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ABSTRACT
This paper addresses the problem of locating base stations in
a certain area which is highly populated by mobile stations;
each mobile station is assumed to select the closest base sta-
tion. Base stations are modeled by players who choose their
best location for maximizing their uplink throughput. The
approach of this paper is to make some simplifying assump-
tions in order to get interpretable analytical results and in-
sights to the problem under study. Specifically, a relatively
complete Nash equilibrium (NE) analysis is conducted (ex-
istence, uniqueness, determination, and efficiency). Then,
assuming that the base station location can be adjusted
dynamically, the best-response dynamics and reinforcement
learning algorithm are applied, discussed, and illustrated
through numerical results.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
D.2.8 [Software Engineering]: Metrics—complexity mea-
sures, performance measures

Keywords
Game Theory, Location games, Wireless communications

1. INTRODUCTION
Mobile terminals (MTs) are currently gaining increased au-
tonomy of decision to allow a better use of the available wire-
less resources. For example, MTs may choose their wireless
access technology or the base station (BS) or access point
to which they want to connect. We could imagine that this
may be done in the future independently of the network op-
erator owner of the BS. A mobile operator deploying BSs for
a wireless network will have to deal with these new charac-
teristics. If his goal is to maximize the traffic gathered by his
own BSs, he will have to take into account the presence of
competitor network operators when deciding on the location
of BSs. If every operator involved has the same reasoning,
this problem of BSs placement may be cast in the framework

of game theory and more precisely in the context of location
games.

The history of location games starts with the work of Hotel-
ling [8] in which the notion of spatial competition in a duopoly
situation is introduced. More precisely, two firms compete
for benefits over a finite segment crowded with customers.
This results in the partition of the segment into a convex
area of influence for each firm. Plastria [12] gives an overview
of optimization approaches to place new facilities in an en-
vironment with pre-existing facilities. A large overview on
location games is also presented in [7]. Location games are
extended to the context of wireless networks with works such
as [1] and [2]. The main difference arising in this new con-
text is the interaction between MTs due to the mutual in-
terference they generate. This point makes the association
problem between MTs and BSs complex. As an association
between a MT and a BS depends on SINR, the association
relies on the respective locations of the MT and the BS, but
also on the MTs already connected to the BS. Whereas [2]
focuses on the downlink case, in [1] the location of BSs and
the association choice of the MTs is treated as a Stackelberg
game [15] in the uplink case. The context of our work is
similar to the one in [1] but several interesting results are
obtained in the present paper. The main contributions of
this paper can be summarized as follows:

• As in [1] MTs are assumed to operate in the uplink
and to be distributed along a one-dimensional region.
However, each MT is assumed to select the closest BS
(e.g., based on measure given by a GPS -global posi-
tioning system- receiver). This leads to a convenient
form for the BSs utility functions (Sec. 2.1). As a con-
sequence, the existence of a pure Nash equilibrium can
be made rigorously (Sec. 3.1).

• Due to the symmetry of the problem, multiple Nash
equilibria generally exist. However, if the locations can
be ordered (which is easy for one-dimension regions),
the Nash equilibrium can be determined and checked
to be unique (Sec. 3.3).

• By making the reasonable assumption that the BS
heights are much less than the typical distance between
the BSs, the game can be further simplified and shown
to be a form of Cournot oligopoly [4].

• In the two-player case, the efficiency of the Nash equi-
librium is studied by evaluating the price of anarchy
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• Assuming that the BS locations can be adjusted dy-
namically (which would be relevant in scenario like the
one of small cells where only some of the small BS have
to be active), the best response dynamics and rein-
forcement learning algorithm [3][14][11] are performed
(Sec. 5).

• The made assumptions lead to several interpretations
which could be further analyzed in the light of a more
general framework (e.g., in two-dimensional regions).

The remainder of the paper is organized as follows. Sec-
tion 2 introduces the physical model and the parameters of
the K-player game. Section 3 describes the Nash equilib-
rium of the game in the one-dimensional case. In Section 4,
the Nash equilibrium, the Stackelberg equilibrium, and the
social optimum are compared. Section 5 presents a way to
reach equilibrium using best-response dynamics and rein-
forcement learning. Finally, Section 6 concludes this work.

