
Using AI Planning to Automate the Performance Analysis
of Simulators

Roland Ewald
University of Rostock

A.-Einstein Str. 22
Rostock, Germany

roland.ewald@uni-rostock.de

ABSTRACT
Analyzing simulation algorithm performance is cumbersome:
execute some runs, observe a performance metric, and ana-
lyze the results. Often, the results motivate follow-up exper-
iments, which in turn may lead to additional experiments,
and so on. This time-consuming and error-prone process can
be automated with planning approaches from artificial intel-
ligence, making simulator performance analysis more conve-
nient and rigorous. This paper introduces Alesia, a pro-
totypical system for automatic simulator performance anal-
ysis. It is independent of any specific simulation system
and realizes a hypothesis-driven approach to evaluate per-
formance.

Categories and Subject Descriptors
I.6.7 [Simulation and Modeling]: Simulation Support
Systems; I.2.8 [Artificial Intelligence]: Plan execution,
formation, and generation

General Terms
Experimentation, Performance

Keywords
Performance Analysis, Experiments, Planning, Simulation

1. INTRODUCTION
Many new simulation algorithms are presented every year,

e.g., to address new trends in hardware (like GPUs or many-
core CPUs), new methodologies (like multi-scale or approx-
imative simulation), or new requirements (like scalability or
adaptivity). Yet, the methodology with which these simula-
tors are evaluated has not been improved much over the past
decades. Performance experiments are still done manually,
in the sense that experiment setup, experiment execution,
data analysis, and potential follow-up experiments are typ-
ically configured and triggered by hand.

Published in proceedings of the SIMUTools 2014 (see http://simutools.org)

However, simulation algorithm performance studies are of-
ten quite similar. They investigate similar metrics—usually
execution time—and have to cope with similar challenges:
the benchmark models must be realistic, comparisons to al-
ternative configurations or competing approaches must be
statistically sound, execution times may vary drastically be-
tween models, and so on. With the advent of general simu-
lation frameworks (e.g., [22, 12]) and abstraction layers for
simulation experimentation (e.g., [21, 7]), it is possible to
further automate simulator performance analysis, making it
easier and faster to carry out.
Additionally, automated experimentation tools could also

reduce some forms of cognitive bias introduced by the ex-
perimenters. Bias comes in many forms (e.g., see [25]) and
may lead, for example, to wrong conclusions regarding the
generality of results. Note, however, that such tools may
also introduce bias themselves, e.g., by choosing one kind of
experimentation technique over another. In any case, auto-
mated experimentation tools could help to ensure that ex-
perimentation techniques are used as intended, and thereby
safeguard the validity of a performance study.
The main idea put forward in this paper is to further auto-

mate simulator performance analysis by closing the gap be-
tween analyzing results and starting follow-up experiments.
This is done by employing a planning algorithm that trig-
gers configurable sub-experiments. Ideally, an experimenter
would only have to model the domain of interest (e.g., sim-
ulation algorithms and benchmark models) and could then
submit hypotheses to the system. The goal of the planner is
to falsify a given hypothesis by executing sequences of suit-
able sub-experiments. If the hypothesis cannot be falsified
by these attempts, it is corroborated.
After illustrating the purpose of our approach with a more

detailed usage scenario (Section 2), we sketch out our current
prototype (Section 3) and give a brief example (Section 4).
Then, we discuss related approaches (Section 5) and future
work (Section 6).

2. USAGE SCENARIO
Consider the comparison of some simulator A with a com-

peting simulator B. Simulator B is optimized for large mod-
els, so we assume it is faster than A if the model size exceeds
xhyp entities. We can formally express this hypothesis with
first-order predicate calculus, e.g.,

∀m ∈ M : moreEntities(m,xhyp) ⇒ faster(B,A,m) (1)

where M is the set of all models that A and B can sim-

ulate. The predicate moreEntities is true iff the model
size exceeds our threshold xhyp, and the predicate faster
is true iff simulator B is faster than A when simulating m.
Note that faster is also just a predicate and can be de-
fined arbitrarily, e.g., to compare both wall-clock times and
CPU times: faster(A,B,m) ⇐⇒ fasterCPU (A,B,m) ∧
fasterWCT (A,B,m).

