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ABSTRACT
We study a spatial framework for process algebra with or-
dinary differential equation (ODE) semantics. We consider
an explicit mobility model over a 2D lattice where processes
may walk to neighbouring regions independently, and inter-
act with each other when they are in same region. The ODE
system size will grow linearly with the number of regions,
hindering the analysis in practice. Assuming an unbiased
random walk, we introduce an approximation in terms of a
system of reaction-diffusion partial differential equations, of
size independent of the lattice granularity. Numerical tests
on a spatial version of the generalised Lotka-Volterra model
show high accuracy and very competitive runtimes against
ODE solutions for fine-grained lattices.

Keywords
Process Algebra, Fluid Approximation, Partial Differential
Equations

1. INTRODUCTION
Modelling space explicitly is a relevant concern in a va-

riety of disciplines such as biochemistry, ecology, and epi-
demiology. At the same time, process algebra [13, 7, 8, 12,
2] have been successfully applied in the modelling of com-
plex systems. Here we focus on spatial models expressed by
process algebras with ordinary differential equation (ODE)
semantics. We consider a spatial domain modelled as a regu-
lar two-dimensional lattice, where agents may interact with
each other if they are in the same region. In additions,
agents may move independently from each other to neigh-
bouring regions with an unbiased random walk, i.e., equally
likely in any direction. The rate of movement, however,
may be dependent on the agent type considered (and may
be zero). Under these assumptions, the ODE state-space
size grows linearly with the number of regions, making the
analysis difficult in practice for dense lattices.

Our main contribution is a technique that, given a process
algebra model, infers a system of partial-differential equa-

tions (PDEs) of reaction-diffusion type whose size is inde-
pendent from the lattice size. This is an approximate view of
the model which replaces discrete movements across regions
in a continuous fashion. We work with the process algebra
FEPA (Fluid Extended Process Algebra) presented in [19,
20]. However, with appropriate changes our ideas are appli-
cable to languages such as Bio-PEPA [7], Cardelli’s Chemi-
cal Ground Form [4], and the continuous π-calculus [14].
In the literature concerned with models that are not de-

rived from a process algebra, such PDE approximations are
typically presented by first considering a static version of the
system in terms of an ODE model, where locality is not ex-
plicitly taken into account. Such a static description defines
the model of local interactions. Then, a spatial domain and
a mobility model are added, leading to a mobile model in
terms of a PDE where a diffusive term captures movement,
and a reactive term captures the interacting behaviour of
the static model (cf., e.g., [16]). We proceed in an analo-
gous fashion. The generic behaviour within any region is
captured by some static FEPA model M , where space is not
modelled explicitly. Then, we consider a spatial lifting of
the model, S(M), a syntactic transformation which yields
an FEPA model that makes the static version parametric
with respect to the set of regions, and adds the random-walk
behaviour. We justify our PDE approximation by observ-
ing that the ODE system of the spatial model S(M) can be
written in terms of a discrete Laplacian operator. The PDE
is taken as the continuous approximation of such Laplacian.
At first sight, this approximation might appear of little use

in practice. This is because, except for special cases, analyt-
ical PDE solutions are not available, and PDE systems are
solved numerically using algorithms that discretise the con-
tinuous space [18]. However, when solving the spatial ODE
system directly the number of discrete regions is determined
by the FEPA model, while the coarseness of the discrete
mesh made by the PDE solver depends on the algorithm’s
parameters. Thus, the PDE solver may in effect perform a
coarsening of the original spatial domain. Numerical anal-
ysis of spatial extensions of the generalised Lotka-Volterra
model [15] confirm high accuracy for fine meshes.

Related work. [3] studies mobile ad-hoc networks by means
of a probabilistic process algebra. Potential fluid limits,
however, are not investigated. PALOMA, instead, is a re-
cently proposed stochastic process algebra with an explicit
notion of space [9]. It assumes arbitrary spatial domain
and mobility model, which can be captured by an ODE sys-
tem but not as a PDE, as done here. MASSPA has an



