPA variations
function differ from the trace files’ only slightly. The β val-
ues of BEAR show that it can simulate a bursty link to a cer-
tain degree. However, the BEAR model is slower to change
when compare to our model since it uses an auto-regression
model to simulate links. The default LogDistance with fad-
ing model in ns-3 does not exhibit any bursty behavior as
the β values are close to 0; that highlights its memory-less
behavior. We show the detailed results from one of the trace
files in Figure 6, Figure 7, and Figure 8. Figure 6 shows the
PRR of the trace file and different simulated links. Figure 7
shows the CPDF of the trace file and the simulated links.
Figure 8 shows the distribution of burst sizes of the trace
file and the simulated links.

In this set, the average packet reception ratio of the trace

file is about 0.67. As seen from Figure 6, the PRR of the
default model remains relatively stable when compared to
the trace files and other models. Figure 7 confirms that the
CPDFs of both variations of our model closely resemble the
CPDF from the trace file while the CPDF of the default
model is almost flat. In other words, the randomness of the
default model does not capture the bursty effect observed
in a real network. Figure 8 shows the distributions of burst
sizes of the trace file and the simulated links. The distribu-
tion of the burst size of our model is almost identical to the
trace file while the distributions of burst sizes of the default
model and BEAR are noticeably differ from the trace file.
Note that the number of instances shown in Figure 8 are
cumulative (e.g. burst size 3 is also counted in burst size 4).

5.3 Simulating Links with Different Bursty
Characteristics

In this section, we compare between the two variations of
our model. Specifically, we compare between using a discrete
BPA function from a trace file and using a scaled-erf func-
tion. We would like to see how well the scaled-erf function
simulates different CPDFs from trace files when compared
to directly using discrete BPA functions from trace files.

To compare between the two methods, we selected four
trace files with different CPDF shapes and show the results
from simulations with discrete BPA functions and scaled-erf
functions. The four sets of CPDFs are reported in Figure 9.

In Figure 9 (a), the trace file shows a slightly bursty be-
havior with small burstiness metric. Figure 9 (b) shows an
example of a very bursty link where the probability shifts
quickly depending on the frame reception history. In Fig-
ure 9 (c), the link also shows a slightly bursty behavior but
with different shape from the link in Figure 9 (a).

As shown in Figure 9, our model with discrete BPA func-
tions can simulate links with different bursty behaviors. The
burstiness metrics of the discrete BPA functions are almost
identical to the trace files. The scaled-erf model can simu-
late the links in Figure 9 (a), (b), and (c) well but cannot
simulate the link in Figure 9 (d) due to its strange CPDF
shape. The shape of the CPDF in Figure 9 (d) does not
resemble any scaled-erf function. In this case, the scaled-erf
function performs poorly while the discrete BPA function is
still able to mimic the strange CPDF shape.

As noted earlier, one drawback of using a scaled-erf func-
tion instead of a discrete BPA is that, the function may
not be able to simulate some CPDF shapes. The shapes
of the CPDF simulated from the scaled-erf function will be
more smooth than the real trace files as the function is not
discrete. Thus, a discrete BPA function may be needed to
simulate links with strange CPDF shapes.

5.4 Effect of the Simulated Bursty Link on
Routing Protocols

In this section, we investigated the effect of our stochas-
tic bursty-link model on routing protocols. Our goal was to
study the effect on routing protocols when the bursty behav-
ior is incorporated into the wireless simulation. We studied
two scenarios with routing protocols: a diamond topology
and a random network. First, we studied the diamond topol-
ogy since the topology is simple and the effect of incorporat-
ing the stochastic bursty-link model can be easily observed.
Next, we proceeded to study the random topology.

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

B
u
rs

ti
n
es

s
m

et
ri

c
(β

)

Trace file Discrete BPA Scaled-erf BEAR Default ns-3

Figure 5: A comparison between simulated links and trace files.

0.0

0.2

0.4

0.6

0.8

1.0

P
R

R

Trace file Discrete BPA

Time

Scaled-erf BEAR

0.0

0.2

0.4

0.6

0.8

1.0

Default ns-3

Figure 6: Packet reception ratio at different time for the trace file, our bursty-link model, BEAR, and the

default ns-3.

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

-20 -10 0 10 20 30 40 50

C
P
D
F
(n

)

Burst size

Trace file
Discrete BPA

Scaled-erf
BEAR

Default ns-3

Figure 7: CPDF from one trace file along with its

simulated counterparts from different models.

0

50000

100000

150000

200000

250000

300000

-20 -10 0 10 20 30 40 50

N
u
m

b
er

o
f

in
st

an
ce

s

Burst size

Trace file
Discrete BPA

Scaled-erf
BEAR

Default ns-3

Figure 8: Distribution of burst sizes from the trace

file and different models.

