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ABSTRACT
When planning Service-Oriented Architectures requirements
declared in Service Level Agreements (SLAs) have to be
considered. SLAs cover functional as well as quantitative
requirements like load levels, services rates and delay times.
As external factors can influence distributed systems, SLAs
have to include tolerances for quantitative requirements.
Early design phases of SOA use analytic models to check
functional properties. However, formalization of quantita-
tive requirements in SLAs and their validation in analytic
models is still a field of research. A challenge is the descrip-
tion of soft deadlines and the way delay times grow under
different load levels.
Network Calculus system theory can give bounds on delay
times in systems. It has already been used to validate hard
deadlines in networks and embedded systems. For its use in
SOA models, soft deadlines and other aspects derived from
SLAs have to be included. This paper introduces a new
method to control delay times in Network Calculus mod-
els in order to specify quantitative requirements. The basic
Network Calculus concept of arrival and service curves is ex-
tended with delay curves and their relationship is discussed.

Categories and Subject Descriptors
C.4 [Computer Systems Organization]: Performance of
systems—Modeling techniques

General Terms
Theory, Performance

1. INTRODUCTION
Large-scale distributed systems like Service-Oriented Archi-
tectures (SOA) are composed of independent software sys-
tems interacting over a network. Each component offers a
capability such as processing power, data storage or user
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authentication as a service to the system. In a networked
world, these system nodes can be hosted at different service
providers with individual bias in quality, speed and service.
The performance of compound systems dependeds on these
qualities.
As SOA systems take an important role in business appli-
cations they have to meet requirements in availability and
response times. These requirements are laid down in Ser-
vice Level Agreements (SLA) [2, 10] being part of contracts
between customer and service provider.

Planning and setting up an conceptual design for a SOA
with respect to a given SLA involves the use of models. Es-
pecially in early design phases analytic modeling methods
are used. They should offer the system engineer the ability
to validate the abstract system model against the SLA or
to readjust the selection of service providers to the require-
ments.
Two types of properties can be found in SLAs. The first are
functional properties like data formats and interface descrip-
tions. The second type of properties are the non-functional
or so-called quantitative requirements. They include maxi-
mal load and minimal service level, response times and avail-
ability of services [2].

Main challenges in SLA validation with analytic models is
the formalization of those non-functional properties in a
model and their validation in the analysis step. As the
performance and availability of SOAs depends on the load,
network traffic and other non-influenceable conditions their
behaviour seems to be stochastic. For this reason, SLAs al-
low some flexibility in deadlines and performance numbers.
For example, an SLA includes a soft deadline condition. A
system is compliant with the SLA if at least 80% of all re-
quests are served in a specified time interval. Requests may
take longer due to unexpected conditions and events.

Usage of soft deadlines makes the case of SLA validation
in models of service-oriented architectures different to other
modeling domains. Queuing theory is widely used for system
modeling. It deals with arrival and service rates and the re-
sulting delays. The downside is that performance numbers
are average values that are to inexpressive for validating
soft deadlines in SLAs. For modeling performance bounds
in data networks Network Calculus [3] can be used. The
strongly related Real-Time Calculus [7, 8, 9] is utilized in
realtime system design. Both calculi use (min,+)-algebras
[1] and characterize conditions on request arrival and service
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rates with a specific set of functions giving upper and lower
bounds on these values. These so-called curves are focussed
on maximum execution times for requests to comply with
hard deadlines. Open research issues in analytic SLA val-
idation are the selection of suitable modeling methods for
SOA and the formalization of quantitative requirements. In
optimal case the transformation can be done without loss of
information and can be checked for performance numbers.