ODE semantics (also supporting higher-order moment clo-
sures) with an explicit spatial domain, but with no move-
ment [11]. Both PALOMA and MASSPA provide a process-
algebra framework on top of the Markovian Agents Model [6].
A mobile extension of [6] is presented in [5], yielding a PDE.
Space is directly continuous, instead of being interpreted as
an approximation to a fine-grained lattice as done in this pa-
per. The communication semantics is also different, being
based on asynchronous exchange of messages, as opposed to
a stricter notion synchronisation in FEPA. PALPS is a pro-
cess algebra for spatial ecological modelling, proposed with
a discrete-state semantics [17], allowing for individual-based
reasoning which however does not scale to population mod-
els. A review of other process algebras with explicit spatial
support, but without PDE approximations, is given in [1].
Beyond process algebra, but closely related, is the spatial
modelling technique for coloured Petri Nets in [10]. Tech-
nically, we both assume a uniform lattice; conceptually, we
both superimpose a spatial domain onto a static model. In-
terestingly, their motivation is dual to ours: in [10] a contin-
uous domain is discretised (allowing, e.g., to re-use Petri-net
machinery), as opposed to our making discrete lattices con-
tinuous.

Paper outline. Section 2 overviews FEPA. Section 3 presents
the spatial extension. Section 4 discusses the numerical eval-
uation. Finally, Section 5 concludes.

2. FLUID EXTENDED PROCESS ALGEBRA
Next we present the fluid process algebra FEPA [20], here

extended to allow birth and death of processes, needed in
many models of biological and ecological systems. This is
achieved made by considering a single-level grammar mixing
sequential behaviour and parallel composition.

The notion of fluid atom essentially defines the behaviour
of an agent.

Definition 1. The syntax of a FEPA fluid atom is given by

S ::= 0 | P |
∑
i∈I

(αi, ri).S | S ‖ S

where P
def
= S denotes a constant, α is an action in the

action set A and r ∈ R>0.

As usual, 0 stands for the inert process. Choice between
activities is encoded by

∑
i∈I(αi, ri).Si. The value ri in ac-

tivity (αi, ri) denotes a coefficient that contributes to deter-
mining the rate of the exponential distribution at which the
activity occurs. The parallel composition S ‖ S is without
synchronisation. Thus, an activity (α, r).(S ‖ S) encodes a
process that spawns two independent copies of S. The se-
mantics for a fluid atom is given by the following standard
rules:

∑
i∈I(αi, ri).Si

(αj ,rj)−−−−−→ Sj

, j ∈ I
S

(α,r)−−−→ S′

P
(α,r)−−−→ S′

, P
def
= S

S1
(α,r1)−−−−→ S′

1

S1 ‖ S2
(α,r1)−−−−→ S′

1 ‖ S2

S2
(α,r2)−−−−→ S′

2

S1 ‖ S2
(α,r2)−−−−→ S1 ‖ S′

2

For a fluid atom P , we denote the set of constants reachable
from P as B(P ). More formally, B(P ) is the smallest set such

that a) P ∈ B(P ) and b) for any P0
(α,r)−−−→ P1 ‖ . . . ‖ Pn

with P0 ∈ B(P ), it holds that P1, . . . , Pn ∈ B(P ), provided
that Pi �= 0 for all 1 ≤ i ≤ n. Here, the equality is intended
to be syntactical.
We can now state the FEPA grammar for composing species.

Definition 2 (FEPA Model). A FEPA model M is given
by the grammar

M ::= M ‖L M | P
where L ⊆ A and P is a constant. For any two distinct con-
stants P and P ′ in M , we require (without loss of generality)
that B(P ) ∩ B(P ′) = ∅.
As usual, ‖L is the parallel operator; here synchronisation

takes place over shared action types belonging to the action
set L. For a FEPA model M , we define G(M) as the set
of all constants in M and B(M) =

⋃{B(P ) | P ∈ G(M)}.
Each fluid atom P appearing in M represents an indepen-
dent population of agents of type P . Thus, the model is com-
pleted by an initial concentration function v(0) : X → N0,
with B(M) ⊆ X assigning initial conditions. A function
v : X → R≥0 is called concentration function.

Example 1. The well known SEIR (susceptible-exposed-
infectious-recovered) model (e.g., [21]) can be described by
the FEPA model S ‖{α} I with

S
def
= (α, r).0

I
def
= (α, 1).(I ‖ E) + (γ, z).R

E
def
= (β, s).I

where α, β and γ refer to infection, exposure and recovery,
respectively. We have that G(S ‖{α} I) = {S, I}, B(S ‖{α}
I) = B(S) ∪ B(I) = {S,E, I, R}.

For conciseness, we present the semantics of interaction
using only mass action. To encode PEPA [13], the version
in [20] also allows minimum-based synchronisation which is
however not used in the examples of interest here.

For an action α, the apparent rate of a fluid atom S is
given by the sum of all rates labelled with α that may be
performed by S. This allows to account for multiple α-

labelled choices such as P
def
= (α, r).P ′ + (α, r).P ′′.

