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ABSTRACT
Firstly introduced in social science, the notion of centrality
has spread to the whole complex network science. A cen-
trality is a measure that quantifies whether an element of
a network is well served or not, easy to reach, necessary to
cross. This article focuses on cities’ street network (seen
as a communication network). We redefine two classical
centralities (the closeness and the straightness) and intro-
duce the notion of simplest centrality. To this we introduce
a mathematical framework which allows considering a city
as a geometrical continuum rather than a plain topological
graph. The color plotting of the various centralities permits
a visual analysis of the city and to diagnose local malfunc-
tionings. The relevance of our framework and centralities
is discussed from visual analysis of French towns and from
computational complexity.
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1. INTRODUCTION
A city’s street network forms a transportation, exchange and
communication system. The scientific literature has been in-
terested in cities since Auerbach and Zipf formulated laws
for the distribution of cities and populations sizes [3, 22].
Numerous economical considerations of the city as a ther-
modynamic system have followed [6]. Then the formation of
the city overall shape has been modelled using various meth-
ods: cellular automata [9, 2], fractals [14, 2], DLA [19] and
the differentiation of space by means of multi-agent systems
[2, 21]. But most of these models work on square grids or
consider units of build-up areas in an Euclidian space.

Only lately with the advent of complex network theory [8]
physicists took the street system into consideration: its di-

versity [10], its topology [10, 16, 20, 11] and its formation
[5]. By studying theoretical random walks on streets, [7]
has shown that the shape of the network determines in a
preponderant way the behavior of agents on the network.
When considering a city’s street system as a network (or
large graph with non trivial features) the analysis has fo-
cused on the characterization of the topology [16, 10] and
of the efficiency [11] for which the notion of centrality [13,
18, 20] is an important point. A centrality is a measure de-
fined whether on the vertices or the edges of a graph that
quantifies to what extent that element is an important link
in the whole system. All these studies are made on small
square extractions of maps [16, 20] and consider the city as
a purely topological object, i.e it is a graph whose vertices
are intersection between streets and edges are portions of
streets.

In fact a city’s resources do not gather on intersections but
are distributed all along the streets [17]. The purpose of
this article is to construct a mathematical framework allow-
ing to model a city as a spatial graph whose each point in
the edges are also vertices. In section 2 we recall the notion
of geometrical and straight graphs definded in [12]. The
graphs are provided with a measure that integrates infor-
mation all along the edges. We reconstruct one of the most
important features of the city by introducing a hypergraph
structure that defines streets as an alignment of street seg-
ments (edges).
Sectin 3 redefines in this context two classical centralities
(closeness and betweeness previously stuided in a discrete
form in [18, 13, 20]) and introduces the notion of simplest
centrality.
Finally, section 4 discusses the relevance of our framework
and of the centralities by their usefulness in map analysis
and their computer-time complexity.
Our data are the vector extraction of a whole city’s street
network from a Geographical Information System.

2. A MATHEMATICAL FRAMEWORK TO
HANDLE WITH CITY MAPS

We restrict a city to its map: the network of its streets with-
out additional information such as population density, traffic
or space use.
In this context, cities have been represented by planar graphs
[20, 7] whose edges are portions of streets and vertices their
intersections. Nonetheless this topological representation
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has some drawbacks. At first it strongly distinguishes in-
tersections that would be points of interest and streets that
would simply bind them. In fact, a city is a distributed sys-
tem and each point in the geometry of the edges should be
considered with the same importance (think of shops dis-
tributed all along the streets and not only at their inter-
sections). Secondly, vertices of degree two are taken into
account in this graph representation; what sense do they
make? They are not intersections but additional points used
by the map-maker to sample curved streets into straight seg-
ments. Our purpose here is to define a space to represent
the idea of ”continuous graph”: a mathematical object that
features a topological graph skeleton and an homogenous
distribution of resources on edges.

2.1 Geometrical and straight graphs
A graph G = (V,E) is a finite number of vertices V and
a part E of V × V . If ]V is large one would prefer to use
the world network. If V are points in an Euclidian space we
speak of spatial networks [4] and if elements of E are ma-
terialized by geometrical curves that intersect only at their
extremities that are elements of V we say here that we are in
touch with a geometrical graph. Hence a geometrical graph
is both a topological object ( from (V,E)) and a geometri-
cal one (elements of E are curves). When elements of E are
segments, we say G is a straight graph.

For a straight graph, V = (v1, ..., vn) and the adjacency
matrix A = (aij) totally define the graph. For city maps A
is a sparse matrix so we will prefer to represent each element
of E with a reference to its extremities in V and calculate
A when it is necessary (3.1, 4.3).