To falsify the hypothesis in (1), we have to find a coun-
terexample, i.e., a model m′ ∈ M that contains more than
xhyp entities, so that moreEntities(m′, xhyp) is true, but
where simulator A outperforms simulator B, so that fast-
er(B,A,m′) is false. M is the set of all possible input mod-
els, so it is prohibitively large in general. We therefore sam-
ple and test only a subset of elements from M.
Given some model m ∈ M, we can check whether the im-

plication in (1) is true by evaluating both moreEntities and
faster. WhilemoreEntities merely requires to compare the
number of model entities with xhyp, faster requires to ex-
ecute simulations of model m with both simulator A and
simulator B. Execution times are noisy, so multiple simula-
tion runs might be required to arrive at a conclusion, and a
statistical test should be used to interpret the results. The
following outcomes are possible:

1. B outperforms A: faster(B,A,m)∧¬faster(A,B,m)

2. A outperforms B: faster(A,B,m)∧¬faster(B,A,m)

3. A and B perform similarly:
¬faster(A,B,m) ∧ ¬faster(B,A,m)

4. A, B, or both crashed.

5. Another error occurred.

While a failure handling mechanism can deal with out-
comes 4 and 5, the relevance of outcomes 1–3 depends on the
goals of the experiment, i.e., the hypothesis to be falsified.
In case of the hypothesis in (1), encountering outcomes 2
or 3 should terminate the experiment, and the experimenter
should be notified about the counterexample m. If this out-
come could not be provoked for any model until the allocated
computational resources are exhausted, the hypothesis could
not be falsified and is thus corroborated.

Choosing a suitable experiment setup.
Although the hypothesis in (1) is rather simple, there are

various ways to attempt its falsification. The most straight-
forward approach is to randomly sample from M, execute
both simulators A and B on m for a fixed number of times,
and then apply a statistical test to their run times. Yet, it
is still not clear how large the fixed number of executions
should be. Assuming a fixed budget of computing time, we
can either test fewer models more rigorously, or more models
less rigorously.
Also, the measured execution times might be normally

distributed. If this is the case, we could replace our (non-
parametric) statistical test with a test that assumes nor-
mality and is thus more powerful. By letting a more suit-
able statistical test decide about additional simulation runs,
we could hence save many unnecessary simulation runs and
thus explore more models from M instead—our experiment
setup would be more efficient.
Another approach would be to train performance estima-

tors for the simulators A and B, in order to predict their ex-
ecution times with respect to various model features. This

SESSL

Simulation System (exchangeable)

Problem

Plan Execution

Planning

Result
Observed Data Experiment Definitions

Plan
Formal Definition

Report

Figure 1: Execution of Alesia: a problem (red)
is solved by planning and executing experiments
(blue), which yields a result (green).

could help to identify the regions of the model space M
where B may not outperform A, and to focus the sampling
on these regions. However, this approach is only promising
if the performance of A and B is indeed predictable from
the observed model features.
Yet another approach would be to first analyze the sensi-

tivity of simulator performance with respect to model size.
The resulting knowledge on interactions between different
factors could also help to sample more promising candidates
from M, even if simulator execution times are hard to pre-
dict.