Definition 3 (Apparent Rate). The apparent rate of action
α of a fluid atom S, denoted by rα(S), is defined as follows:

rα(0) = 0,

rα(P ) = rα(S) if P
def
= S

rα
(∑

i∈I

(αi, ri).Si

)
=

∑
i∈I:αi=α

ri,

rα(S0 ‖ S1) = rα(S0) + rα(S1).

Definition 4 (Parameterised Apparent Rate). Let M be a
FEPA model, α ∈ A and v a concentration function. The
apparent rate of M with respect to v is defined as

rα(M0 ‖L M1, v)=

{
rα(M0, v) · rα(M1, v) , α ∈ L,

rα(M0, v) + rα(M1, v) , α /∈ L,

rα(P, v) =
∑

Pi∈B(P )

vPirα(Pi)

where rα(Pi) is the apparent rate of a FEPA fluid atom Pi,
by Definition 3.



In Example 1 it holds that rα(S, v) = rvS , which gives the
apparent rate at which a concentration of vS S-components
exhibits action α. When applied to a parallel composition,
it gives the rate of interaction, e.g., rα(S ‖{α} I, v) = rvSvI ,
which models the mass-action kinetics.

Parameterised component rates define the “fluxes” related
to a species. These will be the constituents of the vector field
of the ODE system to be analysed (shown below Definition
6). In the ODE for species P , these will yield a negative
contribution to α-actions performed by P , and positive for
all contributions of other species P ′.

Definition 5 (Parameterised Component Rate). Let M be
a FEPA model, α ∈ A and v a concentration function. The
component rate of P ∈ B(M) is parameterised by v in the
following manner.

• M = M0 ‖L M1: if P ∈ B(Mi), i = 0, 1, and α ∈ L
then

Rα(M0 ‖L M1, v, P ) :=
Rα(Mi, v, P )

rα(Mi, v)
rα(M0 ‖L M1, v).

• M = M0 ‖L M1: if P ∈ B(Mi), i = 0, 1, and α /∈ L
then

Rα(M0 ‖L M1, v, P ) := Rα(Mi, v, P ).

• M = Q: then Rα(Q, v, P ) := vP rα(P ).

Notation.
We use Newton’s dot notation v̇P for the derivative of vP .

To enhance readability, time t will be suppressed, e.g., v̇P
denotes v̇P (t).

Definition 6. Let M be a FEPA model. The fluid seman-
tics of M is given by v̇ =

∑
α∈A Fα(M, v) ≡ F (M, v) with

initial condition v(0) and F (M, v)P being defined as∑
α∈A

(( ∑
P ′∈B(M)

pα(P
′, P )Rα(M, v, P ′)

)
−Rα(M, v, P )

)
,

where P ∈ B(M) and

pα(P
′, P ) :=

1

rα(P ′)

∑
P ′ (α,r)−−−→P ′

1‖...‖P ′
n

r · |{i | P ′
i = P}|

For instance, S ‖{α} I gives the well-known ODE system
for the SEIR model:

v̇S = −rvSvI v̇E = −svE + rvSvI (1)

v̇I = −zvI + svE v̇R = zvI

Example 1 is non-spatial. More in general, as discussed,
we take a FEPA model as a static description of the dynam-
ics of interaction within any region of some spatial domain.
In the remainder of this section we show how two further ex-
amples from epidemiology and ecology of non-spatial models
can be captured in FEPA. In the next section, instead, we
consider the extension that can lift these models to a spatial
domain. In passing, we note that none of the models pre-
sented here can be encoded with the predecessors of FEPA
[19, 20], because of the presence of birth/death behaviour.

Example 2 (Predator/Prey Model). Let us define

Si
def
=

∑
1≤j≤d

(
(αi,j , qi,jri,j).(Si ‖ Si) + (αi,j , (1− qi,j)ri,j).Si

)
+ (βi, si).0

Rj
def
=

∑
1≤i≤d

(αi,j , 1).0+ (γj , zj).(Rj ‖ Rj),

where 0 < qi,j < 1 and 1 ≤ i, j ≤ d. Then, the model

M := (S1 ‖∅ . . . ‖∅ Sd) ‖{αi,j |i,j} (R1 ‖∅ . . . ‖∅ Rd) (2)

induces the ODE system

v̇Si = vSi

d∑
j=1

qi,jri,jvRj − sivSi (3)

v̇Rj = zjvRj − vRj

d∑
i=1

ri,jvSi

This is known as the generalised Lotka-Volterra model [15,
Section 3.2], where the predators S1, . . . , Sd prey on all the
prey species R1, . . . , Rd, but with different severities ri,j .
With this agent-based view, qi,j can be interpreted as the
probability that a predator Si replicates after eating a prey
Rj .