The first contribution of this work is an algebraic method
to describe many non-functional requirements in SLAs con-
cerning timing and delays with (min,+) based calculi. In
addition to arrival and service functions a new function set
is introduced to Network Calculus or Real-Time Calculus.
Delay curves allow definition of upper bounds for process-
ing times in systems. They bring the flexibility to Network
Calculus for modeling soft deadlines and other quantitative
requirements regarding time behavior in SLAs. Because now
delays can be described similar to arrival and service rates
they integrate well into (min,+) algebraic systems. This is
an important aspect to support analytic validation of SLAs
with quantitative requirements.
Next to validation, quantitative requirements in SLAs can
be used for capacity planning and service provider selection
for SOA systems. As a second contribution the new descrip-
tion of delays is used to find lower bounds on service rates
a service provider can deliver necessary to comply with an
SLA. This is done by setting up an optimization problem to
approximate the smallest service curve fulfilling the require-
ments given by an SLA with delay curves.

Modeling of SOA including SLAs has already been done with
simulation models [5]. In [2] process models are simulated
to validate SLAs with statistic methods. A downside of sim-
ulation is that models have to be very detailed to replicate
real system performance. This makes them not the first
choice for evaluating early system designs. Response times
of systems in general can also be evaluated with analytic
approaches. Interval Timed Coloured Petri Nets [11, 12]
or pure Network Calculus [3, 4] give worst-case execution
times. As stated above, this may not always be sufficient to
model SLAs in detail.

A short summary of (min,+)-calculus is given in Section 2
and its application for the specification of arrival and service
rates. Section 3 introduces the new concept of delay curves
as a natural extension of Network Calculus and Real-Time
Calculusmodeling methods. Delay curves are used in section
4 to approximate the minimum service curve that complies
with a given specification. Numerical examples are given in
Section 5.

2. MIN-PLUS CALCULUS
The so-called min-plus or (min,+)-algebra belongs to the
family of tropical algebras [3]. It is an algebraic approach
to analyze models of discrete event-systems. Extensive fun-
damental work has been done in [4, 1].
(min,+) is created from standard algebra by using the min-
imum function as additive operation and replacing the mul-
tiplicative operation with an addition. In other words, (+, ·)
becomes (min,+). As their original counterparts the opera-
tor min() and + form a dioid [3] with ∞ as neutral element
of addition and 0 as neutral element of multiplication. For

example, the term (5 + 0) · (2 + 4) is expressed in (min,+)
as min(5,∞) + min(2, 4).
Two more specialized methods have been derived based on
the (min,+) linear system theory of Baccelli et. al. [1]. Net-
work Calculus allows the modeling and analysis of network
performance behaviour [3]. Thiele et. al. used (min,+)-
algebras for Real-Time Calculus to describe execution bounds
in embedded systems [7, 8, 9]. Both approaches are strongly
related and use the same basic theory for different applica-
tions. Before the new concept of delay curves for SLA for-
malization is presented some common concepts of Network
Calculus and Real-Time Calculus are introduced.

2.1 (min,+) Convolution
Convolution is an operation between two functions. The re-
sult is a new function forming the overlay of both functions.
It plays an important role in mathematics and natural sci-
ences. In radio transmissions for example, the folding of
carrier frequency and load signal can be expressed by con-
volution. Applying filters to digital photos corresponds to
the folding of picture and filter as two-dimensional functions.
Algebraic systems based in (min,+)-algebra can also make
use of convolution to work with functions. A main operation
in Network Calculus and Real-Time Calculus is (min,+)-
convolution. It is used to derive the effective performance
for systems out of information on arrival and service rates.
In classic algebraic systems convolution is an integrative sum
over a product of two real-valued functions f and g:

(f ◦ g)(t) =

∫ +∞

−∞
f(t− s)g(s) ds (1)

In (min,+) convolution is restricted to wide-sense increasing
functions [3]:

Definition 1. A function is wide-sense increasing if and
only if f(a) ≤ f(b) for all a ≤ b. G is the set of wide-sense
increasing functions with f(t) ≥ 0 ∀t, f ∈ G. F is the subset
of G with functions that are zero for t < 0.

As mentioned above, in (min,+) additive operators are ex-
changed for the minimum function. The integral becomes
a minimum or, to allow non-continous input functions, the
infimum [3].

Definition 2. Let f and g be two functions or sequences
in F . The (min,+) convolution of f and g (notation f ⊗ g)
is the function

(f ⊗ g)(t) = inf
0≤s≤t

{f(t− s) + g(s)}

If t < 0 : (f ⊗ g)(t) = 0.