2. MODEL
Consider a plane to which a frame R is attached. A MT X
located in a position x ∈ R2 in this plane is linked with a
BS X1 of height ε situated in x1 ∈ R2, see Figure 1. We
define the Signal to Noise Ratio (SNR) and the Signal to
Interference plus Noise Ration (SINR) of this MT

SNRX =
PX .hX1(x)

σX1
2

, (1)

SINRX =
PX .hX1(x)

σX1
2 + IX1(x)

, (2)

where PX is the transmission power of the MT X, i.e. the
level of power chosen by the MT to transmit its signal. σ2

X1
is

the power of the channel noise, IX1(x) is some interference
term, hX1(x) is the attenuation introduced by the uplink
channel from X to X1. Here, it is assumed that

hX1(x) =
(
|x− x1|2 + ε2

)−α
2 , (3)

where |x| is the `2-norm of x and α ≥ 2 is the path-loss
exponent, α = 2 corresponding to the free-space path-loss
case. A higher value of α suits to worse channel conditions.

With Single User Decoding (SUD) at the BS X1, there is
no hierarchy for decoding the incoming signals at the BS.
Hence, the signal from MT X is decoded by taking into
account the full interference and the uplink capacity between
X and X1 may be written as

CX = log (1 + SINRX) , (4)

Without loss of generality, when several MTs are considered,
it is assumed that PX does not depend on the MT and is
normalized, i.e., PX = 1. Moreover, the channel conditions,
described by (3), are the same for every MT and the noise
power is constant σX1 = σ. With these assumptions, (4)
becomes

CX = log

(
1 +

(
|x− x1|2 + ε2

)−α
2

σ2 + IX1(x)

)
. (5)

ε

x

x
1

Figure 1: Base station located at a and mobile sta-
tion located at x

When several BSs are located on the plane, the MTs are
assumed to be able to choose the BS they want to be linked
with. In this paper, we consider that this association is
made based on SNR. Given (3), choosing the BS with the
highest SNR is equivalent to choosing the closest BS. Thus,
it is assumed that a MT always chooses the closest BS to
its location, leading to convex cells for BSs. For example,
considering two BSs X1 and X2 at positions x1 and x2 and
a MT X at x, one has

CX =


log

(
1 + (|x−x1|2+ε2)

−α
2

σ2+I1(x)

)
if |x− x1|2 6 |x− x2|2

log

(
1 + (|x−x2|2+ε2)

−α
2

σ2+I2(x)

)
if |x− x2|2 6 |x− x1|2 .

2.1 Base station utility
The utility of a BS is taken as the sum of uplink capacities
it offers to its connected users. We assume that the number
of MT is large enough to be represented by a continuous
distribution ρ (x). This assumption allows to get the utility
for the k-th BS as a continuous sum of the MTs uplink
capacities

Uk(x) =

∫
Sk(x)

ρ(z) log

(
1 +

(|z − xk|2 + ε2)−
α
2

σ2 + Ik(x)

)
dz, (6)

where Sk (x) is the subset of the plane where MTs are linked
with the k-th BS and x = t(x1, x2, . . . , xK) is the vector of
locations for the set of BSs. This paper will consider only
uniform MT distribution with ρ(x) = 1.

When considering interferences, a worst-case scenario is con-
sidered: there is no mechanism such as beamforming [10] to
lower their effects. We consider that there is no interfer-
ence between MTs connected with different BSs because of
frequency reuse. Then only interference between MTs of a
same BS has to be considered. This framework is quite sim-
ilar to the one of [1], where two competing BSs are assumed
to use different frequency bands. In our case, we consider K
BSs (with K > 1) and each of them uses its own frequency
band.

Performing SUD at the i-th BS, one gets

Ik(x) =

∫
Sk(x)

(
|z − xk|2 + ε2

)−α
2 dz. (7)

Utility of k-th BS (6) then becomes

Uk(x) =

∫
Sk(x)

log

(
1 +

(|z − xk|2 + ε2)−
α
2

σ2 +
∫
Sk(x)

(ε2 + |z′ − xk|2)−
α
2 dz′

)
dz.