Potential for Automation.
Each of the above experiment setups would work in prin-

ciple. The list is not exhaustive, and there may be many
more alternatives for more complex hypotheses. However,
more powerful experiment setups are also more difficult to
realize, as they often require additional methods from ma-
chine learning, operations research, or statistics. Moreover,
many of these techniques are only applicable under certain
circumstances, so that their preconditions (e.g., assumptions
regarding statistical properties) need to be checked before-
hand. The suitability of a setup also depends on user pref-
erences, available performance knowledge (e.g., from prior
experiments or theoretical analysis), and the available tech-
niques, as well as their interdependencies. For example, a
non-uniform sampling from M may require the results of a
prior sensitivity analysis.
All these techniques, their use cases, and their precon-

ditions are hard to manage manually. Therefore, we need
dedicated software systems to automate performance analy-
sis. They can assist experimenters by planning and execut-
ing suitable experiment sequences automatically, thereby ex-
ploiting all available techniques and domain-specific knowl-
edge. Ideally, an experimenter would only have to declare
which simulators are of interest, which benchmark models
are available (i.e., how to sample from M), and which hy-
pothesis should hold. By supporting more general hypothe-
ses, e.g., referring to the predictability of simulator perfor-
mance, one could also conduct exploratory experiments.

3. A SYSTEM FOR AUTOMATIC SIMULA-
TOR PERFORMANCE ANALYSIS

Alesia, our research prototype for automatic simulator
performance analysis, is written in Scala [20]. Thus, it is in-
teroperable with any software that runs on the Java virtual
machine (JVM). To separate Alesia from the simulation
system under study, all experiment executions are delegated

1 val result = submit (
2 SingleModel("java://examples.sr.LinearChainSystem")
3) (
4 TerminateWhen(WallClockTimeMaximum(seconds = 30))
5) (
6 exists >> model | hasProperty("qss")
7)

Figure 2: Sample problem definition, describing the
application domain (line 2), user preferences (l. 4),
and the hypothesis to be falsified (l. 6).

to a general interface. We provide a default implementa-
tion of this interface that is based on SESSL [7], a domain-
specific language (DSL) to set up simulation experiments in
Scala. SESSL already supports several simulation systems,
including one that does not run on the JVM. Integrating
a simulation system supported by SESSL into Alesia is
trivial: for example, the integration of the modeling and
simulation framework JAMES II [12], which is used in the
example of Section 4, consists of three lines of code. Figure 1
illustrates the overall structure of Alesia. In the following,
we will walk through the major features of the system, in
their order of execution.

3.1 Problem Definition
To start an experiment, the user has to specify a hypoth-

esis similar to (1). In principle, experiment hypotheses can
only be falsified (e.g., see [24]), yet our system currently in-
terprets hypotheses as goals. Thus, to falsify a hypothesis
h, the system needs to be configured with a hypothesis ¬h.
Since the experiment’s hypothesis refers to entities in some
application domain, e.g., certain simulators and benchmark
models, all relevant elements of that domain need to be spec-
ified as well. This specification may also include existing
knowledge, e.g., stemming from previous experiments.

Besides specifying application domain and hypothesis, an
experimenter may also want to express certain preferences
regarding the actual execution. For example, the maximal
number of experiment actions to be executed could be given,
or the maximum amount of wall-clock time permitted to
attempt a falsification.

To make all this as simple as possible, we are develop-
ing embedded domain-specific languages for these tasks, i.e.,
small sub-languages implemented with Scala constructs. Fig-
ure 2 shows a very simple problem definition using these
languages. It declares the existence of a benchmark model
(see Section 4), it restricts overall execution duration to a
maximum of 30 seconds, and it hypothesizes that there is a
model with some property called qss (see Section 4). Tech-
nically, the experimenter simply calls a method submit (line
1 in Figure 2) with three sets of arguments: elements of the
application domain, user preferences, and experiment hy-
pothesis. This triggers the execution process and eventually
returns the experiment results.