(min,+)-convolution is closed in F . For additional proper-
ties we refer to chapter 3 in [3].

2.2 System Model
The basic system model in Network Calculus and Real-Time
Calculus are similar to queuing systems. Workload arrives
at a system node and awaits service by the system. After
processing ended it leaves the system. Workload can be ei-
ther computation tasks, customers, data packets or anything
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else the model specifies. In the following, jobs or request are
pooled to the term arrivals.
This introduction uses a fluid system model with continuous
time domain. Although arrivals in real systems are discrete
objects they are abstracted to continuous flow. The deliv-
ered service towards the arrivals is also included into the
flow model. The advantage of continuous models is their
simplified notation. As there exists a mapping [3] between
discrete and fluid models both methods can be exchanged.

Figure 1 contains the basic system model on the left. As
usual in abstract queuing notation arrivals (R) enter the
system from the left and leave after they have been served
to the right (R∗). Service in the system itself consumes
limited resources arriving from the top (C). If there are
unused resources left they leave the system (D).

2.3 Arrival and Service Curves
Network Calculus relies on functions describing arrivals over
time. The rate of the arrival flow at time t can be expressed
by the slope of a function a(t). Then the amount of arrivals
in interval [0, t] is:

R(t) =

∫ t

0

a(x) dx

R(t) is continuous, wide-sense increasing and R(t) = 0 for
t <= 0, thus R(t) ∈ F . In Network Calculus, R(t) is called
arrival function. For the system node in Figure 1, R(t) is
the arriving workload.
Arrival functions are expressions of the underlying arrival
flow, they can be derived from real world measurements or
simulation results. To characterize arrival flows and to set
bounds on arrival rates, Network Calculus abstracts individ-
ual arrival functions with new functions called arrival curves
conforming to the arrival curve property [9]. It includes
curves for limiting minimum and maximum arrivals.

Definition 3. An upper arrival curve αU or a lower arrival
curve αL satisfies the relation

αL(t− s) ≤ R(t)−R(s) ≤ αU (t− s) ∀ 0 ≤ s ≤ t

Network Calculus references αU as arrival curve, αL as mini-
mum arrival curve while Real-Time Calculus mentions them
as request curves. Figure 2 includes arrival function R(t)
that is bounded from above by arrival curve αU .

Although every f ∈ F can serve as arrival curve only a small
group of basic functions is used. Most of them are linear
or grow stepwise and can be combined to more complex
functions. A catalog of common functions can be found in
[3]. To describe arrival flows bounds of data network packets
Network Calculus and Real-Time Calculus make use of the
T-SPEC traffic specifications [6].

T-SPEC functions describe arrival bounds for variable bit
rate connections (VBR) [3] by piecewise linear approxima-
tion:

T-SPEC(t) = min(M + pt, rt+ b) (2)

The two affine functions are used to describe separate situa-
tions for the arrival flow. The first function M+pt limits an

Figure 1: System Model with functions and curves.

fast arrival flow that can be handled for a short time. M is
maximum packet size the network can transfer and p is the
peak arrival rate. The second function rt + b sets bounds
for long term arrivals: r is the sustainable arrival rate and b
is the burst tolerance.. Instances of T-SPEC specifications
are characterized by tuple (p,M, r, b). As fluid systems have
no packet size we will apply M = 0 in general.
Thiele et al. [7] suggested to use three segments but for
many applications the combination of two affine functions is
sufficient. The examples in figures 2, 3 and 4 include αU as
T-SPEC arrival curve.