Example 3 (Competing Species). Let us define

S1
def
= (α, r1).(S1 ‖ S1 ‖ S1)

S2
def
= (α, r2).(S2 ‖ S2)

R
def
= (α, 1).0

Then the FEPA process (S1 ‖∅ S2) ‖{α} R induces the ODE
system

v̇S1 = 2r1vS1vR

v̇S2 = r2vS2vR

v̇R = −(r1vS1 + r2vS2)vR

Fluid atom R models a resource, which can be consumed with
an α interaction; S1 is a species that gives rise to two de-
scendants after consuming a resource, while S2 induces only
one offspring. These ODEs are an instance of competitive
Lotka-Volterra ODEs in the case of two species [15, Section
3.5].

3. SPATIAL FLUID EXTENDED PROCESS
ALGEBRA

In ecology, spatial models are explained as arising from
their static counterparts by adding the Laplace operator
� = ∂xx + ∂yy [16, Chapter 10]. That is, if v̇ = f(v) is
a static ODE model its spatial version is given by a partial
differential equation ∂tω = f(ω) + μ� ω, with μ being the
diffusion coefficient. The usage of the Laplace operator is
motivated by the fact that the spatial probability distribu-
tion π(t, x, y) of a particle which is subject to a random walk
satisfies the PDE ∂tπ = �π [15, Section 11.1].

In an analogous way, we take a FEPA process as the static
model of the local interactions occurring within an arbitrary
region, and define its spatial version in such a way that all
fluid atoms are augmented with the capability of moving
across neighbouring regions independently from each other,



in addition to enabling all the activities that are available in
the static version. The transformation depends on the choice
of the spatial domain, which we assume to be a discretisation
of a square Ω ⊆ R

2, denoted by RK .1 The parameter K
determines the size of the region, i.e., we have that RK :=
Ω∩ ( 1

K
Z)× ( 1

K
Z), where K ≥ 1. Thus, the total number of

regions is O(K2).
The transformation from a static to a spatial model is

carried out so as to have that processes never change region
as a result of performing an activity originally present in
the static version. For any static FEPA process M , such a
transformation is denoted by SK(M). In the present section
we show that the ODE system of SK(M) is an approxima-
tion to the PDE system ∂tωP = F (M,ω) + μP � ωP , with
P ∈ B(M).

We illustrate our intent behind the definition of SK by
considering the predator-prey FEPA model (2) in the case of
a single class of predators and preys (i.e., d = 1). To improve
readability, we drop the superfluous index, i.e. S ≡ S1,
α ≡ α1,1 and so on. Let us write N (x, y) for the set of
(Neumann) neighbours of the region (x, y), that is N (x, y)
is given by

RK ∩{(x−1/K, y), (x+1/K, y), (x, y−1/K), (x, y+1/K)}
Our transformation will yield SK(M) defined as

SK(M) = S(0,0) ‖L R(0,0), L = {αl | l ∈ RK},
with

Sl def
= (αl, qr).(Sl ‖ Sl) + (αl, (1− q)r).Sl

+ (βl, s).0+
∑

˜l∈N (l)

(δ, μl,˜l
S (K)).S

˜l

Rl def
= (αl, 1).0 + (γl, z).(Rl ‖ Rl) +

∑
˜l∈N (l)

(δ, μl,˜l
R (K)).R

˜l,

for all l ∈ RK . Intuitively, SK(M) models a situation where
fluid atoms of type B(M) = {S,R} move across RK via the
diffusion action δ (which we assume in the remainder that
it does not belong to A).

Such a transformation induces in effect a family of spatial

models depending on the choice of the rates μl,˜l
P (K), which

have not yet been defined. These may depend, in general,
on the fluid atom P that is moving, on the origin and target

region, i.e., l and l̃, respectively, and on K. The actions orig-
inally available in M, i.e., α, β and γ, are instead performed
locally, with the same rates as in the static model version
M. Enforcing synchronisation only between processes in the
same region is achieved by appending l to each action type,
modifying the synchronisation sets accordingly in the model
equation.

Hence, our idea of spatial extension is formally captured
by the following.