3.2 Planning

3.2.1 Planning Preparation
Not all planning algorithms can deal with all user-defined

aspects. For example, resource consumption may be eas-
ier to restrict during execution, instead of including it in the

Action loadSingleModel:
precondition: ¬depleted ∧ ¬loadedModel
effect: depleted ∨ loadedModel //’or’: non-determinism

Action checkQSSProperty:
precondition: loadedModel
effect: hasProperty(qss)∨ //’or’: non-determinism

(¬hasProperty(qss) ∧ ¬loadedModel)

Figure 3: Actions for the problem from Figure 2.

formal planning problem. A dedicated component, the plan-
ning preparator, therefore splits a submitted problem defi-
nition into a formal planning problem and an execution con-
text. The former is processed by the planning algorithm (see
Section 3.2.2), while the latter holds all runtime information
not required by the planner (see Section 3.3). The planning
preparator also performs validity checks on the problem def-
inition. This helps to rule out potential error sources before
a user is confronted with a failed planning attempt, which
can be hard to understand.
To prepare the planning problem, the planning preparator

scans the classpath for action specifications. Action speci-
fications implement a common interface, and each may de-
clare arbitrarily many concrete actions, depending on the
problem definition and on actions declared by other action
specifications. In our case, each declared action refers to
the execution of a concrete sub-experiment or data analysis
task. As the results of such tasks are typically unknown be-
forehand (see Section 2), the action effects are defined to be
non-deterministic, as shown in Figure 3.
The declaration of new actions is repeated until no new

actions are declared by any specification. This simple setups
allows to provide additional action specifications as external
plugins. It also allows to resolve inter-plugin dependencies
in a decentralized manner, since a specification may be con-
figured to declare no concrete action unless, for example, a
certain kind of model is part of the problem definition. This
means that action specifications are able to self-select for
a problem definition, which reduces the number of concrete
actions and thereby the complexity of the planning problem.
Finally, all concrete actions are combined with formal rep-

resentations of a start state and goal states; together they
define the planning problem. The start state is derived from
the application domain (line 2 in Figure 2), the goal states
are derived from the hypothesis (line 6 in Figure 2).

3.2.2 Non-Deterministic Planning
Since the exact outcome of an action, i.e., a sub-experiment,

is often unknown beforehand (see Section 3.2.1), we have
to solve a non-deterministic planning problem. Formally,
this means that the planning domain is a non-deterministic
state automaton, so there may be multiple potential succes-
sor states per state transition. Here, state transitions corre-
spond to actions, so that each successor state represents a
possible outcome of a sub-experiment.
Non-deterministic planning is a difficult problem, as the

uncertainty regarding the outcome of each action must be
accounted for. This uncertainty also reflects on the kinds
of result a planning algorithm may yield (e.g., see [8, p.
403 et sqq.]): weak plans may lead to a goal state, while
strong plans will lead to a goal state, regardless of the spe-

if(¬depleted ∧ ¬loadedModel)
use loadSingleModel

else if(loadedModel)
use checkQSSProperty

else error

Figure 4: A policy for the problem from Figure 2,
relying on the actions from Figure 3.

cific outcomes of any action. So-called strong-cyclic plans
are in-between: they lead to a goal state under the assump-
tion that there are no infinite cycles in the state space. It
seems unrealistic to expect strong plans in a domain like
performance analysis: if we could be sure that a hypothesis
can be falsified, we would not have to carry out the exper-
iments in the first place. Therefore, experiment plans will
typically be either weak or strong-cyclic.

To create weak, strong, or strong-cyclic plans, Alesia cur-
rently uses symbolic model checking [8, p. 403 et sqq.],
following the approach by Cimatti et al. [4] (see Section 5
for a discussion on alternatives). The main idea is to rep-
resent sets of states via boolean functions, which can be
compactly represented as boolean decision diagrams (BDDs,
e.g., see [17]).
Start state,1 goal states, action preconditions, and action

effects are all represented by BDDs. This allows to express
operations on sets of states as logical operations on BDDs,
e.g., using f ∧g to intersect the sets of states where f is true
and g is true, respectively. On this basis, one can now define
planning algorithms that find weak, strong, or strong-cyclic
plans [4, 8]. For weak and strong planning, we implemented
the algorithms as described in [8]. For strong-cyclic plan-
ning, we implemented Rintanen’s simplified version [23] of
an algorithm by Cimatti et al. [4].