2.2 Hypergraph structure
A hypergraph is a graph whose edges can contain several
vertices. One can transform a graph G = (V,E) into a
hypergraph by using an equivalence relationship on E. The
idea here is that for a city map, edges are ”street segments”
and that we can reconstruct the notion of street (a chain
of aligned street segments) with an equivalence relationship.
Let (V,E) a graph and R a reflexive relationship on E2.

Then the relationship R̂ (transitive closure) defined by :

e1 R̂ e2 iif ∃ α1 = e1, α2, ... , αn = e2 ∈ E |
α1 R α2, α2 R α3, ...., αn−1 R αn (1)

is an equivalence relationship. From this, one can consider
Rθ :

e1 Rθ e2 iif (e1 ?2 e2)∨ ((e1 ? e2) ∧ (|](e1, e2)− π| ≤ θ))
(2)

where e1 ? e2 means that e1 and e2 intersect, and e1 ?2 e2
that e1 and e2 intersect in a vertex of degree 2. ](e1, e2)
stands for the geometric angle between e1 and e2.
This Rθ allows recovering the notion of ”streets”even if input
data do not contain such labels. The algorithm labeling
streets segments with a street number does not depend on
its starting point and is fast to run (0(]V ) with optimized
structures). The price to pay is that some special cases as
forks of two segments making a very small angle with a third
one will be considered as a single street.
Fig. 1 shows a straight graph and its additional hypergraph
structure. Hypergraphs are represented by a graph (vertices

and edges) and by a vector with as much elements as edges.
The value of the vector’s i-th component is the number of the
street to which the i-th edge belongs. Fig. 2 is the pseudo-
code of a recursive algorithm to construct an hypergraph
from a graph and a relationship.

Figure 1: A straight graph (a) and its hypergraph
structure (b) deduced from Rπ/20. Viewed as a
city’s map, this graph contains 7 streets segments
but 3 streets. The dotted line is an actual curved
street from 4 to 5, sampled into straight segments
by adding the point A.

2.3 Measure and Monte-Carlo estimation
To a geometrical graph G one can associate its geometrical
projection:

πG = {x ∈ R2, ∃e ∈ E, x ∈ e} (3)

πG will be in the following identified to G. G is a compact
space and thus we define its borelian σ-algebra and its bore-
lian measure µG. For instance µG(G) is the total length of
edges in G. Or

Ψ∗(α) = µC (c ∈ C, ](c, ~u0) ∈ [0, α]) (4)

is the total length of the city that makes an angle in [0, α]
with a reference vector ~u0 and thus dΨ∗(α)/dα is the angular
density of the graph. If f is a measurable function on G, we
seek out to estimate

∫
G
f(g)dµG(g). An easy to implement

algorithm is a Monte-Carlo method. The measure PG(.) =
µG(.)/µG(G) is a ”uniform” probability measure on G with
its borelian σ-algebra. A random variable X following PG
provides a random point on the graph G. In addition,

E(f(X)) =
1

µG(G)

∫
G

f(g)dµG(g) (5)

and if X1, ..., Xn are n independent random variables that
follow PG,

µG(G)

n

∑
f(Xi)→

∫
G

f(g)dµG (6)

which allows to approximate any integral on G. In practice,
to get a random point on a straight graph with respect to PG,
one chooses at first an edge with a probability proportional
to its length. We then pick a random point on this edge,
that is seen as a barycenter of the two extremities.
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Figure 2: The algorithm adding a hypergraph struc-
ture to a graph. H is an vector with the same num-
ber of elements as graph.edges. At the end H(i)
contains the number of the street to which the i-th
edge belongs. The main function graphToHypergraph
recursively calls the sub function treat that labels an
edge.

2.4 City graph
A city graph G is a straight graph that represents a city
street network. Most of the time actual streets are straight.
If it is not the case, it is possible to sample a geometrical
graph to a straight graph and keeping the planarity (Fig
1). We provide G with an hypergraph structure: G =
((V,E), H). Elements in E are called street segment and
those in H streets. V = V1 ∪ V2 ∪ V+ where V1 contains
degree 1 vertices called dead-ends, V+ vertices of degree > 2
called intersection and V2 vertices of degree 2 (junctions)
seen as sampling artifacts to simplify intricate curves into
straight segments. For a vertexv we write E(v) the set of
edges that pass through v, for an edge e, V (e) the extremi-
ties of e and for any point g in G, E(g) the street segment
on which lies g and V (g) = V (E(g)).