Definition 7 (Spatial FEPA). For a given FEPA model
M , the spatial version of M over RK , denoted by SK(M),
is inductively given by

SK(P ) := P (0,0)

SK(M0 ‖L M1) := SK(M0) ‖SK(L) SK(M1),

1This assumption simplifies presentation and implementa-
tion, but it can be in principle relaxed to arbitrary domains
with a piecewise differentiable boundary.

where SK(L) = {αl | α ∈ L ∧ l ∈ RK} and, for all l ∈ RK ,

P l def
=

∑
˜l∈N (l)

(δ, μl,˜l
P (K)).P

˜l+
∑

(α,r,i)∈X

(αl, r).(P l
i,1 ‖ . . . ‖ P l

i,ni
)

whenever P
def
=

∑
(α,r,i)∈X(α, r).(Pi,1 ‖ . . . ‖ Pi,ni), where

the case μl,˜l
P (K) = 0 corresponds to removing of the respec-

tive summand in the definition of P l. (In the special case
(Pi,1 ‖ . . . ‖ Pi,ni) = 0, we set (P l

i,1 ‖ . . . ‖ P l
i,ni

) := 0.)

Moreover, let A+ := {αl | α ∈ A ∧ l ∈ RK} ∪ {δ}.
For any FEPA model M , SK(M) is a FEPA model, with

actions from A+. For any choice of the rates μl,˜l
P (K), an

underlying ODE system can be defined. For example, the
ODE of vSl in SK(M) is given by

v̇Sl = qrvSlvRl − svSl +
∑

˜l∈N (l)

(
μ
˜l,l
S (K)v

S
˜l − μl,˜l

S (K)vSl

)
,

where l ∈ RK and μ
˜l,l
S (K) ≥ 0. Since R induces |RK | ODEs

as well, the overall size of the system is 2|RK |. In general,
such a derivation is formally obtained through the following.

Theorem 1. Let us fix a FEPA model M , a concentration
function v of SK(M) and some l ∈ RK . Then, the con-
centration function v|l of M , given by (v|l)P := vP l for all
P ∈ B(M), satisfies the ODE v̇P l = F (SK(M), v)P l with

F (SK(M), v)P l = F (M, v|l)P

+
∑

˜l∈N (l)

(
μ
˜l,l
P (K)v

P
˜l − μl,˜l

P (K)vP l

)
, P ∈ B(M).

Proof. See Appendix A.

Informally, this theorem says that each ODE in SK(M)
has two contributions. The first contribution is the reactive
part F (M, v|l)P , which corresponds to the behaviour of the
static model M , accounting for local interactions within a
region. The diffusive part, instead, is due to the migration
across regions. A direct consequence of the above theorem
is that the ODE system of a FEPA model M over RK has
|B(M)| · |RK | coupled ODEs.

Now, we wish to study the conditions under which the
analysis of SK(M) is independent from K. Intuitively, we
would like to make space continuous by sending K to infin-
ity, hence by making the RK increasingly finer. This entails
turning per-region ODEs into a system of PDEs. For this,
specific assumptions must be made on the choice of the rates

μl,˜l
P (K). In particular, a suitable scaling needs to be found

also with respect to K. Further, we need to make assump-
tions on the initial concentration function for SK(M) and
how it scales with K.
Overall, we make three assumptions, which we discuss in

detail next.

Assumption 1: Unbiased Random Walk.
We assume that each fluid atom is subjected to an unbi-

ased random walk, i.e., it may migrate equally likely to any
of its neighbours. More formally, we require that

(A1) μl,˜l
P (K) = μP (K)



for all P ∈ B(M), l ∈ RK and l̃ ∈ N (l). Notice, how-
ever, that our assumption still allows distinct fluid atoms to
perform migrations with different rates.

Assumption 2: Scaling of μP (K).
Since a migration activity covers the distance 1/K in RK ,

each μP (K) should scale with K in a reasonable way. To
motivate our forthcoming spatial scaling, let us consider an
unbiased random walk in the two-dimensional unbounded
grid 1

K
Z × 1

K
Z, where each migration covers the distance

1/K and the sojourn time at each state is exponentially dis-
tributed with mean 1/rK . Then, the corresponding CTMC,
denoted by (WK(t))t≥0, enjoys the following property.

Proposition 1. Let us assume that WK(0) = (0, 0) and de-
note by dK(t) := ‖WK(t)‖ the Euclidean distance of WK(t)
from the origin after time t. Then, it holds that

E(dK(t)2) =
( rK
K2

)
t, for all K ≥ 1 and t ≥ 0,

where E(·) denotes the expectation value.

Proof. See Appendix A.