5.4.1 Diamond topology

We began the study with a network with four nodes placed
in a diamond topology as shown in Figure 10. There is one
source node s and one destination node t. Node u and v

serve as forwarding nodes for routes between s and t. We

manually set the propagation loss in the network such that
there are only four possible links in the topology: s ↔ u,
s ↔ v, u ↔ t, and v ↔ t. The loss on the four links, φ, can
be set to different values to get different frame success rates.
Other links were configured with infinite loss. To accomplish
this, we used MatrixPropagationLossModel in ns-3 as the
base propagation loss model. The topology was selected to
ensure that s must reach t by using a routing protocol.

We compared the results between three models: the de-
fault ns-3, BEAR, and our stochastic bursty link model. The
fading effect was added to the default ns-3 model using the
RandomPropagationLossModel. For our model, we evaluate
three different variations:

1. “Ideal bursty” – ideal bursty link (b+ = b− = 0.2),

2. “Positive” – positive burst only (b+ = 0.2, b− = 0), and

3. “Negative” – negative burst only (b+ = 0, b− = 0.2).

The positive burst only model is a model where the proba-
bility of correctly receiving a frame increases when a positive
burst occur and the probability resets to the default value
when a negative burst occur. In other words, the quality of
the link in the positive burst only model is always at least as
good as the default link. For the negative burst only model,
the link is always at most as good as the default link. The
positive burst only model and the negative burst only model
are not representatives of real wireless link, but are included
for comparison purpose.

To observe the behavior of different models under differ-
ent network conditions, we varied φ such that the frame
success rate of the links is between 0.1 (very bad links) and
0.9 (very good links). The UDP application on the source
node generates packets at the rate of 20 packets per sec-
ond. We reported simulation results using packet reception
ratio. All results reported are averaged from 1000 simula-
tions. The simulation results are reported in Figure 11. For
better readability, the confidence intervals are not shown
since the intervals are very small.

0.0

0.2

0.4

0.6

0.8

1.0

-30 -20 -10 0 10 20 30 40 50 60

C
P
D
F
(n

)

Burst size

(a) A link with moderate bursty behavior

0.0

0.2

0.4

0.6

0.8

1.0

-40 -20 0 20 40 60

C
P
D
F
(n

)

Burst size

(b) A link with an almost ideal-bursty link CPDF

0.0

0.2

0.4

0.6

0.8

1.0

-40 -30 -20 -10 0 10 20

C
P
D
F
(n

)

Burst size

(c) A link with an almost linear CPDF

0.0

0.2

0.4

0.6

0.8

1.0

-20 -10 0 10 20 30 40 50 60
C
P
D
F
(n

)
Burst size

(d) A link with special CPDF shape

Trace file (0.553)
Discrete BPA (0.550)

Scaled-erf (0.590)

Trace file (0.751)
Discrete BPA (0.767)

Scaled-erf (0.695)

Trace file (0.547)
Discrete BPA (0.539)

Scaled-erf (0.456)

Trace file (0.348)
Discrete BPA (0.351)

Scaled-erf (0.587)

Figure 9: Using a scaled-erf function to simulate links with different CPDF shapes. The number inside the

brackets are the burstiness metric (β).

s t

u

v

Loss
=
φ

Loss
=
φ

Lo
ss
=
φ

Lo
ss
=
φ

Loss = ∞

Figure 10: A simple diamond topology used to study

performances of different models.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

P
R

R

Frame success rate of the links

Positive only
Default ns-3
Ideal bursty

Negative only
BEAR

Figure 11: Packet reception ratios of different link

models under varying link quality.

As seen from Figure 11, packet reception ratios of all mod-
els increase as the link quality improves, which is expected.
The positive burst only model has higher PRR than the
default ns-3 since the quality of the link increases when pos-

itive bursts occur but the link quality never drops below the
default values. On the other hand, the link quality of the
negative burst only model is always lower than the default
ns-3, resulting in lower PRR than the default model. How-
ever, the effect of positive burst only and negative burst only
are not equivalent. The results show that negative bursts
have more impact on the PRR than positive bursts. This
behavior is expected since DSR takes time to find a new
route to the destination when the current route is broken.
From DSR’s perspective, there is not much benefit from a
positive burst other than shorter delivery delay (no retrans-
mission is required at the MAC layer). However, when a
negative burst occurs, a DSR route may break and must be
re-established. This behavior can be observed in the ideal
bursty link model (b+ = b−) where the effects of negative
bursts outweigh the effects of positive bursts.