(8)
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Figure 2: Two base stations competing in a one-
dimension space

2.2 Utility approximation
When considering the low SINR regime, the useful power
of each MT is small compared to the interference term in
(8). This is especially true for high MT density. With this
assumption, (8) may be approximated as

Uk(x) ≈

∫
Sk(x)

(|z − xk|2 + ε2)−
α
2 dz

σ2 +
∫
Sk(x)

(|z′ − xk|2 + ε2)−
α
2 dz′

=
Ik(x)

σ2 + Ik(x)
.

(9)

Note that this simplification makes the considered utility
based on capacity equivalent to a utility based on SINR such
as the ones in [1]. At low-SINR regime, it is equivalent to
work with a capacity-based utility or a SINR-based utility.

Also note that one has f (t) = t/
(
σ2 + t

)
strictly increasing

over [0, L], since its derivative is f ′ (t) = σ2/
(
σ2 + t

)2
. Then

maximizing the approximation of Uk(x) or Ik(x) is equiva-

lent. Thus the utility we define for the game is Ûk(x) =
Ik(x), k ∈ K.

2.3 Definition of the game
In this section, we study the case of K BSs competing on
a segment of length L. Each of the BSs uses different car-
rier frequencies so the MTs of different BSs do not interfere
together. As assumed in Section 2, the MT distribution is
uniform over the segment, and the set of possible locations
for the BS is [0, L]. Figure 2 illustrates the context for the
two-player case.

Definition 1. The strategic form of the game is given by

G = (K, {Ak}k∈K, {Ûk}k∈K)

where

• K = {1, . . . ,K} is the set of players, which are here
BS.

• {Ak}k∈K is the set of actions players can consider, here

Ak = {xk ∈ [0, L] | 0 < x1 < . . . < xK < L}. (10)

Denote A = {x ∈ [0, L]K | 0 < x1 < . . . < xK < L}.

• {Ûk}k∈K is the set of utilities players use.

Note that we are interested in location equilibria that do
not superimpose several BSs. Thus, if there exists an equi-
librium, there exists a spatial order for BSs at this equi-
librium, that is why we introduce this order in the action
spaces {Ak}k∈K.

3. NASH EQUILIBRIUM ANALYSIS
The aim of this section is to show the existence of a Nash
equilibrium in the location game described in Section 2.3
and to characterize this equilibrium.

3.1 Existence
In this section, we focus of the existence of a Nash equilib-
rium in the defined game. To prove the existence of a Nash

equilibrium, the concavity of Ûk(x) with respect to xk over
Ak, ∀k ∈ K, has to be established.

Lemma 1. Ûk(x) is concave with respect to xk over Ak,
∀k ∈ K.

The proof of this lemma is in Appendix A.1. Then one has
the following theorem.

Theorem 1. In the game defined by Definition 1, there
exists at least one Nash equilibrium.

Proof. • Using Lemma 1, we know that Ûk (x) is
concave with respect to xk over Ak, ∀k ∈ K,

• Ûk (x) is continuous with respect to x over A, ∀k ∈ K,

• the set of feasible actions is compact and convex for
all players in the game.

The Rosen [13] conditions for the existence of a Nash equi-
librium are met and Theorem 1 is thus proved.

3.2 Multiplicity of NE
Regarding to the uniqueness of the Nash equilibrium, as the
characteristics of the BSs (height and noise) are assumed
to be identical, it is interesting to note that permuting the
order of BSs leads to a symmetric system of equation. Thus,
without condition on the order of BSs as in (10), there are
K! Nash equilibria for the game and all these equilibria are
symmetric, meaning that the set of locations at equilibrium
is unique. However, if one imposes the condition order (10),
the NE can be shown to be unique by using the Diagonally
Strict Concavity (DSC) condition [13].

Theorem 2. In the game defined by Definition 1, there
exists one single Nash equilibrium.