Notice that if rK = K2r1 for all K ≥ 1, Proposition 1
yields

E(dK(t)2) = E(d1(t)
2), for all K ≥ 1 and t ≥ 0.

The above relation states that if each migration of the pro-
cess covers a distance of 1/K, then the migration rate should
be K2r1, in order for the random walk to always cover the
same distance on average independently of K.

Thus, we define the scaling of the migration rates as

(A2) μP (K) = μPK
2, for all P ∈ B(M),

where μP denotes some given nonnegative constant. When
it is equal to zero, then P -processes never move.

Assumption 3: Initial and Boundary Conditions.
Whilst in the ODE interpretation (5) of spatial FEPA no

particular restriction on the initial concentration function
is needed, the PDE approximation can only make sense if
v(0) converges, as a family of functions dependent on K,
to a differentiable function on Ω as K → ∞. Thus, we fix
partially continuously differentiable functions ω0

P : Ω → R,
where P ∈ B(M), and define the initial concentration as

(A3) v(0)P (x,y) := ω0
P (x, y)

for P ∈ B(M) and (x, y) ∈ RK . This assumption establishes
the link between the PDE and the ODE interpretation. The
initial condition ω0

P evaluated at (x, y) provides the initial

concentration function for the ODE of the fluid atom P (x,y).
Finally, PDEs also require boundary conditions. In our

model, the spatial domain is reflective, i.e., processes are not
allowed to migrate outside the boundary. Formally, this cor-
responds to setting Neumann boundary conditions (NBCs):

0 =
(
∂xωP , ∂yωP

)
(x, y) · ν(x, y), (4)

for all (x, y) ∈ ∂Ω and t ≥ 0, where P ∈ B(M) and ν(x, y)
is the exterior normal vector at (x, y) to the boundary ∂Ω
of the square Ω.

Here, we wish to point out that by applying a minor
change to the definition of SK(M), absorbing boundary con-
ditions could be encoded as well. While NBCs can be used

to model geographical barriers (e.g., an island), absorbing
boundaries may be used to capture hostile environments
(e.g., [16, Section 10.1]).

Definition 8 (Partial-differential Approximation). Let us
fix a FEPA model M and suppose that assumptions (A1)–
(A3) are satisfied for SK(M). Then, the underlying PDE
system of SK(M) is given by

∂tωP = F (M,ω)P + μP � ωP , P ∈ B(M).

The initial conditions are given by the functions ω0
P : Ω →

R≥0, whereas the boundary conditions satisfy the NBCs (4).

This is well-known in the literature as a reaction-diffusion
PDE system (e.g., [15]), to highlight the role of the two
summands in the time-derivative of ωP , i.e., the reactive
part due to the local interactions and the diffusive part due
to process migrations. Importantly, this PDE system has a
size which is equal to |B(M)|, the number of local states in
the model’s static version M .
We intend this PDE system as an approximation. Roughly

speaking, the relation v(0)P (x,y) = ω0
P (x, y) in (A3) sug-

gests that the ODE and PDE solutions satisfy vP (x,y)(t) ≈
ωP (x, y, t).

The nature of this approximation can be understood by
considering the continuous Laplace operator appearing in
the PDE system as the limit of the discrete Laplace operator
in the unit square. This is obtained by using Theorem 1 and
assumptions (A1) and (A2). The spatial ODE system can
be rewritten as:

v̇P l = F (M, v|l)P +
μP (K)

K2

∑
˜l∈N (l)

v
P

˜l − vP l

(1/K)2

= F (M, v|l)P + μP �d vP l , (5)

where P ∈ B(M), l ∈ RK and�dvP l :=
∑

˜l∈N (l)

( v
P

˜l
−v

Pl

(1/K)2

)
denotes the discrete Laplace operator for all inner regions
l ∈ RK . For instance, applied to Example 2, Equation (5)
reads

v̇Sl = qrvSlvIl − svSl + μS �d vSl ,

v̇Rl = zvRl − rvSlvIl + μR �d vRl ,

for all l ∈ RK . Then, assuming that for sufficiently large
K the discrete Laplace operator can be approximated by its
continuous analogue, we get the PDE

∂tωS = qrωSωI − sωS + μS � ωS ,

∂tωR = zωR − rωSωI + μR � ωR,

where ωP : Ω × [0;∞) → R≥0. This is consistent with the
PDE model that is already available in the literature (cf. [16,
Chapter 10]).

As discussed, the PDE is used to provide an approximate
estimate of the ODE solution of a model SK(M), in a way
that is however independent from K (in the above example,
using two PDEs only). In the following section we perform
a numerical evaluation to assess the quality of this approxi-
mation.