While deterministic plans can be represented by action se-
quences, non-deterministic plans are represented by policies,
i.e., functions that map elements of the state space to ac-
tions. A policy determines which action to choose in a given
state, thus allowing, for example, to repeat sub-experiments
that failed before. A sample policy is depicted in Figure 4.

3.3 Plan Execution
The generated plan (i.e., policy) is now handed over to

an executor, which carries out the actual experiment. The
executor manages both the current state of the planning
domain and the execution context, which holds all other rel-
evant data. At first, the executor queries the policy, which
decides upon the actions to be executed in the current state.
If multiple actions are available to approach the goal, a cus-
tom tie-breaking component is called to pick one of them.
This allows to implement additional heuristics, for example,
to detect when an action is executed repeatedly without af-
fecting the current state, and to then choose an alternative
action. Such heuristics are particularly important if only a
weak plan was found (see Section 3.2.2).
Then, the selected action is executed and its results are

used to update both the current state of the planning domain
and the execution context. To make the results of the action
accessible to other actions, the execution context stores as-
sociations between literals in the planning domain and result

1Technically, a function defining a set of start states.

Planning Domain

Execution Domain

loadedModel

… SingleModel("java://examples.sr.LinearChainSystem")

hasProperty(qss)

Problem Definition

java://examples.sr.LinearChainSystem Execution Times

… hasProperty("qss")

Figure 5: Alesia separates problem definition, plan-
ning domain, and execution domain. Arrows show
the links between literals of the planning domain
and additional data required during execution.

data. For example, the existence of a performance estima-
tor for some simulator A might be represented by a literal
PerfEstimatorA in the planning domain, which would be
associated with the actual estimator object stored in the ex-
ecution context. A literal can be associated with multiple
objects in the execution context, and multiple literals can be
associated with the same object. This allows to share data
between actions: e.g., multiple analysis actions could rely
on the same performance data. The separation of planning
domain and execution domain is sketched in Figure 5.
Failures occurring during action execution are handled by

a dedicated component, which may decide, for example, to
abort the experiment or to ignore the error. The desired be-
havior can be configured by the experimenter, via user pref-
erences (see Section 3.1). A separation of failure handling
and planning allows us to reduce the degree of uncertainty,
since in principle any kind of action can fail (see example in
Section 2). For experiments regarding robustness, actions
testing a simulator may catch potential exceptions them-
selves, and then return normally. Thus, the implementor of
an action is free to decide what is considered a failure, and
what can be expected as a normal result of the experiment.
Our current implementation simply executes the above

procedure sequentially, one action at a time. It should also
be possible to execute multiple available actions in paral-
lel, since sub-experiments are independent of each other.2

Thus, we plan to distribute suitable sub-experiments to re-
mote machines with an identical hard- and software setup.
More elaborate executor implementations could also exploit
heterogeneous sets of machines, thereby improving the ap-
plicability of the results.

3.4 Report Generation
Since the increased degree of automation may hide prob-

lems with the experiment setup, a crucial feature is the gen-
eration of detailed result reports. These should include the
raw data collected during the experiment, so that it is still
available for manual analysis. Besides increasing the trust
of the experimenters, this also helps with diagnosing exper-
iment failures and with defining follow-up hypotheses. Cur-
rently, our system generates a result report that describes
each iteration of the plan executor (see Section 3.3), i.e.,
the current state of the planning domain, which experiment
action was chosen, and how the state changed after its ex-
ecution. In the future, we plan to integrate plots for the

2However, this would imply, for example, that the effects
of executed actions must not cancel each other out. Such
properties can be checked at runtime.

numerical results of each action, which will further help ex-
perimenters with their analysis.