The proof of this theorem is in Appendix A.2. Having
uniqueness under this order condition might seem to be a
weak result in comparison with a general uniqueness result.
However, in the framework of a dynamic process, the initial
locations of the base station might suffice to determine the
effectively observed NE (after convergence).
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Figure 3: Base Stations at Nash equilibrium for α =
3 (dotted line) and α = 2 (continuous line). From
the top to the bottom, configuration with 2 BSs, 3
BSs and 4 BSs. Parameters are ε = 0.1 and L = 100.

3.3 Determination of the NE
A characterization of the equilibrium is provided in this sec-
tion with examples for small values of K. A real solution x
for α > 2 has to satisfy

x1 =
2

√
(5.2

2
α−2

4
α−4)ε2+2

2
α x22−2

2
α x2

4−2
2
α

,

xk =
xk+1+xk−1

2
, ∀k ∈ {2, . . . ,K − 1},

xK =
−2

√
(5.2

2
α−2

4
α−4)ε2+2

2
α (L−xK−1)

2−2
2
α xK−1+4L

4−2
2
α

.

(11)
See Appendix A.3 for detailed derivations. In the case α = 2,
one obtains

x1 =
√

2ε2 + 2x22 − x2,
xk =

xk+1+xk−1

2
, ∀i ∈ {2, . . . ,K − 1},

xK = −
√

10ε2 + 2(L− xK−1)2 − xK−1 + 2L.

(12)

In the 2-player game with α = 2, one gets{
xne1 = L− 1

2

√
2L2 − 4ε2

xne2 = 1
2

√
2L2 − 4ε2

(13)

Figure 3 illustrates equilibria for α = 2 and α = 3 for re-
spectively two, three, and four BSs.

4. COMPARING EQUILIBRIA
This section compares the Nash equilibrium described in
Section 3, the Stackelberg equilibrium, and the social opti-
mum.

4.1 Stackelberg equilibrium
As written in Section 3, the pure Nash equilibrium needs
the players to know their spatial order to be reached. If
players do not know this order but play in a chronological
order, the problem changes. If the first player plays alone at
the first stage of the game knowing that other players will
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Figure 4: Û1
SE

Û1
NE and Û2

SE

Û2
NE with regard to ε.

place their BSs after, it turns into a Stackelberg game [15]
with the first player being the leader of the game. This idea
is illustrated with a two-player game with one leader (BS
1) and one follower (BS 2). The leader chooses its position
knowing that the follower will place itself after. Both BSs
still want to maximize their utilities and BS 1 knows this
point. Then, BS 1 knows how BS 2 is going to be placed
regarding to its own position, it is simply the best response
of BS 2

x2(x1) =
−2

√
(5.2

2
α − 2

4
α − 4)ε2 + 2

2
α (L− x1)2 − 2

2
α x1 + 4L

4− 2
2
α

.

Then BS 1 places itself at a location x1 solution of

∂Û1

∂x1
(x1, x2(x1)) = 0. (14)

With α = 2 and neglecting ε compared to every other lengths
of the problem, one gets

xse1 =

(
1−
√

2 +

√
2−
√

2

)
L, (15)

and

xse2 =

(
(
√

2− 1)(1 +

√
2−
√

2)

)
L. (16)

On Figure 4, we compare the utilities of the leader and the
follower of the Stackelberg game versus the utilities of the
Nash equilibrium. As we see, the leader of the Stackelberg
game has a better utility than what he would have get at
the Nash equilibrium. On the contrary, the follower has a
worst utility. Hence, in a mobile operator point of view, it
is more interesting to deploy its BS first.

4.2 Social optimum
Sections 3 and 4.1 provide equilibria corresponding to situ-
ations where the BSs only consider what is best for them-
selves. But these equilibria are not the best for the MTs. In
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Figure 5: Nash Equilibrium, Stackelberg Equilib-
rium, and Social Optimum for α = 2.

the MTs point-of-view, the utility to consider is the complete
utility sum or social utility. In a 2-BS case

Û so (x1, x2) = Û1 (x1, x2) + Û2 (x1, x2) . (17)

For this utility, we know that there exists an optimum since

the strategy set A is compact and Û1 (x1, x2)+ Û2 (x1, x2) is
continuous with respect to (x1, x2) overA. At this optimum,
it is proven [1] that

• (i) the BSs place themselves at the middle of their
associated subset of segment (respectively S1 and S2),

• (ii) the frontier between the two BSs is the middle of
the segment.