4. NUMERICAL EXAMPLES
For our tests we considered the predator-prey model of Ex-

ample 2. We parameterised it for different number of species,



d = 1 d = 3 d = 5

K μ1 Time μ2 Time μ1 Time μ2 Time μ1 Time μ2 Time

4 0.082 0 s 0.057 0 s 0.086 0 s 0.060 0 s 0.090 0 s 0.064 1 s
8 0.026 0 s 0.017 0 s 0.030 3 s 0.019 3 s 0.034 11 s 0.023 12 s
16 0.014 5 s 0.008 6 s 0.018 68 s 0.015 71 s 0.021 241 s 0.015 264 s
20 0.013 13 s 0.007 14 s 0.017 195 s 0.011 211 s 0.020 764 s 0.014 837 s

PDE Time 0 s 0 s 1 s 1 s 2 s 2 s

Table 1: Maximum absolute error between the ODE and PDE estimates of species S1 at time 0.2 across the
discrete mesh, for diffusion coefficients μ1 = 0.10 and μ2 = 0.15.
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Figure 1: S1 surfaces projected on the x-axis; K = 20,
d = 5, μ = 0.15.

d = 1, 3, 5, in order to study the impact on the PDE system
size (equal to 2d) of the static version of the model. We set
the unit square Ω = [−1; 1]2 as the spatial domain. We (arbi-
trarily) fixed the parameters ri,· = i/20, si = zi = (i+1)/20,
qi,j = 1. Instead, we experimented with two different diffu-
sion coefficients by setting μSi = μRi = μ ∈ {0.10, 0.15} for
all 1 ≤ i ≤ d to show the impact of mobility on the model’s
dynamics. For each parameterisation of the model, we con-
sidered spatial transformations with K = 4, 8, 16, and 20,
corresponding to increasingly finer discrete meshes with 92,
172, 332, and 412 regions, respectively. Thus each spatial
transformation had migration rates equal to μK2. In this
way, all ODE systems with different values of K (and other-
wise same parameters) have the same PDE approximation.

The corresponding PDE system is, for all 1 ≤ i, j ≤ d:

∂tωSi = ωSi

d∑
j=1

qi,jri,jωRj − siωSi + μSi � ωSi

∂tωRj = zjωRj − ωRj

d∑
i=1

ri,jωSi + μRj � ωRj

ω0
Si
(x, y) :=

{
0 , x2 + y2 ≥ 1

4
exp(4)

exp(1/( 1
4
−(x2+y2)))

, otherwise

ω0
Ri

:= 1− ω0
Si

The initial conditions, ω0
Si

and ω0
Ri

(bells centered at (0, 0)
with peak 1.0), are consistent with the NBCs.

As a measure of the accuracy, we considered solutions for
species S1 at time t = 0.20. These were chosen arbitrarily,
the latter ensuring that the solution was sufficiently away
from the initial condition. For each K, the error is de-
fined as the maximum absolute difference across the whole
spatial domain between the ODE solution at each point in
the discrete mesh and the corresponding PDE solution (us-

ing linear interpolation to sample at the same coordinate).
Matlab R2013b was used for the numerical solutions. The
ODEs were solved using the built-in ode15s function, while
the PDEs were solved using the function parabolic in the
Partial Differential Equation Toolbox. All parameters were
set as the default ones. Runtimes were taken on a machine
with 16GB RAM.
Table 1 presents the results, showing high quality of the

approximation in general. Figure 1, instead, visualises the
numerical solutions of S1. The range of values attained by
the ODE/PDE solutions were within [0.00; 0.40], thus the
absolute differences correspond to at most around 20% (for
K = 4) relative to the peak values. The table shows higher
accuracy with increasing K across all tests (cf. Figure 1 for
a visual appreciation). However, PDEs are cheaper to solve
than ODEs for fine meshes. In fact, the ODEs could not
be solved for significantly larger values of K due to out-of-
memory errors.

5. CONCLUSION
In this paper we considered a spatial extension of stochas-

tic process algebra with ODE semantics. Under the assump-
tion of processes evolving over a two-dimensional regular lat-
tice with an unbiased random walk, we have provided an ap-
proximating reaction-diffusion PDE system. In our numer-
ical tests, the quality of this approximation has been found
to be highly accurate in the case of fine-grained lattices, at
a much smaller computational cost. Pragmatically, tool im-
plementation is ongoing. Theoretically, although here we
focussed on ODE semantics only, future work will aim at in-
vestigating convergence of the stochastic process underlying
the process algebra to a PDE limit.
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APPENDIX
A. PROOFS

A.1 Proof of Proposition 1
Although the the continuous-time random walk is well

studied, we could not find a reference that shows Proposition
1.