In the same way arrivals to a system can form arrival func-
tions the amount of delivered work towards arrivals can be
expressed with service functions. Work or service performed
by the system can be measured in units.
The slope of function b(t) describes the rate of used work
units at the point of time t. Function b(t) describes the so-
called flow of service.
For the amount of service in interval [0, t] we have the service
function

C(t) =

∫ t

0

b(x) dx

The cumulative function C(t) ∈ F is the amount of work
applied to arrivals by a system in interval [0, t]. The sys-
tem model in Figure 1 handles C(t) as a second input for
processing. Abstraction from arbitrary service functions is
done with minimum and maximum functions satisfying the
service curve property:

Definition 4. An upper service curve βU or a lower service
curve βL for a service function C(t) is given by the relation:

βL(t− s) ≤ C(t)− C(s) ≤ βU (t− s) ∀ 0 ≤ s ≤ t

Upper service curve βU sets an upper bound on the service
capacity of a system: the sum of performed work units up
to time t will never exceed βU (t). Just as well the system
will always deliver at least βL(t) work units until t.
The system model in figure 1 uses both service curves as
input. In figure 2 the relationship between service function
C(t) and lower bound βL is visible. For service curves every
wide-sense increasing function can be used, a set of functions
can be found in [3].
A common function for service curves is the rate-latency
function βR,T (t) = max {0, R(t− T )}. Parameter R is the
sustainable service rate that can be continuously delivered,
T is the system latency as the maximum time with no service
at all. Figures 2, 3 and 4 include βL = βR,T . In contrast
to αU , service curves begin with low service rates. In this
work we will focus on the upper arrival curve αU and the
lower service curve βL. Theorems and applications for the
complete curve set can be found in [3, 9, 8, 7].
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2.4 Departure curves
When arrival flow R(t) enters a system it is served up to
available service C(t). If R(t) > C(t) a part of the arrival
flow has to be enqueued. Backlogged arrivals are processed
again when C(t) exceeds R(t) again.
Incoming and backlogged leave the system, in terms of Net-
work Calculus this is called the outgoing arrival flow. When
we also cumulate the outgoing flow in interval [0, t] we get de-
parture function R∗(t) [3], compare Figure 1. As R∗(t) ∈ F
has arrival curve properties and can be used to feed a sec-
ond system node it is also called outgoing arrival curve in
Network Calculus [3]. Figure 2 shows the outgoing arrival
function R∗(t) as dashed line.
At least two interesting system quantities can be derived.
The first one is amount of backlogged arrivals waiting for
service at time t: R(t) − R∗(t). Buffer sizes for system can
be dimensioned adequate by computing the maximum back-
log.
The second one is the maximum turnaround time for arrivals
entering the system at time t. Delay is the additional time
R∗(t) needs to draw level with R(t):

d(t) = inf {τ ≥ 0 : R(t) ≤ R∗(t+ τ)} (3)

Results from Network Calculus analysis do not represent
expectation values as found in queuing theory. Depending
on the input curves, either best-case or worst-case numbers
are computed. The accuracy of these bounds depends on
the matching of input curves to the real world system.

An important ability of Network Calculus system theory is
to calculate the lower envelope of all output functions R∗(t)
just with the input of an arrival function R and an lower ser-
vice curve. This advantage comes from the usage of (min,+)
convolution [3].

R∗(t) ≥ inf
s≤t

(R(s) + βL(t− s)) = (R ⊗ βL)(t) (4)

The example in figure 3 is extended with a theoretic lower
service curve βL instead of C(t). The dashed line is the
resulting departure curve R∗(t) = R(t) ⊗ βL(t) when the
system delivers the slowest possible service grade. The con-
volution applies βL at every point of R(t) and obtains the
minimum. In figure 3 the convolution is illustrated by mov-
ing βL along R(t).

For system modeling and performance evaluation are worst-
case scenarios significant. Maximum reachable load has to
be combined with the smallest possible service rates. In
Network Calculus this situation is expressed with upper ar-
rival curves as arrival functions αU = R(t) and βL = C(t)
for equality between service function and curve. With given
upper arrival curve αU (t) and a lower service curve βL(t)
the worst-case departure curve is formed from equation 4
when R(t) = αU (t):

αL
′
(t) = (αU ⊗ βL)(t) (5)

For this worst-case scenario a third example is given in figure

4. βL is folded with αU and forms αL
′

as the lowest of all
possible departure curves for this system.

Now we can make statements on the system delay under
high load and bad service conditions. The outgoing arrival

curve R∗(t) is replaced with upper departure curve αL
′
(t).