Thus, we have the optimum

xso1 =
L

4
, xso2 =

3L

4
. (18)

Figure 5 shows the Nash equilibrium, the Stackelberg equi-
librium, and the social optimum for α = 2. The locations of
BSs for Nash equilibrium and social optimum are symmetric
with respect to the middle of the segment [0, L] whereas this
is not the case for the Stackelberg equilibrium.

4.3 Price of anarchy
To compare the Nash and the Stackelberg equilibrium in
the two-player case, we look at the utilities at equilibrium.
Without any pricing mechanism, the Nash equilibrium and
the social optimum are very close in terms of locations. As a
result, they are also close in terms of utility sum. The Price
of Anarchy (PoA), introduced in [9], is an adequate metric
to compare these sums

PoA(eq) =
maxx∈A

∑
k∈K Ûk(x)∑

k∈K Ûk(xeq)
. (19)

Note that the PoA is always stronger than 1 and if the PoA
is high, it means that the corresponding equilibrium is not
that efficient in terms of utility sum. On the contrary, if the
Po1 is close to one, the corresponding equilibrium is satis-
fying. Figure 6 illustrates the behavior of the PoA for the
Nash equilibrium and the PoA for the Stackelberg equilib-
rium as a function of ε for 2-player case. It appears that
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Figure 6: Prices of Anarchy regarding to ε. Param-
eters are L = 100, σ2 = 104, α = 2.

the Stackelberg equilibrium is less efficient than the Nash
equilibrium.

5. CONVERGENCE TO THE NASH EQUI-
LIBRIUM

Getting to the equilibrium given in Section 3.3 is not sim-
ple: it would require that every player knows the utilities
of other players. In practice, this is hardly the case. Thus,
we present techniques that enable to reach the Nash equi-
librium in a decentralized way: best-response dynamics and
reinforcement learning. However the BSs need to be movable
to perform these two techniques, hence it is more accurate
to talk about Mobile Stations (MSs) in the present section.
Note that for these two techniques, the only assumption
about MSs location is that they cannot superimpose.

5.1 Best response dynamics
The context of this section remains the same as defined in
Section 2.3.

The principle of best-response dynamics is that given a real-
ization of actions for its opponents, every player of the game
is able to compare its own possible actions and choose which
one is best for itself. Precisely the best-response algorithm
is the following

1. At every time step t, each MS k chooses its location
xbrk (t) according to

xbrk (t) = arg max
xk

Ûk(xk, x−k(t)).

2. Algorithm stops when
∣∣xbr(t+ 1)− xbr(t)

∣∣ < β, with
β fixed.

Regarding to the convergence of this algorithm, we study
the system of best-responses (11). If we neglect ε regarding
to x1 and L− xK−1, one gets a linear system of equations

x1 = 2
1+α
α −2

2
α

4−2
2
α

x2,

xk =
xk+1+xk−1

2
, ∀k ∈ {2, . . . ,K − 1},

xK = (4−2
1+α
α )L

4−2
2
α

+ 2
1+α
α −2

2
α

4−2
2
α

xK−1.

(20)
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It is a linear Cournot oligopoly [4].

One distinguishes two ways this algorithm can run.

Simultaneous best response dynamics. At every step, ev-
ery MS adapt their locations simultaneously. In this case,
the evolution of the locations with the algorithm can be ex-
pressed by

xbr(t+ 1) = a+ AKx
br(t) (21)

with a = t
(
0, . . . , 0, (4−2

1+α
α )L

4−2
2
α

)
and

AK =



0 g(α) 0 . . . . . . . . . . . . . . 0

1
2

0 1
2

. . .
...