5.4.2 Random topology

Finally, we turn our attention to a random network. In
this study, we randomly place 50 static nodes in the deploy-
ment area of 500m by 500m. Two nodes are selected as a
source-destination pair where the distance between the two
nodes is at least 300m to ensure that the two nodes use
routing to reach each other. The application on the source
node generates packets at the rate of 20 packets per second
for 480 seconds. We ran two sets of application: one with
UDP and one with TCP.

Again, we compare the results between three models: the
default ns-3 model, BEAR, and the three variations of our
bursty link model. We use the LogDistancePropagation-

LossModel provided by ns-3 with a path-loss exponent of 3 as
the base propagation loss model. We report the simulation
results in two aspects: the packet reception ratio and the
number of route breaks. All simulation results are averaged
from 1000 simulations and reported with 95% confidence in-
terval. UDP simulation results are reported in Figure 12
and TCP simulation results are reported in Figure 13.

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00
D

ef
au

lt

B
E

A
R

Id
ea

l
b
u
rs

ty

P
o
si

ti
v
e

N
eg

at
iv

e

P
R

R

0

1

2

3

4

5

6

7

8

9

10

D
ef

au
lt

B
E

A
R

Id
ea

l
b
u
rs

ty

P
o
si

ti
v
e

N
eg

at
iv

e

N
u
m

b
er

o
f

ro
u
te

b
re

ak
s

Figure 12: PRR and the number of route breaks

of DSR simulation under different link models with

UDP application.

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

D
ef

au
lt

B
E

A
R

Id
ea

l
b
u
rs

ty

P
o
si

ti
v
e

N
eg

at
iv

e

P
R

R

0

5

10

15

20

25

D
ef

au
lt

B
E

A
R

Id
ea

l
b
u
rs

ty

P
o
si

ti
v
e

N
eg

at
iv

e

N
u
m

b
er

o
f

ro
u
te

b
re

ak
s

Figure 13: PRR and the number of route breaks

of DSR simulation under different link models with

TCP application.

As seen in Figure 12 and Figure 13, the default model has
the highest packet reception ratio with almost 100% deliv-
ery. All models with memory effect have substantially lower
packet reception ratios. The lower packet reception ratios of
other models result from more frequent link breakage during
the simulations. The simulation results show that the perfor-
mance of DSR is significantly different when bursty behavior
is incorporated into the simulation. All models with memory
experienced about 4 to 7 link breaks with UDP application
and about 14 to 15 link breaks with TCP application. The
default ns-3 model experienced only about 1 link break with
UDP application and about 4 link breaks with TCP appli-
cation. The more frequent route breaks mean that DSR has
to re-initiate the route discovery process more often. The
smaller number of route breaks of the default ns-3 model
results in higher PRR but the results are not realistic. This
is in general agreement with published results from DSR in
a real wireless ad hoc network testbed, which showed that
route breaks occurred much more frequently even in a well-
planned network as small as two hops [17].

6. CONCLUSIONS AND FUTURE WORK
In this paper, we proposed a new stochastic frame-level

bursty-link model for wireless network simulation. Our model
simulates bursty behavior in wireless links by changing the
probability of correctly receiving a frame based on the his-
tory of the wireless link. Our model can directly simulate a
real wireless link by modeling the bursty characteristics from
the trace file or simulate a bursty link by using predefined
functions. We have implemented the model in ns-3 simu-
lator and showed that our model is able to replicate bursty
behavior observed in real wireless links. We also comprehen-
sively studied the effect of using our stochastic bursty-link
model on the routing protocol performance and showed that
the routing protocol performance was significantly affected
by the bursty behavior of the wireless links.

Even though we have shown that our stochastic bursty-
link model is able to simulate variety of bursty characteris-
tics observed in real wireless links, the research in this area
is still far from complete. Further refinements to our model
are possible. We are currently investigating the possibility
of using different bursty probability adjustment functions
based on the time when the last burst occurred.

Acknowledgements

This research was supported in part by the National Science
Foundation under Grant CNS-0958015.

7. REFERENCES

[1] AirCrack-ng. http://www.aircrack-ng.org.

[2] MediaTek. http://www.mediatek.com.

[3] The ns-2 network simulator.
http://nsnam.isi.edu/nsnam.

[4] The ns-3 network simulator. http://www.nsnam.org.

[5] Qualcomm Atheros. http://www.atheros.com.

[6] D. Aguayo, J. Bicket, S. Biswas, G. Judd, and
R. Morris. Link-level measurements from an 802.11b
mesh network. In Proceedings of the 2004 conference
on Applications, technologies, architectures, and
protocols for computer communications, SIGCOMM
’04, pages 121–132, New York, NY, USA, 2004. ACM.