The virtual delay for a job arriving at time t under worst-
case conditions is

d(t) = inf
{
τ ≥ 0 : αU (t) ≤ αL′(t+ τ)

}
(6)

3. DELAY CURVES
In section 2.3 arrival and service functions are introduced as
cumulated sum of their underlying arrival and service flows.
Curves set lower and upper bounds for those functions.
The central new concept presented here is to handle occur-
ring delays as flow. Whenever the arrival function is above
the service function, R(t) > C(t), arrivals face a delay be-
cause of backlogging. Similar to arrivals and service a flow
of measured delays is formed for any point of system time.
This delay flow as a function of time can be integrated and
form a delay function.
For formalization of quantitative requirements in SLAs, de-
lay functions are bounded with delay curves. The overall
delay experienced by arrivals to the system can be described
over time. There is no need to set individual maximum de-
lays for arrivals, instead the aggregated delay of all arrivals
is limited. This modeling method gains more flexibility than
using just hard deadlines.

We start with the definition of the delay function. The vir-
tual delay d(t) for arrivals at time t is given in equation 6.
For the total delay in time interval [0, t] we integrate d(t):

Definition 5. Let d(t) be the delay between an arrival
curve and an departure curve. The delay function is given
by

D(t) =

∫ t

0

d(x) dx (7)

It is true that D(t) ∈ F as D(t) = 0 for t <= 0 and D(t)
is wide-sense increasing. Thus D(t) features the same prop-
erties as arrival and service functions and can be described
with similar algebraic methods.

In Figure 2 the arrival flow R(t) grows faster than the service
flow C(t). Consequently, the departure flow R∗(t) is delayed
until R(t) ≤ C(t).
Equation 6 defines delay as time difference between equal
values of arrival and departure function. The horizontal axis
is the time axis, so the area D between R(t) and R∗(t) is
the sum of occurring delays. Figure 3 shows delay function
D for a lower service curve βL instead of C(t). A worst
case scenario is given in Figure 4. It shows the overall delay
D(m) between αU (t) and (αU ⊗ βL)(t). By equation 6,
D(m) includes the area right from m limited by αU (m).
Additionally Figure 4 includes delay function D(t) as wide-
sense increasing sum of occurring delays.

The last step is to define delay curves with a delay curve
property. They will be the proposed formalization of quan-
titative requirements in SLAs.

Definition 6. An upper delay curve ΨU for delay func-
tions D(t) satisfies the relation

ΨU (t− s) ≥ D(t)−D(s) ∀ 0 ≤ s ≤ t (8)
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ΨU (t) is an upper bound of occurring delays in time interval
[0, t]. Also a lower delay curve ΨL is given by ΨL ≤ D(t)−
D(s) ∀ 0 ≤ s ≤ t. Minimum delay times are infrequently
used in computer science. In other modeling domains such
as production systems and chemical processes some work
processes might require to run a minimum amount of time.
This work will focus on upper delay curves.

Concrete instances of upper delay curves can use same func-
tions set as for arrival curves. For modeling quantitative
requierements in SLAs usage of the T-SPEC function class
is suggested. The T-SPEC parameters can be interpreted
as follows:

• pΨ is the peak rate of delay growth

• rΨ is the sustainable delay rate and

• bΨ is the tolerance for bursts of delays.

The delay function D(t) in figure 4 complies to a upper delay
curve ΨU that forms a limit for every sum of delays. ΨU is
in T-SPEC function class. Also the numeric examples in
section 5 are using the interpretation given above.

4. DERIVING SERVICE CURVES
When designing SOA systems a typical task for service pro-
viders is to dimension computer systems according to the ar-
rangements specified in Service Level Agreements. An SLA
could include αU to bound the arrival rate of requests and
an upper delay curve ΨU to control response times. The
service provider has to find a matching service curve βL to
meet the SLA.
With αU and ΨU we are assuming the worst-case behavior of
the system under the highest allowed load. On the one hand,
each service curve βL that causes less than ΨU (t) delays in
[0, t] belongs to a system that works faster than needed. In
practice, the system would more processing power than nec-
essary and would be oversized. One the other hand, every
βL producing more than ΨU delays in [0, t] would result in a
system that is too slow and does not comply with the spec-
ification.
In the optimal case we have ΨU = D(t). When using
T-SPEC functions for αU and ΨU identity is not achiev-
able by matching piecewise linear segments with integral
functions of higher grade. A relaxation of the condition to
ΨU (t) ≥ D(t) allows us to set up an optimization problem
to minimize target function F :

