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ABSTRACT
The paper [4] has established the convergence of the Nash
equilibrium in routing games to the Wardrop equilibrium
as the number of players grows. The result was obtained
under diagonal strict convexity assumption. We extend this
result and establish the convergence under weaker convexity
assumptions (the B type cost structure of [5]).

1. INTRODUCTION
The paper [4] has established the convergence of the Nash
equilibrium in routing games to the Wardrop equilibrium as
the number of players grows. The proof makes use of an
assumption on diagonal strict convexity introduced by [6].
While this condition is known to hold for some class of costs
[1], it is very strong and quite often it fails to hold. Indeed,
even for a network of two parallel links, the condition does
not hold for general costs, as shown in [5], unless some light
trafic condition is imposed. In this paper we propose a new
alternative proof for the convergence to Wardrop equi- lib-
rium. It is based on a new local potential property that we
establish: if among a number of players there are two or
more that are symmetric, then one can replace the symmet-
ric players by a single player who has as demand the sum
of demands of the N players, and has a new cost function
which we call a local potential. With this transformation,
any equilibrium for the new game provides a unique equiva-
lent equilibrium in the original game where the symmetrical
players share equally the flows of the original player.

2. THE MODEL
Define the directed graph as G = (N ,L). where N is the set
of nodes and where L is the set of directed arcs. Let W be a
set of source destination pairs. Consider a set I = {1, ..., I}
of traffic classes, each represented by
(i) a source destination pair w ∈ W ,
(ii) the traffic demand dw between the source-destination
pair w,

(iii) a set Rw of available paths between the source destina-
tion pair w.

Define the following flows:
hi
wr := the flow of player i over path r.

hrw := the total flow over path r.
xi
l := the flow of player i from class i on link l. Let xl =

∑

i∈N xi
l be the flow over link l.

The following relations hold (flow conservation):
∑

r∈Rw

hi
wr = diw, w ∈ W, (1)

∑

w∈W

∑

r∈Rw

hi
wrδ

l
wr = xi

l , l ∈ L, (2)

xi
l ≥ 0, l ∈ L, (3)

where δlwr is a 0− 1 indicator function that takes the value
1 when link l is present on route r ∈ Rw.

Define xl to be the vector of flows over link l of all players,
and x to be the set of all {xl, l ∈ L}.

Link routing case: We shall study in particular the case
where at each node we can split the incoming traffic among
the outgoing links.

In the link routing framework, we describe the system with
respect to the variables xi

l which are restricted by the non-
negativity constraints for each link l and player i: xil ≥ 0
and by the conservation constraints for each player i and
each node v:

riv +
∑

j∈In(v)

xi
j =

∑

j∈Out(v)

xi
j (4)

where riv = di if v is the source node for player i, riv = −di
if v is its destination node, and riv = 0 otherwise; In(v)
and Out(v) are respectively all ingoing and outgoing links
of node v. (di is the total demand of player i).

3. THE NASH-COURNOT GAME
3.1 Cost structure
A player i determines the routing decisions for all the traffic
that corresponds to the associated class i. The cost of player
i is assumed to be additive over links:

J i(x) =
∑

l

J i
l (x)., (5)



We define two sets of assumptions on the cost structure.
Assumptions A:

• J i
l (x) = J i

l (x
i
l , xl)

• Ki
l (x

i
l, xl) :=

∂Ji

l
(xi

l
,xl)

∂xi

l

exists and is continuous in xi
l

whenever J i
l (x

i
l , xl) is finite, for all i and l

• J i
l (x

i
l , xl) is convex in xi

l , for all i and l

Assumptions B:

• Assumptions A

• There exists tl(xl) ≥ 0 such that J i
l (x

i
l , xl) = xi

ltl(xl).

tl(xl) is called the cost density of link l and depends only on
the total flow through the link.

3.2 Link routing framework
The Lagrangian with respect to the constraints on the con-
servation of flow is:

Li(x, λ) =
∑

l∈L

J i
l (xl, x)

+
∑

v∈N

λi
v



riv +
∑

j∈In(v)

xi
j −

∑

j∈Out(v)

xi
j



 , (6)

for each player i.

Thus a vector x with nonnegative components satisfying (4)
for all i and v is an equilibrium if and only if the following
Karush-Kuhn-Tucker (KKT) condition holds:

Below we shall use uv to denote the link defined by node
pair u, v. There exist Lagrange multipliers λi

u for all nodes
u and all players, i, such that for each pair of nodes u, v
connected by a directed link (u, v),

Ki
uv(x

i
uv, xuv) ≥ λi

u − λi
v, (7)

with equality if xuv > 0.

Assume cost structure B. Then, the Lagrangian is given by

Li(x, λ) =
∑

l∈L

[

tl(xl)x
i
l

]

+
∑

v∈N

λi
v



riv +
∑

j∈In(v)

xi
j −

∑

j∈Out(v)

xi
j



 , (8)

for each player i.

(7) can be written as

tuv(xuv) + xi
uv

∂tuv(xuv)

∂xuv

≥ λi
u − λi

v. (9)

4. THE CASE OF ATOMLESS PLAYERS:

WARDROP
Wardrop principle can be expressed mathematically to state
that the flow on every route r serving a commodity, or origin-
destination (OD) pair, w, is either zero, or its cost is equal to
the minimum cost on that OD pair. Along with the fact that
the cost on any route serving an OD pair is at least as high
as the minimum cost on that OD pair, and the satisfaction
of demand for each OD pair, we obtain the following system:

hwr(cwr − λw) = 0, r ∈ Rw, w ∈ W, (10)

cwr − λw ≥ 0, r ∈ Rw, w ∈ W, (11)
∑

r∈Rw

hwr = dw, w ∈ W (12)

Here cwr is the total cost over the path r ∈ Rw.