4. EXAMPLE: STOCHASTIC
SIMULATION ALGORITHMS

We now consider a more concrete example, similar to the
scenario described in Section 2. Our goal is to analyze
two variants of a stochastic simulation algorithm (SSA) [11],
as implemented in the modeling and simulation framework
JAMES II [12]: the Direct Method (DM) [10] and the Next
Reaction Method (NRM) [9]. We assume that there is a
parameterization of the Linear Chain System benchmark
model [3] (a model consisting of a chain of chemical reac-
tions) where DM should be faster than NRM, in terms of
wall-clock time (WCT). Additionally, we demand that this
model instance should be in a ’quasi-steady state’ (qss).
Here, a ’quasi-steady state’ means that performance-relevant
model features (e.g., model structure, number of entities,
etc.) are relatively stable during a simulation run, so that
execution time is approximately proportional to the number
of executed simulation events (see [6]).
The above scenario can be declared in Alesia as shown in

Figure 6. The user domain contains a set of model instances
(lines 2–4), defined by a model URI (line 2) and two model
parameters (lines 3 and 4). Additionally, the user domain
contains the declaration of two simulation algorithms (lines
5 and 6), which define unique string IDs (nrm, dm) for the
SESSL entities (see Section 3) that represent the simula-
tors. The hypothesis (line 9) states that there is a model
with a certain property (here, qss), and that DM is faster
than NRM on this model. Additionally, we define that each
simulator should be executed for about one second of wall-
clock time (line 7) and that no more than 100 experiment
actions shall be executed (line 8).

Now, the overall procedure as outlined in Section 3.2 be-
gins. At first, the planning preparator (see Section 3.2.1)
queries all action specifications. They declare an action for
sampling a model instance from the model set, an action for
checking the qss property of a given model, and an action to
compare two simulators on a given model. To make a valid
comparison, however, one also needs to know for how many
simulation events the given model should be simulated un-
til execution times are not dominated by stochastic noise or
warm-up cost anymore. This data can be provided, for ex-
ample, by a ’calibration’ action implementing an approach
as described in [6], and which is thus declared here as well.
If there would be no such action (or any alternative), the
user would be notified that no plan could be found.

In our case, the planner (see Section 3.2.2) is able to find
a (strong-cyclic) execution policy and hands it over to the
executor (see Section 3.3). The executor starts with sam-
pling a model instance from the model set. Then, it could
either calibrate the simulators to this instance and compare
them, or check its qss property—the order of experiments
is not fixed, but depends on action interdependencies, e.g.,
the calibration has to precede the comparison. The simu-
lator comparison applies a statistical test to the observed
execution times. If the performance comparison is ’success-
ful’, i.e., DM outperforms NRM, and the qss property holds
for the given model, plan execution stops. Otherwise, the
action executions lead to a removal of the literals that rep-
resent the current model instance (and its calibration data)

1 val result = submit(
2 ModelSet("java://examples.sr.LinearChainSystem",
3 ModelParameter("numOfSpecies",1,10,1000),
4 ModelParameter("numOfInitialParticles",10,100,10000)),
5 SingleSimulator("nrm", NextReactionMethod()),
6 SingleSimulator("dm", DirectMethod())
7) (DesiredSingleExecutionWallClockTime(seconds = 1),
8 TerminateWhen(MaxOverallNumberOfActions(100))
9) (exists >> model | (hasProperty("qss") and

isFasterWCT("dm", "nrm", model)))

Figure 6: Example scenario.

0
1
2
3
4
5
6

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151Ex
ec

ut
io

nT
im

e
(in

 s)

Triggered Simulation Runs (top) and
Actions (bottom: sampling, calibration, comparison)

Figure 7: The first actions and corresponding simu-
lation runs executed for the example in Figure 6.

in the planning domain. This causes the policy to again
select the model-sampling action, starting a new iteration.
Figure 7 shows this for the first nine actions and their cor-
responding simulation runs (if any), as executed by Alesia
for the given example. The generated report currently doc-
uments the sequence of actions and planning domain states.
Note that, while this example is still quite simple, it al-

ready involves a random sampling of model instances, simu-
lator calibration (see above), and statistical testing. In the
future, we plan to support additional model properties (e.g.,
stiffness), hypotheses that refer to (multi-dimensional) pa-
rameter spaces, sophisticated sampling (e.g., w.r.t. model
structure), sets of simulator configurations, and advanced
analysis methods (as discussed in the next section).