3. CENTRALITIES
3.1 Closeness and straightness
There are two natural distances on a geometrical graph: the
Euclidian de and the shortest path one dsp. In the complex
network framework [1, 8] a centrality is a measure defined
on V that quantifies whether a node has a central location
or not. Among existing centralities (closeness, betweeness,
straightness, information), we focus here on those that di-
rectly derive from distances.

The closeness centrality CCi of a node i measures if the node
is close to the others in average.

CCi =
]V − 1∑

j∈V , j 6=i d
sp(i, j)

(7)

The straightness centrality CSi of a node i measures if the
node is rather in a straigth line or not and if that node
efficiently transforms euclidian distances into shortest path
distance

CSi =
1

]V − 1

∑
j∈V , j 6=i

de(i, j)

dsp(i, j)
(8)

These two centralities can be redefined by means of µG for
each point x of the city graph:

CC(x) =
µG(G)∫

G
dsp(x, g)dµG(g)

(9)

CS(x) =
1

µG(G)

∫
G

de(x, g)

dsp(x, g)
dµG(g) (10)

CS(x) is well defined since de(x, g) ∼
x→g

dsp(x, g). The short-

est path distance can be computed easily from the Floyd-
Warshall algorithm [15] that provides shortest-path distances
between all pair of vertices and for x, y two points in G :
dspC (x, y) = min

ex∈E(x) , ey∈E(y)
{dspC (ex, ey) + ||ex − x||+ ||ey −

y||}.

3.2 The simplest distance
A plausible behavior for a human being to go from place A
to place B would be to adopt the simplest path instead of the
shortest one. To model this choice, we define the information
distance diC,p(A,B) from a point to another along a path p
in the city. And we define the information distance between
those two points as : min

p path from A to B
diC,p(A,B) .

Let’s compute this distance from the toy map Fig. 3. To
direct somebody from A to B in along the doted red path
(P1) instructions are: (1) From A take the street to the
right with respect to the house, (2) go straight (keep on
the same street) while meeting 6 street-crossings, (3) on the
7th intersection, take the second street from the right, (4)
go straight - 4 streets-crossings, (5) on the 5th intersection
take the third one, (6) go straight - 1 streets-crossing, (7)
walk for 35 meters. (an intersection of degree n counts for
n streets-crossing).
This is encoded in the so called ”path information vector”
~I(A→ B||P1) = [1, 6, 2, 4, 3, 1, 35] and for P2 the blue doted

path that is the shortest path between A and B, ~I(A →
B||P2) = [1, 0, 2, 0, 1, 1, 2, 0, 2, 0, 2, 0, 115]. The information
length of apath is its number of components: 7 and 13 re-
spectively for P1 and P2. We define the information dis-
tance between two points as the minimal information dis-
tance among all paths that go from A to B. In Fig. 3 the
red dotted path was the simplest so the information distance
from A to B is 7.

By convention, the simplest distance between A and
B dsim(A,B) is 0 if A = B, 1 if A and B are in the
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same street and the information distance minus 2
otherwise.

Figure 3: Two points A and B located on a city
graph. The blue solid path is the shortest path be-
tween the two points and the red dotted one is the
simplest path.

3.3 Simplest centrality
As for the closeness, the averaging of the simplest distance
defines a centrality (the simplest centrality):

Csim(x) =
µG(G)∫

G
dsim(x, g)dµG

(11)

Since Csim is constant on a street h. Thus the centrality
can be defined on H.
Let’s define the street adjacency matrix H∗, H∗(hi, hj) = 1
if hi and hj intersect and 0 otherwise.

The topological distance is the shortest path distance cal-
culated on H∗. It counts the number of times one needs to
turn to go from a street to another one. We can calculate all
topological distances between pairs of streets by calculating
a street adjacency matrix H∗ with hij = 1 if i-th and j-th
street intersect and by applying a Floyd algorithm.

The simplest centrality rewrites:

Csim(x ∈ h0) =
µG(G)∑

h∈H ||h||.dtop(h, h0)
(12)

A street that maximizes Csim is called a center of the city
hc. If the street network is not too regular hc is unique. The
topological radius of the network is : rtop = max dtop(h, hc)
and the diameter is:

diamtop = max
h1,h2∈H

dtopC (h1, h2) (13)

with diamtop ≤ 2.rtop

4. DISCUSSION
4.1 Visualization
A centrality is a function from a map to R so three dimen-
sions are needed to visualize it. We represent the street
network in R2 and associate to each point a color that cods
for its centrality. To this we perform a mapping from the
image of the centrality to a color map with C colors. The
mapping is not linear: we used a histogram equalization in
order to get a more contrasted plot. That way a color rep-
resents a proportion 1/C of the city and the color steps in
every 1/C-quintile.