F = ΨU −D such that ΨU (s) ≥ D(s) ∀s ∈ [0, t]. (9)

In this work a method is presented to find to the closest
approximation by reduction to an geometric optimization
problem with just one variable.
Before going into details two mathematical concepts are in-
troduced.

4.1 Pseudo-Inverse
Every strictly increasing function is left-invertible [3]:

∀ t1 < t2, f(t1) < f(t2) ∃ f−1 ∈ F : f−1(f(t)) = t ∀t

In wide-sense increasing functions there might be the case
of f(a) = y = f(b) for a < b. With such plateaus functions

Figure 2: Arrivals R(t), service C(t) and resulting
delay D(m)

Figure 3: Arrivals R(t) and delay D(m). Service
curve βL(t) is moved along R(t) for convolution, the
result is the lower envelope off all outgoing arrival
curves (R ⊗ βL)(t) .
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Figure 4: Upper arrival curve αU (t), resulting arrival
curve (αU ⊗ βL)(t) and delay D(m). Graphs of delay
function D(t) and ΨU (t) are not in scale to other
functions.

f ∈ F are not left-invertible. Otherwise there would be the
situation where f−1(y) = a and f−1(y) = b, a 6= b.
To solve this issue the concept of pseudo-inverse functions
is used.

Definition 7. Pseudo-inverse f−1 of f ∈ F [3]:

f−1(x) = inf {t such that f(t) ≥ x} (10)

As T-SPEC and βR,T functions are in F the pseudo-inverse
has to be used. For example, the inverse of βR,T is

β−1
R,T (t) =

{
0 for t = 0
t
R

+ T for t > 0

4.2 Horizontal Deviation
The vertical deviation between two functions f, g: vf,g(t) =
|f(t)− g(t)| is the difference at the same input. It is used in
[3] to calculate the bounds of backlogging for a system:

v(f, g) = sup
t≥0
{f(t)− g(t)} (11)

It should also be noted that integration for areas A =
∫

(f −
g) between two functions uses vertical deviation.
Horizontal deviation between two functions is the difference
in input to get the same output.

hf,g = inf {d ≥ 0 such that f(t) ≤ g(t+ d)} (12)

Delay function d(t) in section 3 is based on horizontal de-

viation. To form a delay function D(t) =
∫ t

0
d(x) dx one

would have to integrate with horizontal deviation. This can
be done by converting the horizontal case to a vertical one.
The transformation makes use of the pseudo-inverse.

Theorem 1 (horizontal deviation). Let f, g ∈ F .

hf,g(t) = g−1(f(t))− t (13)

Proof. We start from (12) defining the horizontal devi-
ation and apply Definition 7 of the pseudo-inverse.

hf,g(t) = inf {d ≥ 0 : f(t) ≤ g(t+ d)}
= inf {d+ t ≥ 0 : g(t+ d) ≥ f(t)} − t
= inf {∆ ≥ 0 : g(∆) ≥ f(t)} − t d+ t = ∆

= g−1(f(t))− t by Def. (7)

Transformation from vertical to horizontal deviation is now
used to approximate the minimum service curve.

4.3 Approximation of service curve βL

In this section a lower service curve βL is approximated for
a system node that is required to serve αU with a cumulated
delay smaller than ΨU .
The case is considered where αU (t) and the D(t) are both
given as T-SPEC arrival curves, lower service curve βL will
be modeled as rate-latency function

βR,T (t) = max {0, R[t− T ]}
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Both function classes can model a wide set of arrival and
service behaviors, especially in the domain of networks and
SOA. The modeling approach can be extended in the future
to similar piecewise linear functions for a closer approxima-
tion as done in [7] for realtime systems.
For optimization, target function (9) has to be parametrized
with a variable that only influences the service function
βL = βR,T since ΨU and αU are fixed. First, the system
latency T will be derived from ΨU . Second, a relationship
between an significant point of function αU ⊗ βL and ser-
vice rate R is set. The position of this point is variated for
optimization. Finally, a formula for D(t) depending on the
point is derived and used in the target function.