5. RELATED WORK
In contrast to approaches for defining and executing simu-

lation experiments, such as SAFE [21] or SESSL [7], Alesia
shall automate experiment design and result analysis. Thus,
it can be used on top of these systems, but serves another
purpose and is restricted to simulator performance analysis
(at least for now).
Both the empirical analysis of algorithm performance and

the application of AI methods to automate experimenta-
tion, particularly in the life sciences [19], are areas of active
research. Experimental algorithmics [18], i.e., the empir-
ical evaluation of algorithm performance, may guide soft-
ware development [14] and may also lead to new theoret-
ical insights [13]. Many techniques developed in this con-
text are of particular interest to Alesia, as they correspond
to experiment actions in our prototype. For example, ap-
proaches to automatically configure parameterizable algo-
rithms, such as F-Race [2] or ParamILS [16], can be used to
find the best configurations of two simulators before com-
paring them. Other methods, e.g., to find the most relevant
features for performance prediction [15] or to generate port-
folios of simulation algorithms [5], will be useful as well.
To the best of our knowledge, AI planning has not yet been

considered to automate the performance analysis of simula-
tion algorithms, nor are there dedicated software systems
that integrate techniques for their empirical analysis. Our
basic planning approach is currently quite similar to plan-
ners like MBP [1], but less efficient and less sophisticated.
Non-deterministic planning problems can also be solved by
representing them as Markov decision processes (e.g., [8, p.
379 et sqq.]) or as satisfiability problems (e.g., [8, p. 437
et sqq.]). Such approaches will be considered to extend the
capabilities of Alesia in the future.

6. CONCLUSIONS & OUTLOOK
This paper introduces Alesia, a system to automate the

performance analysis of simulation algorithms. Alesia is
work in progress, so there are many open issues. For ex-
ample, the expressiveness of the problem definition DSLs is
rather limited so far, and literals of the planning domain
are still represented by strings, which is error-prone. In the
next months, we plan to integrate our approaches to incre-
mental performance analysis into the system, e.g., to sup-
port the analysis of individual simulator components [26].
Other topics of ongoing research are the integration of ex-
isting approaches for automatic simulator configuration (see
Section 5) and the support for distributed execution. Alesia
is open source; the repository with the current prototype can
be found at https://bitbucket.org/alesia/alesia-core.

Acknowledgments
This research was supported by the German research foun-
dation, via research grant EW 127/1-1 (Alesia). I would
like to thank the reviewers for their helpful comments.

7. REFERENCES
[1] P. Bertoli, A. Cimatti, M. Roveri, and P. Traverso.

MBP: a model based planner. In Proceedings of the
IJCAI’01, 2001.

[2] M. Birattari, Z. Yuan, P. Balaprakash, and T. Stützle.
F-Race and iterated F-Race: An overview. In
Experimental Methods for the Analysis of
Optimization Algorithms. Springer, 2010.

[3] Y. Cao, H. Li, and L. Petzold. Efficient formulation of
the stochastic simulation algorithm for chemically
reacting systems. J. Chem. Phys., 121(9):4059–4067,
2004.

[4] A. Cimatti, M. Pistore, M. Roveri, and P. Traverso.
Weak, strong, and strong cyclic planning via symbolic
model checking. Artificial Intelligence, 147(1-2):35–84,
July 2003.

[5] R. Ewald, R. Schulz, and A. M. Uhrmacher. Selecting
simulation algorithm portfolios by genetic algorithms.
In Workshop on Principles of Advanced and
Distributed Simulation, pages 48–56. IEEE CPS, 2010.