Figure 4: The topological distance to the center for
the city of Amiens and its nearest suburb. The cen-
ter is the highway belt and the rest of the city orga-
nizes hierarchically: there is no radial component in
the map, a few long streets maintain a topological
distance almost constant in every zone.

Each centrality produces an interpretation of the map: a
radial one for the closeness, a local one for the straightness
and a hierarchical one for the simplest centrality. This is
illustrated in Fig. 4, 5.

For the closeness, the main effect is a side effect: if for Troyes
the maximal centrality coresponds to the city center, for Avi-
gnon the maximum is hit in the center of the image rather
than in the center of the city (on the top left). This leads
to think that in ”normal” cities, de ' dsp. The straightness
is side effects free but the overall impression is ill-assorted.
The simplest centrality provides a hierarchical view of the
city. On each map, a zone is particularly striking (middle
right) for it produces a discontinuity in the overall variation
of the centralities. The centralities are able to put in light
ill-deserved zones. Troyes is quite homogeneous but the cen-
trality analysis sticks to reality in Avignon: the main axes
are the old city walls, a high way and radial axis. The ill-
deserved zone detected on the right is a residential area,
volontary isolated and the one on the bottom is poor area
known by town planners.

In Figure 4 we seek for the simplest center of the extended
city of Amiens and map each street to its simplest distance
to that center. The center happens to be the highway belt,
which is not surprising since it is indeed its purpose to re-
duce distances in a city. Then a few long streets grid the
whole area and consequently the variation of the distance is
not radial but constant in the overall with local hierarchi-
cal variations. Besides the radius of rtop = 18 is small in
comparison to the size of the city.

4.2 The importance of geometrical graphs
Representing cities by straight graphs rather than plain graphs,
using µG, is important wor several reasons. Firstly it allows
a continious plot of the centrality rather than a discrete one
as in [13]. Secondly, when calculating a centrality on a plain
graph one introduces a bias due to vertices of degree 2. In-
deed in the data this kind of vertices is artificially added
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Figure 5: (Color online). The different centralities studied in this article for two french cities: Avignon (the
extended city center) and Troyes. The color mapping is obtained with 5 colors and a histogram equalization
so that in each picture a color represent a proportion 1/C of the city.

to sample curved roads to straight segments. Thus curved
streets have a bigger weight than straight ones. Moreover
the proportion of vertices of degree two is quite variable
according to the city: 0.1 in Troyes, 0.14 in the center of
Amiens and 0.34 in the whole Amiens (Fig 4).

4.3 Complexity
The computation is faster for the simplest centrality than
for the closeness or the straightness ones. We start with the
skeleton of a city graph G onto the form of two arrays V
for vertices and E for edges. V is of size v × 2 and contains
coordinates of vertices. E is of size e × 2 and contains the
references in V of the edge end points. Let’s note h = ]H
and L = µG(G)

The steps of the calculation of the straightness or the close-
ness are:

1. Compute the adjacency matrix: 0(e)

2. Compute the skeleton of shortest path distances with
a Floyd algorithm (three nested loops): α.v3.

3. Estimate the centrality on samp.L points each with
samp.L points (sampling): O(ech2.L2)

As for the simplest centrality:

1. Compute the hypergraph: O(e2)

2. Compute the street adjacency matrix: O(ev)

3. Compute the shortest path: α.h3

4. For each street calculate the centrality: O(h2) (with a
very small coefficient).

In average all v, e, h, L are linked together and we consider
that e ' 1.5v, h ' 0.25e ' 0.37v. Hence theoretically the
simplest centrality calculus is about 20 times faster than the
other ones’.

5. CONCLUSION
In this article we have presented a mathematical framework
(geometrical graphs) that allows to consider a city map not
as a purely topological object but as a continuum. In ad-
dition, we have shown that a relationship based on local
alignment of street segments permits to reconstruct the no-
tion of street. We have redefined in this context two classical
centralities (closeness and straightness) that derive from Eu-
clidian and shortest-path distances as well as a new one: the
simplest centrality that can be seen as the integration of the
simplest distance. Each of these centralities allow to locate
malfunction in a city transportation network. The closeness
is above all radial with a strong side effect and the straight-
ness is a local measure whereas the simplest centrality offers
a hierarchical view of the city, main roads as highway belts,
former surrounding walls. The calculation of the simplest
centrality is faster than the other ones.
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[4] M. Barthélemy. Spatial networks. arXiv:1010.0302v2,
2010.
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