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ABSTRACT
Currently, new storage technologies which unite the latency
and byte-addressability of DRAM with the persistence of
disks are being developed. This non-volatile memory (NV-
RAM) may start a software revolution. Traditionally, soft-
ware was developed for two levels of storage and NVRAM re-
duces the hierarchy to a single-level store. Current research
projects are already exploring the potential of NVRAM, but
they face a challenge when they want to evaluate the per-
formance: The new hardware is not yet available.

In this paper, we discuss why benchmark results which are
gained on existing DRAM are insufficient for a prediction of
the performance on NVRAM. Either existing instructions
have to be changed or new ones have to be introduced. We
further show that the bochs emulator can be used to build
systems which resemble NVRAM, to predict the NVRAM’s
consequences, and it even allows a comparison of algorithms
for NVRAM.

Categories and Subject Descriptors
I.6.3 [Computing Methodologies]: Simulation and Mod-
eling

General Terms
Experimentation, Performance

Keywords
Emulation, Non-volatile memory

1. INTRODUCTION
In the early beginnings, computer systems contained only

a single level of storage. As the processors became faster,
the storage technology did not keep pace and memory ac-
cess was going to slow the more powerful systems down. In
order to speed up memory access, the technology had to lose
one of its important features: long-term persistence. As a
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Table 1: Access latency of different memory tech-
nologies on a 2 GHz machine (derived from [3, 12])

Memory Type Read Write
Cache 1-14 cycles 1-14 cycles
DRAM 100 cycles 100 cycles
NVRAM (PCM) 200 cycles 2000 cycles

consequence, today’s systems have several layers of volatile
memory and persistent storage devices. Up to now, these
memory types do not have much in common. On the one
hand, volatile memory, DRAM, is byte-addressable and has
a read/write latency of approximately 50ns. Storage de-
vices, on the other hand, are orders of magnitude slower
and transfer data with a block-oriented granularity.
This situation is about to change with the advent of non-

volatile memory (NVRAM), like PCM and Memristors [12].
These upcoming technologies are promising candidates for a
reunion of main memory and storage. Aside from the fact
that NVRAM is going to be byte-addressable and persistent,
very little is yet known about the technology, especially re-
garding its performance and limited write endurance. But
researchers already came up with several use cases and pos-
sible advantages of the new hardware and want to show that
these ideas are applicable as soon as possible. Without real
hardware on their hands, emulators can be used to rebuild
the hardware’s functionality. The problem is that emula-
tors are only useful for functionality checks, not for bench-
marks or other statements concerning the performance of
algorithms. One idea, which is used by some projects, is
to run the applications on today’s DRAM and report the
number of processor cycles that were used. In contrast to
emulation, benchmarks on DRAM give a first impression of
the performance on NVRAM, but we claim that it is insuf-
ficient.
In this paper, we first discuss the architecture of future

systems with NVRAM and underline that benchmarks on
today’s hardware cannot be used for performance predic-
tions of algorithms for NVRAM. Afterwards, we introduce
a new methodology for performance predictions and show
how we extended the bochs emulator for this purpose.

2. SUPPORT FOR CACHE CONTROL
Caches outperform even today’s DRAM by a factor of 100.

Because NVRAM is expected to be slower than DRAM, es-
pecially when data is written (see Table 1), future systems
will still contain volatile caches and buffering writes will be-
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Figure 1: Simplified system with one core, one cache
level and a DRAM module.

come essential. Upon an unexpected power outage, the data
that was not written back from a volatile buffer to the per-
sistent store is lost. In order to avoid such a loss, the pro-
grammers need to control when data is written back. Up to
now, the contents of both cache and main memory are lost
when the power runs out and persistent data exists only in
files. As a result, it was seldom necessary for a program-
mer to know when modified data was written back to main
memory. In this section, we summarize today’s cache con-
trol mechanisms and discuss their suitability in systems with
NVRAM.

2.1 Today’s Systems
A simplified computer architecture that illustrates caching

contains only a single core with one cache level and a mem-
ory module (see Fig. 1). When data is accessed for the first
time, it is loaded from main memory, stored in the cache,
and further operations on the data may use the cached ver-
sion. In comparison to main memory, the cache is relatively
small and, eventually, becomes full. At this point, a new
load operation has to evict an existing entry from the cache
in order to store the new one. The cache replacement pol-
icy may choose an unmodified entry from the cache and
that means the version in the main memory is consistent
with the cached one. Consequently, the cache entry can be
overwritten. If instead a dirty entry is evicted, the modifi-
cation has to be written back to main memory first. This
is normally the time when modifications manifest in main
memory, assuming that the software does not perform any
cache control.
Is it possible for a programmer to predict this point in time?
The answer requires a detailed understanding of the cache
architecture, the replacement policy, a history and predic-
tion of events, like interrupts, and is therefore hard to give.