[7] A. Cerpa, J. L. Wong, M. Potkonjak, and D. Estrin.
Temporal properties of low power wireless links:
modeling and implications on multi-hop routing. In
Proceedings of the 6th ACM international symposium
on Mobile ad hoc networking and computing, MobiHoc
’05, pages 414–425, New York, NY, USA, 2005. ACM.

[8] X. Chang. Network simulations with opnet. In
Simulation Conference Proceedings, 1999 Winter,
volume 1, pages 307–314 vol.1, 1999.

[9] V. Erceg, L. Greenstein, S. Tjandra, S. Parkoff,
A. Gupta, B. Kulic, A. Julius, and R. Bianchi. An
empirically based path loss model for wireless channels
in suburban environments. IEEE Journal on Selected
Areas in Communications, 17(7):1205–1211, 1999.

[10] H. Friis. A note on a simple transmission formula.
Proceedings of the IRE, 34(5):254–256, 1946.

[11] D. Gómez, R. Agüero, M. Garćıa-Arranz, and
L. Muñoz. Replication of the bursty behavior of
indoor wlan channels. In Proceedings of the 6th
International ICST Conference on Simulation Tools
and Techniques, pages 219–226, 2013.

[12] C. Jiao, L. Schwiebert, and B. Xu. On modeling the
packet error statistics in bursty channels. In
Proceedings of the 27th Annual IEEE Conference on
Local Computer Networks, pages 534–541, 2002.

[13] D. Kotz, C. Newport, R. S. Gray, J. Liu, Y. Yuan, and
C. Elliott. Experimental evaluation of wireless
simulation assumptions. In Proceedings of the 7th
ACM international symposium on Modeling, analysis
and simulation of wireless and mobile systems, pages
78–82, New York, NY, USA, 2004. ACM.

[14] M. Lacage and T. R. Henderson. Yet another network
simulator. In Proceeding from the 2006 Workshop on
ns-2: The IP Network Simulator, 2006.

[15] H. Lee, A. Cerpa, and P. Levis. Improving wireless
simulation through noise modeling. In 6th
International Symposium on Information Processing
in Sensor Networks. IPSN 2007. , pages 21–30, 2007.

[16] G. Lui, T. Gallagher, B. Li, A. Dempster, and
C. Rizos. Differences in RSSI readings made by
different wi-fi chipsets: A limitation of wlan
localization. In 2011 International Conference on
Localization and GNSS, pages 53–57, 2011.

[17] D. Maltz, J. Broch, and D. Johnson. Quantitative
lessons from a full-scale multi-hop wireless ad hoc
network testbed. In 2000 IEEE Wireless
Communications and Networking Confernce. WCNC.
, volume 3, pages 992–997 vol.3, 2000.

[18] M. Mushkin and I. Bar-David. Capacity and coding
for the gilbert-elliott channels. IEEE Transactions on
Information Theory, 35(6):1277–1290, 1989.

[19] D. Niculescu. Interference map for 802.11 networks. In
Proceedings of the 7th ACM SIGCOMM conference on
Internet measurement, IMC ’07, pages 339–350, New
York, NY, USA, 2007. ACM.

[20] K. Srinivasan, M. A. Kazandjieva, S. Agarwal, and
P. Levis. The β-factor: measuring wireless link
burstiness. In Proceedings of the 6th ACM conference
on Embedded network sensor systems, SenSys ’08,
pages 29–42, New York, NY, USA, 2008. ACM.

[21] M. Stoffers and G. Riley. Comparing the ns-3
propagation models. In 2012 IEEE 20th International
Symposium on Modeling, Analysis Simulation of
Computer and Telecommunication Systems
(MASCOTS), pages 61–67, 2012.

[22] A. Vlavianos, L. Law, I. Broustis, S. Krishnamurthy,
and M. Faloutsos. Assessing link quality in IEEE
802.11 wireless networks: Which is the right metric?
In IEEE 19th International Symposium on Personal,
Indoor and Mobile Radio Communications. PIMRC
2008. , pages 1–6, 2008.

[23] K. Wolter, P. Reinecke, T. Krauss, D. Happ, and
F. Eitel. Ph-distributed fault models for mobile
communication. In Proceedings of the Winter
Simulation Conference, WSC ’12, pages 429:1–429:12.
Winter Simulation Conference, 2012.

[24] X. Zeng, R. Bagrodia, and M. Gerla. GloMoSim: a
library for parallel simulation of large-scale wireless
networks. In 12th Workshop on Parallel and
Distributed Simulation. PADS 98. Proceedings., pages
154–161, 1998.