0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . . 0

...
. . . 1

2
0 1

2
0 . . . . . . . . . . . . . . 0 g(α) 0


, (22)

with g(α) = 2
1+α
α −2

2
α

4−2
2
α

.

As recalled in Lemma 2.8 of [16], for an irreducible positive
square matrix A= (aij)1≤i≤n, then either

n∑
j=1

aij = ρ(A) ∀i ∈ [1, n], (23)

or

inf
1≤i≤n

n∑
j=1

aij < ρ(A) < sup
1≤i≤K

n∑
j=1

aij , (24)

with ρ(A) being the radius of A. In our case, AK can be
verified to be positive and irreducible, then one has

g(α) < ρ(AK) < 1. (25)

Hence, the convergence of the algorithm is ensured.

Sequential best response dynamics. The other case is the
sequential algorithm: at every step, only one MS adapts its
location. Depending on the MS k adapting its location, the
algorithm evolves according to

xbr(t+ 1) = a+ Ak
Kx

br(t), (26)

with Ak
K corresponding to the adaptation of the k-th MS.

Ak
K may have several forms.

• If the k-th MS, k ∈ {2, . . . ,K − 1} adapts its location,
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Figure 7: Best-responses of MS 1 and MS 2 for α = 2

then

Ak
K =



1 0 . . . . . . . . . . . . . . . 0
. . .

. . .
. . .

...
... 0 1 0

...
... 1

2
0 1

2

...
... 0 1 0

...
...

. . .
. . .

. . .

0 . . . . . . . . . . . . . . . 0 1


In this case, Ak

K is irreducible and positive and

ρ(Ak
K) = 1. (27)

• If the first MS adapts its location, the matrix has the
form

A1
K =


0 g(α) 0 . . .
0 1 0
...

. . .
. . .

. . .

0 . . . 0 1


Again, A1

K is irreducible and positive, but this time

g(α) < ρ(A1
K) < 1. (28)

Note that if the K-th MS adapts its location, the same
reasoning can be done.

g(α) < ρ(AK
K) < 1. (29)

Hence, ρ(
∏K
k=1 Ak

K) =
∏K
k=1 ρ(Ak

K) < 1 and the algorithm
converges.

In Figure 7, we compare MSs 1 and 2 sequential best-responses
for α = 2.

5.2 Reinforcement Learning
The following notations are used in this section. For a set
of MSs K = {1, . . . ,K}, let Ãk = {yk1, . . . , ykmk} be the set
of possible locations for MS k (mk being the cardinality of

Ãk), which corresponds to a discretization of the set [0, L].
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Figure 8: Evolution of action probabilities for BS 1
with discrete stochastic learning.

We implement a discrete stochastic learning algorithm in
the sense that the action space is discrete and at every step,
actions are chosen in a stochastic way. The only informa-
tion available to a MS is the value of its utility after each
iteration (note that the MS does not necessarily knows its
utility expression).

We define p
k
(t) = (pk1(t), . . . , pkmk (t)) the probability dis-

tribution vector of MS k at time t.

P [xk(t) = yki] = pki(t), i ∈ {1, . . . ,mk}. (30)

The algorithm used by each MS is then the following.

1. Initialize the distribution probability vector.

∀k ∈ K, ∀i ∈ {1, . . . ,mk}, pki(0) = 1
mk

.

2. At every step t, each MS k chooses a location xk(t)
according to its probability vector p

k
(t).

3. Each MS gets Uk(t).

4. Each MS updates its probability distribution vector
p
k
(t)

pki(t+ 1) = pki(t)− bUk(t)pki(t), if xt(t) 6= yki
pki(t+ 1) = pki(t) + bUk(t)

∑
s6=i pks(t), if xk(t) = yki

(31)

5. Algorithm stops when p
k
(t+1) = p

k
(t), else go to step

2.

Figures 8 and 9 illustrate the evolution of the probability
distribution vectors of two MSs. The parameters of the sim-
ulation are the following: each MS has the same set of possi-
ble positions {10, 30, 50, 70, 90} and the step of the learning
algorithm is b = 0.01.