But some situations, like communication with devices,
force a programmer to control the cache write back. Today,
Intel and AMD systems provide the following instructions
[7, 1]:

wbinvd (write back invalidate) writes dirty data back
to main memory and invalidates the whole cache.

clflush (cache line flush) writes a single cache line back
to main memory and invalidates it in the cache.

Write back invalidate distinguishes between internal and
external caches and, according to the manual, the write back
for external caches is only triggered. Hence, the processor
does not wait for data in external caches to be written back.
In addition, wbinvd is a privileged instruction, what means
that it cannot be used in user mode.
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Figure 2: Simple system with NVRAM. The mem-
ory module contains a buffer in order to hide the
access latency and perform wear leveling.

When a cache flush is issued, the programmer wants all
data that is cached at this point to be flushed. Reordering
the store operation could result in the cache line flush be-
ing carried out before the cache line is manipulated. This
situation can be avoided by embracing the flush by fence
operations. Such a fence operation assures that all preced-
ing loads and stores become globally observable. Thereafter,
the data can be written back.

2.2 Future Systems with NVRAM
In future systems, NVRAM could replace DRAM com-

pletely and the overall architecture would remain the same.
But NVRAM writes are an order of magnitude slower when
compared to DRAM (see Table 1) and the system’s perfor-
mance would be significantly degraded. Such a system is
unlikely to become a success and volatile buffers have to
be used in order to gain acceptable latency. Therefore, the
memory module will not only contain non-volatile memory,
but also feature a DRAM-like buffer, as shown in Fig. 2.
Another benefit of such a buffer is that it allows memory ac-
cess to be intercepted. Since the NVRAM cells’ endurance
is limited, wear leveling is essential. Although wear leveling
could be performed by software, it requires such a detailed
understanding of the underlying hardware that it is best per-
formed by the hardware itself. With the help of the buffer,
wear leveling can be made transparent.
Because the buffer is made of volatile memory, its contents

are lost when the power runs out and write operations which
have not yet been written to the actual NVRAM are lost. As
with the other caches, persistent algorithms need to control
the buffer’s write backs. One option is to use the existing
cache control instructions, but they have to be extended.

2.2.1 The wbinvd Instruction
Similar the usage of today’s fsync and msync system calls,

programmers may want to make changes to large data re-
gions persistent in systems with NVRAM and, therefore,
write all dirty cache lines back to the persistent store. The
current implementation of wbinvd would signal a write back
command to the buffer, but would continue immediately, be-
cause it does not wait for external caches to write their data
back. If the operation’s semantics are changed, the perfor-
mance will suffer. In a volatile system with nclines in its
cache and access latency of tDRAMw for DRAM writes and
tDRAMr for reads, a worst cases assessment of the cost of
wbinvd is possible. Assuming that all cache lines are dirty,



all of them have to be written back. Because they are also
invalidated, the subsequent operations have to fill the cache
again. In summary, the costs are:

twbinvd = (tDRAMw ∗ nclines) + (tDRAMr ∗ nclines)

tDRAMw = tDRAMr

twbinvd = 2 ∗ tDRAM ∗ nclines

With PCM as NVRAM technology, the read latency dou-
bles and the write latency increases by a factor of 20. An
extended wbinvd would therefore lead to a cost of:

twbinvd = (tNV RAMw ∗ nclines) + (tNV RAMr ∗ nclines)

= (20 ∗ tDRAMw ∗ nclines) + (2 ∗ tDRAMr ∗ nclines)

= 22 ∗ tDRAM ∗ nclines

As a result, the performance of wbinvd would degrade
by a factor of 11. In a system with 15 MB cache, a cache
line with a size of 64 Byte running with 2 GHz, the result-
ing speed would drop from about 12 ms to 132 ms. Whether
the resulting penalty is acceptable depends on the frequency
of wbinvd instructions. In the case that a new instruction
wbNVM can be introduced, we would extend it to cover the
NVRAM, but omit the cache line invalidation, which is not
required for persistence. Without the invalidation, it is not
necessary to fill the cache after the write back and this in-
structions’ slowdown would be reduced to 10. We come back
to this point in section 3.