For system latency T we can observe that delay curve ΨU (t)
includes the maximum allowed latency as sustainable rate.

Lemma 1 (maximum system latency). When αU =
T-SPEC(pα, 0, rα, bα), ΨU (t) = T-SPEC(pΨ, 0, rΨ, bΨ), βL =
βR,T with R > rα then rΨ is the upper bondary of system
latency T .

Proof. Consider a system with a delay T > 0 and infinite
service rate. It has a service curve described by the burst-
delay function δT (t) = β∞,T = ∞ for t > T and 0 other-

wise. We can derive the departure curve by αL
′
(t) = (αU ⊗

δT )(t) = αU (t − T ). This equals shifting αU by T to the
right. Hence, the horizontal deviation is hαU ,αL′(t) = T ∀t.
For the cumulated delay we have D(t) =

∫ t
0
T dx = Tt, the

slope of delay function is T . It complies with delay curves
with a sustainable rate rΨ ≥ T .

As we are searching for the lowest service curve we will fix
the worst-case system latency rΨ = T for service curve βR,T .

Now the service rate R in βR,T is formulated as a func-
tion depending on a discontinuous point of departure curve

αL
′

= αU ⊗ βR,T . We form the departure curve by (min,+)-
convolution, αU = T-SPEC(αp, 0, αr, αb) and βL = βR,T .
For details in computation we refer to [3], p. 111.

(αU ⊗ βR,T )(t) =


0 0 ≤ t ≤ T
R(t− T ) T < t < p

αr(t− T ) + αb t ≥ p
(14)

Value p is the intersection of both affine segments. We can
make the following observations:

1. The departure curve ascends at point p1 = [T, 0] and

continues to p2 = [p, αL
′
(p)]

2. For t ≥ p the departure curve has a slope identical to
the arrival curve.

3. The distance to αU at p is hαU ,αL′(p− T ) = T .

Hence all possible p2 are located on a curve that can be
derived from αU by shifting it T to the right: p2 = [t, αU (t−
T )]. As a a result, the slope between p1 and p2 is

R = m(p) =
αU (p− T )

p− T for T < p (15)

Now βL(t) and (αU ⊗ βL)(t) receive additional parameter p:
βR,T (p, t) = max {0,m(p)(t− T )} and for the convolution

(αU ⊗ βL(p))(p, t) =


0 0 ≤ t ≤ T
m(p)(t− T ) T < t < p

αR(t− T ) + αB t ≥ p
(16)

For the sum of delays we use integration for horizontal de-
viation and also parametrize it with p:

D(p, t) =

∫ t

0

h(αU , αU ⊗ βL(p))(x) dx

=

∫ t

0

(αU ⊗ βL(p))−1(αU (x))− x dx using (13)

Pseudo-inverse of the parametrized departure function:

(αU ⊗ βL)−1(p, t) =

{
t

m(p)
+ T 0 ≤ t ≤ αU (p− T )

t
αR
− αB

αR
+ T t > αU (p− T )

The antiderivative for the horizontal deviation uses the sub-
stitution rule for linear functions, αU

′
is derivative:

D(p, t) = [(αU ⊗ βL(p))−1(αU (t))− t]t0 (17)

=
s(p, t)

αU ′(t)
− t2

2
(18)

s(p, t) =

{
t2

2m(p)
+ Tx 0 ≤ t ≤ p− T

x2

2αR
− αBx

αR
+ Tx t > p− T

(19)

Function αU
′
(x) has also a discontinuity at x = αB

αP−αR
that

has to be considered when computing the integral.

αU
′
(t) =

{
αp 0 ≤ t ≤ αB

αP−αR

αr t > αB
αP−αR

(20)

Finally the target function is rewritten to

F (p) = ΨU −D(p) such that ΨU (s) ≥ D(p, s) ∀s ∈ [0, t].