In the link cost framework, we get instead:

tuv(xuv) ≥ λi
u − λi

v, (13)

with equality if xuv > 0.

Adding non-negativity restrictions hwr ≥ 0 and λw ≥ 0, the
resulting system of equalities and inequalities can be seen
as the Karush-Kuhn-Tucker (KKT) optimality conditions of
the following optimization problem, known as the Beckmann
transformation [3]).

min f(x)

where f(x) =
∑

l∈A

∫ xl

0

tl(xl)dx =
∑

l∈A

∫

∑
i∈N

xil

0

tl(x)dx

subject to (1 - 3).

5. PROPERTIES OF NASH EQUILIBRIUM
The following lemma shows that two symmetrical players
behave the same way at a Nash equilibrium, i.e they have
the same flow on every link.

Lemma 1. Assume that there are two players, say i and
j, in a routing game which have the same common input
(source) s, output (destination) o, the same demand, and
the same cost functions which are of type A.
Consider an equilibrium flow x. Then for every link l, xi

l =
xj
l .

Proof. The proof is a direct adaptation of the proof of
[5][Lemma 4].

6. CONVERGENCE TO WARDROP EQUI-

LIBRIUM
We now show the main result of the article.

Theorem 1. Assuming B, there is convergence of the Nash
equilibrium to the Wardrop equilibrium, in the following senses:

• Let xN be an equilibrium that corresponds to the re-
placement of each player i by N symmetrical copies.



Then any limit of a converging subsequence is a Wardrop
equilibrium

• The Wardrop equilibrium is an ǫ-equilibrium for the
Nth game for all N large enough (i.e. no player can
gain more than ǫ by deviating)

• For all N large enough, an equilibrium in the N-th
game is an ǫ-Wardrop equilibrium

Proof. Assume that every player i in the original game is
replaced by a set of m identical players, denoted by (i, k)
where k = 1, ...,m, with the total demand of the new set
being equal to the one of the original game. The demand of
any player in the group that replaced player i is thus given
by d(i,k)[m] = di/m. We shall denote the flows for a given

m by x
(i,k)
l [m].

Define xi
uv[m] =

∑m

k=1 x
(i,k)
uv [m] and xuv[m] =

∑

i x
i
uv[m].

We rewrite (7) for the new game: There exist Lagrange

multipliers λ
(i,k)
u [m] for all nodes u and all players, (i, k),

such that for each pair of nodes u, v connected by a directed
link (u, v),

tuv(xuv[m]) + x(i,k)
uv [m]

∂tuv(xuv[m])

∂xuv[m]
≥ λ(i,k)

u [m]− λ(i,k)
v [m],

(14)

with equality if x
(i,k)
uv [m] > 0.

Define λi
u = m−1 ∑m

k=1 λ
i,k
u [m].

Taking the sum over all k subplayers in (14) and dividing
by m, we get the following necessary conditions for x to be
an equilibrium for each link (u, v):

tuv(xuv[m]) +
1

m
xi
uv

∂tuv(xuv[m])

∂xuv[m]
≥ λi

u[m]− λi
v[m], (15)

with equality if xi
uv[m] > 0.

Since the (i, k) subplayers have the same source, destina-
tion and demand, the previous lemma states that they have

the same flows on all links, namely x
(i,k)
l [m] = x

(i,k′)
l [m] ,

∀(k, k′, l).

Then (15) are the KKT conditions for the best response
for player i of the vector {xi

l} in the original game, with
nonnegative components satisfying the conservation of flow
constraints in the routing problem where the cost to be min-
imized by player i is given by

∑

l∈L

(

1

m
xi
ltl(xl) +

m− 1

m

∫ xl

0

tl(y)dy

)

(16)

We note that this converges to the potential of the Wardrop
equilibrium, uniformly in x. We can then conclude from
[2] that the equilibrium converges to the Wardrop one. The
three assertions of the theorem are proven by applying [2][The-
orem 3.1].

7. APPLICATION
We now show an example of application of our result. For
all links, we consider an M/M/1 model, with capacity Cl for
link l, and the corresponding cost is the delay of the link.

J i
l (x

i
l , xl) =



















0 xi
l = 0

xi
l

Cl − xl

xi
l > 0 , xl < Cl

+∞ xi
l > 0 , xl ≥ Cl

(17)

For a given flow x, assuming that each queue is stable, the
network is a Jackson network. It is noted that this cost
structure is conform with assumptions B. Hence our result
shows that there is convergence of the Nash Equilibrium to
a Wardrop equilibrium. It is also noted that the assump-
tion of diagonal strict convexity (used in [4] for the proof)
does not hold in this example without a further light traffic
assumption. Assume two users I = {1, 2} and two parallel
links. If there exists a link l such that the sum of demands of
both players exceed Cl, then diagonal strict convexity does
not hold, as shown in [5].

8. CONCLUSION
We have shown the convergence of the Nash equilibrium to
the Wardrop equilibrium in routing games as the number of
players grows. This is an extension of a previous result by
Haurie and Marcotte, and the convergence has been shown
under more general convexity assumptions. Those assump-
tions include in particular Jackson networks. The proof re-
lies on a local potential property which shows the equiv-
alence between N symmetrical players and a single player
whose demand is the sum of their demands.
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