2.2.2 The clflush Instruction
The other instructions that we discuss are clflush and

the corresponding sfence operation(s). Removing an ele-
ment from a linked list usually requires only a few pointers
to be changed. Flushing the whole cache would make these
modifications persistent, but it would also cause unnecessary
flushes of the remaining data in the cache. Instead of issu-
ing the wbinvd instruction, the modified cache lines could
be tracked and flushed individually. Without fences, two
subsequently issued clflush instructions might be carried
out in a different order.

When two concurrent processes modify a shared list, one
might perform modifications and mark them as complete
afterwards. The complete marker should not be set before
the modifications are complete. Issuing a fence operation
avoids this situation because it waits for all previous stores to
be globally visible. Unfortunately, the term globally visible
is not very precise. With a cache coherence protocol being
present, the fence might be limited to a store buffer flush
on the issuing core. Writes that reach the cache are made
observable by the cache coherence protocol. Because most
modern multi-core processors are cache coherent, we assume
the fence to end at the cache level. Similarly, the operations
that follow afterwards should not be carried out before the
marker is set, because the other process might be stalled in
the meantime. Therefore, a second fence has to be used after
the marker is set. The pseudo-code in Listing 1 summarizes
the sequence.

With non-volatile memory, the cache line flush cost in-
creases because the write is issued to the NVRAM and the
subsequent read access the NVRAM, too. Similar to the
wbinvd, the fence operation is eleven times slower. If it is
frequently used, it seems desirable to keep its weak order-

Listing 1: Application of sequences of flush and fence
operations
1 ... // modify data
2 fence (); //**
3 flush (); //* manifest changes
4 fence (); //**
5 ... // mark operation as complete
6 fence (); //**
7 flush (); //* manifest marker
8 fence (); //**

ing, so that multiple flushes can be issued and a fence is
required to assure their completion. In that case, the flush
cost would stay the same, but the fence changes. The new
fence has to wait until all previous flushes are written back
from the volatile memory buffer and therefore its cost in-
crease depends on the number of stores that is has to wait
for.
The consequences of our observations are twofold: First,

either the semantics of existing instructions need to be ex-
tended for NVRAM or new instructions have to be added.
Second, benchmarks with algorithms that operate on persis-
tent data and use today’s DRAM and instructions, are un-
likely to produce usable predictions for NVRAM. We need
emulation software to address these issues.

3. EMULATION SUPPORT FOR NVRAM
In the previous section, we have shown that the perfor-

mance of algorithms on today’s hardware is not compara-
ble to NVRAM. Still, we want to perform experiments with
NVRAM. Without the hardware being on the market, em-
ulation software can be used.

3.1 Benefits of Emulation
Although emulation software does not allow cycle accurate

simulation of all parts of a system, it is usable for experi-
ments with new hardware. With respect to NVRAM, the
following features are useful: an emulation of the persistent
memory, the ability to add new instructions, and the oppor-
tunity to count selected events.

3.1.1 Rebuilding Persistence
In order to add NVRAM support to an emulator, it is

possible to use files to preserve the main memory contents
during runs. By editing the files manually, it is possible to
simulate hardware failures, like incomplete operations or bit
flips.

3.1.2 Adding new Instructions
As we stated earlier, the write back invalidate instruction

could be extended or a new instruction, write back non-
volatile memory without invalidation (wbNVM), could be in-
troduced. In contrast to real hardware, an emulator allows
to introduce new instructions. On the downside, it is not
possible to emulate the whole semantics of these instruc-
tions, for example if the software does not emulate caches.
Still, adding new instructions can be useful, for example to
determine the frequency of their usage.

3.1.3 Predicting Performance
In order to predict the benefit of new instructions or the

impact of extending existing ones, it is necessary to find out
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Figure 3: Architecture of the modified bochs with
non-volatile memory and tracing support.

how often they are used in existing programs. With the help
of an emulator, these instructions can be counted. In addi-
tion, other events which are also commonly not traceable on
real hardware, like memory accesses, could be counted. The
collected numbers allow a comparison of algorithms and a
performance prediction.

3.2 Adding NVRAM Support to bochs
Bochs [2] is an open source emulator for the x86 platform.

We have been using it for a couple of years as part of one
of our lectures where students implement their own operat-
ing system and even added new features to the emulator.
We added two features to bochs: persistent memory and an
event tracer.