5. EXAMPLE
The optimization problem to find a lower service curve from
quantitative requirements in SLAs presented above has been
implemented in Matlab. To minimize cost function F (p)
the build-in Matlab command fminsearch is used.
For illustration consider the planning of a simple server sys-
tem answering customer requests. Arriving requests are
enqueued in a waiting queue if the server is busy and the
turnaround time is measured as delay. Normally the server
will process all request at maximum system speed, but some-
times it runs some maintenance tasks that degrade its service
level for a short time and enforce backlogging of requests.
An SLA using a T-SPEC arrival curve limits the arrival
rate and thus the load to the system to αr, but for a short
time a peak rate of αp is also accepted. The SLA enforces
a quantitative requirement on delay times. A delay curve,
again of T-SPEC type, limits sustainable growth rate of
aggregated waiting times per time period to rΨ = 2.0. To
accept possible extra delays caused by server maintenance
the SLA grants a permission to let the delays sum grow at
rate rΨ = 3.5 for a limited phase. With this information a
minimum service curve βL = βR,T is derived by solving the
optimization task described above.
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Table 1: Results for Ψ = T-SPEC(3.5, 0, 2.0, 15)
αb = 3 αr

0.5 0.75 1.0 1.25

αp

1.5 0.8224 0.9658 1.1575 1.3664
2.0 0.9019 1.0204 1.1982 1.4135
2.5 0.8117 1.1021 1.2107 1.4281
3.0 0.8184 1.1437 1.2413 1.4382

Table 2: Results for Ψ = T-SPEC(5.0, 0, 1.5, 20)
αb = 3 αr

0.5 0.75 1.0 1.25

αp

1.5 0.7315 0.9304 1.1401 1.3494
2.0 0.7371 0.9465 1.1602 1.3822
2.5 0.7544 0.9569 1.1681 1.3912
3.0 0.7594 0.9609 1.1723 1.3972

Table 1 shows for the example the minimum rate R in βR,T
for 16 different arrival curves αU = T-SPEC(αp, 0, αr, αb)
under the quite strict delay curve taken from the SLA. Ser-
vice rate R has to grow with the arrival rate to stay below
the restrictions of ΨU .
For comparison, table 2 contains the minimum sustainable
rates for βR,T using the same arrival conditions but a differ-
ent delay curve Ψ = T-SPEC(5.0, 0, 1.5, 20) which is a more
relaxed SLA requirement. As a result, service rate R can be
chosen much lower and allows the selection of a slower and
cheaper service provider.

6. CONCLUSIONS AND FUTURE WORK
In this paper a new method to model quantitative require-
ments in SLAs was introduced. It makes use of and extends
(min,+)-based queueing system theory.
(min,+) algebra used in Network Calculus and Real-Time
Calculus was introduced briefly. Both approach model sys-
tem load with arrival functions and set limits in form of
arrivals curves. In a similar way service curves describe
available processing power. With (min,+) convolution the
system departure curve can be bounded.
For descriptions of quantitative requirements in SLAs with
(min,+) systems the new concept of delay curves was intro-
duced. Delays as horizontal deviation between arrival and
departure curves are integrated to delay functions. As these
functions are comparable to arrival functions they can also
be bounded with delay curves. The novel delay curves are
used to describe SLAs with tolerances more accurate than
definitions of a hard deadlines.
As use case for delay curves the minimum service rate a ser-
vice provider has to offer is computed from given delay and
arrival curves. The necessary service curve is approximated
by solving an optimization problem.

Future research will deploy delay curves for validation of
quantitative requirements of SLAs in SOA systems as de-
scribed in [2]. For SOA the system node model in figure
1 with delay curves will be extend for networks of nodes.
Similar to remaining service curves [7] used in Real-Time
Calculus delay curves of nodes are influenced when process-
ing is done in serial or parallel.

Further algebraic relationships and theorems for delay curves
will be refined. For software solutions [2] best practice ad-
vises for translation of SLAs into a set of curves will be
investigated.
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