[6] R. Ewald and A. M. Uhrmacher. Automating the
runtime performance evaluation of simulation
algorithms. In Proceedings of the Winter Simulation
Conference, pages 1079–1091. IEEE CS, 2009.

[7] R. Ewald and A. M. Uhrmacher. Setting up
simulation experiments with SESSL, 2012. Winter
Simulation Conference, Poster.

[8] M. Ghallab, D. Nau, and P. Traverso. Automated
Planning: Theory & Practice. Morgan Kaufmann,
2004.

[9] M. A. Gibson and J. Bruck. Efficient Exact Stochastic
Simulation of Chemical Systems with Many Species
and Many Channels. J. Chem. Physics,
104:1876–1889, 2000.

[10] D. T. Gillespie. A general method for numerically
simulating the stochastic time evolution of coupled
chemical reactions. J. Comput. Phys., 22, 1976.

[11] D. T. Gillespie. Exact Stochastic Simulation of
Coupled Chemical Reactions. Journal of Physical
Chemistry, 81(25), 1977.

[12] J. Himmelspach and A. M. Uhrmacher. Plug’n
simulate. In Proc. of the 40th Annual Simulation
Symposium, pages 137–143. IEEE CS, 2007.

[13] J. N. Hooker. Needed: An empirical science of
algorithms. Operations Research, 42(2):201–212, 1994.

[14] H. H. Hoos. Programming by optimization. Comm. of
the ACM, 55(2):70–80, Feb. 2012.

[15] F. Hutter, H. Hoos, and K. Leyton-Brown. Identifying
key algorithm parameters and instance features using
forward selection. In Learning and Intelligent
OptimizatioN Conference, Jan. 2013.

[16] F. Hutter, H. Hoos, K. Leyton-Brown, and T. Stützle.
ParamILS: An automatic algorithm configuration
framework. Journal of Artificial Intelligence Research,
36:267–306, 2009.

[17] D. E. Knuth. The Art of Computer Programming,
Volume 4, Fascicle 1: Bitwise Tricks & Techniques;
Binary Decision Diagrams. Addison-Wesley
Professional, 12th edition, Mar. 2009.

[18] C. McGeoch. Experimental algorithmics. Comm. of
the ACM, 50(11):27–31, Nov. 2007.

[19] S. H. Muggleton. 2020 computing: Exceeding human
limits. Nature, 440(7083):409–410, Mar. 2006.

[20] M. Odersky, L. Spoon, and B. Venners. Programming
in Scala. Artima, 2nd edition, Jan. 2011.

[21] L. F. Perrone, C. S. Main, and B. C. Ward. SAFE:
simulation automation framework for experiments. In
Proceedings of the Winter Simulation Conference,
WSC ’12. Winter Simulation Conference, 2012.

[22] J. Ribault, F. Peix, J. Monteiro, and O. Dalle. OSA:
an integration platform for component-based
simulation. In Proc. of the 2nd Int’l Conference on
Simulation Tools and Techniques (SIMUTools). ICST,
2009.

[23] J. Rintanen. Complexity of conditional planning under
partial observability and infinite executions. In
Proceedings of the 20th European Conference on
Artificial Intelligence, pages 678–683. IOS Press, 2012.

[24] H. Sankey. Scientific method. In S. Psillos and
M. Curd, editors, The Routledge Companion to
Philosophy of Science, chapter 9, pages 248–258.
Taylor & Francis, Jan. 2008.

[25] A. Tversky and D. Kahneman. Judgment under
uncertainty: Heuristics and biases. Science,
185(4157):1124–1131, Sept. 1974.

[26] J. Wienß, M. Stein, and R. Ewald. Evaluating
simulation software components with player rating
systems. In Proc. of the 6th Int’l Conference on
Simulation Tools and Techniques (SIMUTools). ICST,
2013.