Persistent main memory is resembled by replacing the
existing allocation of anonymous memory with a memory
mapped file. In order to validate our implementation, we
used the Linux hibernate mechanism. Normally, hibernate
writes a copy of (nearly) the entire RAM to disk. We im-
plemented a block driver that allows to declare a fraction of
the NVRAM as disk. Upon reboot, Linux fills the memory
with the previously stored data. This scheme is very inef-
ficient because it creates persistent copies of already persis-
tent data. Nonetheless, it allowed us to perform first exper-
iments with the emulation platform.

The event tracer was implemented with the help of bochs’
instrumentation interface. The instrumentation interface
uses callbacks to intercept selected events, for example the
occurrence of an interrupt or a specific instruction that was
executed. We used the existing callbacks for tracing flush
operations and added new ones for fence instructions. Our
results can either be written to a text file or visualized by a
GUI at run-time of the emulation. We can start the tracing
when the simulation starts and control it by writing to a
selected Model Specific Register. The resulting architecture
is shown in Fig. 3.

Figure 4 shows an example output for the boot process of
a Linux system with SMP support. Even when the system
reached the log-in screen and no further input was given, the
number of fence instructions continued to rise. We tracked
the cause and found out that, because multiple cores are ac-
tive, the Linux scheduler uses fence operations for synchro-

Figure 4: Tracing GUI for bochs which reports the
number of selected events.

nization. If the semantics of the existing fence operations
were extended to cover the volatile buffer of NVRAM mem-
ory modules, all of the scheduler’s fence operations would
slow down. These first results indicate that the semantics of
existing operations should not be changed and new versions
of fence operations should be added to the instruction set of
upcoming processors.

4. RELATED WORK
The project that is most closely related to ours is pre-

sented by Zhu et.al. in [13] and explains how NVRAM em-
ulation was added to bochs. Although not explicitly stated,
the article indicates that the authors use memory mapped
files to preserve the contents of the main memory. In that
case, the emulation of the persistence of NVRAM is sim-
ilar to our approach. Additionally, the authors simulate
NVRAM’s access latency by delaying read and write op-
erations for a configurable number of milliseconds. Further-
more, they trace the number of writes to individual mem-
ory blocks in order to collect data for future wear leveling
schemes. The main difference to our project is that we do
not assume the memory hierarchy which bochs emulates to
be realistic. Without modifications of its original source
code, bochs has an instruction cache, but no other cache.
Counting memory accesses would therefore include loads and
stores that would be satisfied by the cache on real hardware.
In contrast to the number of loads and stores that hit main
memory, the number of executed instructions is already re-
alistic and we rely on it.
Further projects develop software for NVRAM, like file

systems (SCMFS [11] and PRIMS [6]), or persistent data
structures (CDDS [9]). These projects report results from
benchmarks that they run on DRAM without considering
the different access latency of NVRAM or the introduction
of new instructions.
Mnemosyne [10] is a persistent heap for user space ap-

plications. In order to make data persistent, the authors
use the write-combine buffer and fence operations. They
emulate NVRAM latency by using a ram-disk and delaying
fence and flush operations for a configurable amount of cy-
cles. Since they run on traditional hardware, they are not
able to extend the processor’s instruction set and cannot
introduce new features.
Similar to Mnemosyne, NV-Heaps [4] also provides user-

level persistent heaps. It relies on a modified hardware
which provides 8 byte atomic writes and epoch barriers from
the BPFS project [5]. For performance evaluations, the
NVRAM’s latency is simulated with Pin [8] and the results
are combined with performance counter values from a real
processor. Therefore, their predictions are limited to the
events that modern CPUs are able to report, like cache hit



rates, but cannot count the number of selected instructions
which were performed.

5. CONCLUSIONS AND OUTLOOK
In this paper, we have shown that NVRAM cannot simply

replace DRAM in traditional systems, because the cache
control is limited. Persistent data cannot be used without
extending the semantics of existing instructions or adding
new ones. As a consequence, benchmark results which are
collected on DRAM do not predict the performance of the
same algorithms on NVRAM adequately. We have discussed
the features of emulation software that make it suitable for
emulating NVRAM and its consequences. Furthermore, we
reported first results that we collected with a modified bochs
emulator.

In the future, we plan to use our emulator with exist-
ing NVRAM projects, like Mnemosyne. We plan to use
Mnemosyne in our NVRAM emulator without the project’s
emulated PCM and compare our performance predictions
to the ones made by its authors. In addition, we are cur-
rently working on transactional mechanisms for persistent
data, plan to compare their performance and experiment
with their robustness. We will enhance our performance
predictions by considering even more events, like cache hits,
which we gain from performance counters on today’s hard-
ware or by adding cache emulation to bochs.
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