Depending on the choice of b, two phenomena occur.

• The higher the value of b, the lower the convergence
time of the algorithm,
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Figure 9: Evolution of action probabilities for BS 2
with discrete stochastic learning.
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Figure 10: Convergence of probability with respect
to step b

• However, if b is chosen too high, the algorithm may
converge to locations that do no correspond to an equi-
librium of the game defined in Section 2.3.

Figure 10 illustrates the convergence time as a function of
b.

The choice of b is hence a trade-off between convergence time
and accuracy of the convergence.

6. CONCLUSION AND PERSPECTIVES
Obviously the proposed model is relatively simple and should
be improved to obtain refined results. However, this led
us to several interesting results such as a full characteri-
zation of Nash equilibria and interesting behavior in terms
of convergence. It would be very relevant to extend this
work to two-dimensional scenario, define a suitable order
for which uniqueness would be ensured. More connections
with the famous multi-source Weber problem [6] should be
established to better understand the general problem of de-
ployment games. Indeed, if an operator has to locate a set of
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base stations, the problem becomes more complicated. The
problem becomes even more interesting if the set of possi-
ble constellations is discrete, which would lead us to make
connections with Voronoi games [5]. The authors believe
there is large avenue for contributions to the general prob-
lem under study, especially in finding relevant assumptions
to simplify it without too loss in terms of understanding.
Random matrix theory and stochastic geometry might be
for great help to achieve this challenging objective.
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APPENDIX
A. PROOFS
A.1 Proof of Lemma 1
We need to prove that Ûk(x) is concave with respect to xk
over Ak.

We know that the index of players verify (10). In this case,
the regions associated to the BSs are

[0, x1+x2
2

] for BS 1,

[
xk−1+xk

2
,
xk+xk+1

2
] for BS k, k ∈ {2, . . . ,K − 1}

[
xK−1+xK

2
, L] for BS K.

(32)

Then
Û1(x) =

∫ x1+x2
2

0
(ε2 + (x− x1)2)−

α
2 dx

Ûk(x) =
∫ xk+xk+1

2
xk−1+xk

2

(ε2 + (x− xk)2)−
α
2 dx, k ∈ {2, . . . ,K − 1}

ÛK(x) =
∫ L
xK−1+xK

2

(ε2 + (x− xK)2)−
α
2 dx

(33)
which may be rewritten as

Û1(x) =
∫ x2−x1

2
−x1

(ε2 + x2)−
α
2 dx

Ûk(x) =
∫ xk+1−xk

2
xk−1−xk

2

(ε2 + x2)−
α
2 dx, k ∈ {2, . . . ,K − 1}

ÛK(x) =
∫ L−xK
xK−1−xK

2

(ε2 + x2)−
α
2 dx

(34)

To prove the existence of a Nash equilibrium, the concavity

of Ûk (x) with respect to xk ∀k ∈ K has now to be estab-
lished. One has the first-order partial derivatives

∂Û1
∂x1

(x) = − 1
2
(ε2 + (x2−x1

2
)2)−

α
2 + (ε2 + x21)−

α
2

∂Ûk
∂xk

(x) = − 1
2
(ε2 + (

xk+1−xk
2

)2)−
α
2 + 1

2
(ε2 + (

xk−1−xk
2

)2)−
α
2

∂ÛK
∂xK

(x) = −(ε2 + (L− xK)2)−
α
2 + 1

2
(ε2 + (

xK−1−xK
2

)2)−
α
2

(35)
and the second-order partial derivatives

∂2Û1

∂x21
(x) = −α

8
x2−x1

(ε2+(
x2−x1

2
)2)

α
2

+1 − α
x1

(ε2+x21)
α
2

+1

∂2Ûk
∂x2
k

(x) = α
8

(
− xk+1−xk

(ε2+(
xk+1−xk

2
)2)

α
2

+1
+

xk−1−xk
(ε2+(

xk−1−xk
2

)2)
α
2

+1

)
∂2ÛK
∂x2
K

(x) = −α L−xK
(ε2+(L−xK)2)

α
2

+1 + α
8

xK−1−xK
(ε2+(

xK−1−xK
2

)2)
α
2

+1

(36)

Given (10), we have ∂2Ûk
∂x2
k

(x) < 0 ∀k ∈ K. Thus Ûk(x) is

concave with respect to xk overAk, ∀k ∈ K.

A.2 Proof of Theorem 2
In the context of K-player game, the DSC [13] condition
writes ∀(a, a′) ∈ A2 such that a 6= a′

K∑
k=1

(a′k − ak)

(
∂Ûk
∂xk

(a)− ∂Ûk
∂xk

(a′)

)
> 0 (37)

For clarity reasons, we denote

g(a, b) =

(
(ε2 + a2)−

α
2 − (ε2 + b2)−

α
2

)
, (a, b) ∈ R2. (38)

By (35), it turns

∂Û1
∂x1

(a)− ∂Û1
∂x1

(a′)=g(a1,a
′
1)−

1
2

(
g(
a1−a2

2
,
a′1−a

′
2

2
)

)
∂Ûk
∂xk

(a)− ∂Ûk
∂xk

(a′)= 1
2

(
g(
ak−1−ak

2
,
a′k−1−a

′
k

2
)−g(

ak−ak+1
2

,
a′k−a

′
k+1

2
)

)
∂ÛK
∂xK

(a)− ∂ÛK
∂xK

(a′)= 1
2

(
g(
aK−1−aK

2
,
a′K−1−a

′
k

2
)

)
−g(L−aK ,L−a′K)

(39)

Equation (37) becomes

(a′1−a1)

(
g(a1,a

′
1)−

1
2
g(
a1−a2

2
,
a′1−a

′
2

2
)

)
+

∑K−1
k=2

a′k−ak
2

(
g(
ak−1−ai

2
,
a′k−1−a

′
k

2
)−g(

ak−ak+1
2

,
a′k−a

′
k+1

2
)

)
+(a′K−aK)

(
1
2
g(
aK−1−aK

2
,
a′K−1−a

′
K

2
)−g(L−aK ,L−a′K)

)
>0

(40)
which can also be written

(a′1 − a1)g(a1, a
′
1)

+

K∑
k=2

a′k − a′k−1 − (ak − ak−1)

2
g

(
ak−1 − ak

2
,
a′k−1 − a′k

2

)
+ (L− a′K − (L− aK))g(L− aK , L− a′K) > 0

(41)
However ∀(a, b) ∈ R∗2,

(b− a)g(a, b) > 0 (42)

and by the order condition (10)
(a′1, a1) ∈ R∗2

(
a′k−a

′
k−1

2
,
ak−ak−1

2
) ∈ R∗2 ∀k ∈ {2, . . . ,K}

(L− a′K , L− aK) ∈ R∗2
(43)

Then the DSC condition is verified and the equilibrium is
unique.

A.3 Derivation of (11)
To obtain a formal expression of a Nash equilibrium, the
intersection of the best-responses has to be considered

∂Ûk
∂xk

(x) = 0, ∀k ∈ K, ∀α > 2. (44)

(44) leads to
(2

2
α (ε2 + (x2−x1

2
)2))

α
2 = (ε2 + x21)

α
2

(ε2 + (
xk+1−xk

2
)2)

α
2 = (ε2 + (

xk−1−xk
2

)2)
α
2 , ∀k ∈ {2, . . . ,K − 1}

(ε2 + (L− xK)2)
α
2 = (2

2
α (ε2 + (

xK−1−xK
2

)2))
α
2 .

(45)
Since all terms elevated at power α/2 are positive, one gets

2
2
α (ε2 + (x2−x1

2
)2) = ε2 + x21

(
xi+k−xk

2
)2 = (

xk−1−xk
2

)2, ∀i ∈ {2, . . . ,K − 1}
2

2
α (ε2 + (

xK−1−xK
2

)2) = ε2 + (L− xK)2
(46)

One real solution x verifying (10) has thus to satisfy (11)
whenα > 2 and (12) when α = 2.
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