Proposition 1. We give a proof which relies on the uniformi-
sation method for CTMCs with countable state spaces2. Let

(ŴK(n))n≥0 denote the unbiased random walk in discrete

time on 1
K
Z× 1

K
Z with ŴK(0) = (0, 0) and let (N(t))t≥0 be

the homogenous Poisson process with intensity rK . Further,

let P denote the transition matrix of (ŴK(n))n≥0. Then it

holds that WK(t) = ŴK(N(t)) and

E(d2K(t)) =
∑

(x,y)∈Z2

P

{
WK(t) =

( x

K
,
y

K

)}[( x

K

)2

+
( y

K

)2]

=
∑

(x,y)∈Z2

( ∞∑
n=0


e T

( 0
K

, 0
K )P

n (rKt)n

n!
e−rKt

)

e( x

K
, y
K )

(x2 + y2

K2

)

= e−rKt
∞∑

n=0

(rKt)n

n!

( ∑
(x,y)∈Z2


e T

( 0
K

, 0
K )P

n
e( x
K

, y
K )

(x2 + y2

K2

))

=
1

K2
e−rKt

∞∑
n=0

(rKt)n

n!
E
(‖ŴK(n)‖2)

=
1

K2
e−rKt

∞∑
n=0

(rKt)n

n!
n

=
1

K2
e−rKtrKt

∞∑
n=1

(rKt)n−1

(n− 1)!

=
( rK
K2

)
t

A.2 Proof of Theorem 1

Lemma 1. Let us fix a FEPA model M . Then it holds that

rαl(SK(M), v) = rα(M, v|l)

Rαl(SK(M), v, P l) = Rα(M, v|l, P )

for all P ∈ B(M), α ∈ A, l ∈ RK and concentration func-
tions v of SK(M).

Proof. We prove this by induction on M .

• M = P0: The claim follows with

rαl

(SK(P0), v
)
=

∑
Pi∈B(P0)

rα(Pi)vP l
i
= rα(P0, v|l),

Rαl

(SK(P0), v, P
l) = rα(P )vP l = Rα(P0, v|l, P ).

• M = M0 ‖L M1: We assume without loss of generality
that P ∈ B(M0), which yields also P l ∈ B(SK(M0)).
Let us first consider the case α ∈ L. Then, together
with αl ∈ SK(L), we infer

rαl(SK(M0 ‖L M1), v) = rαl(SK(M0), v) · rαl(SK(M1), v)

I.H.
= rα(M0, v|l) · rα(M1, v|l)

= rα(M0 ‖L M1, v|l)
2See Section 2.1 of Chapter 8 in Brémaud, P.: Markov
chains, Gibbs fields, Monte Carlo simulation, and queues.
Springer-Verlag (1999)



and

Rαl

(SK(M0 ‖L M1), v, P
l)

=
Rαl

(SK(M0), v, P
l
)

rαl(SK(M0), v)
rαl

(SK(M0 ‖L M1), v
)

I.H.
=

Rα(M0, v|l, P )

rα(M0, v|l)
rα(M0 ‖L M1, v|l)

= Rα(M0 ‖L M1, v|l, P ).

If α /∈ L, it holds that αl /∈ SK(L), yielding

rαl(SK(M0 ‖L M1), v)

= rαl(SK(M0), v) + rαl(SK(M1), v)

I.H.
= rα(M0, v|l) + rα(M1, v|l)

= rα(M0 ‖L M1, v|l)

and

Rαl

(SK(M0 ‖L M1), v, P
l)

= Rαl

(SK(M0), v, P
l)

I.H.
= Rα(M0, v|l, P )

= Rα(M0 ‖L M1, v|l, P )

Theorem 1. Let us fix the unique
√
P ∈ G(M) such that

P ∈ B(√P ). The claim follows then

F (SK(M), v)P l =

=
∑

α∈A+

( ∑
P ′∈B(SK(M))

pα(P
′, P l)Rα(SK(M), v, P ′)

−Rα(SK(M), v, P l)
)

=
∑
α∈A

( ∑
P̃∈B(

√
P )

pαl(P̃
l, P l)Rαl(SK(M), v, P̃ l)

−Rαl(SK(M), v, P l)
)
−Rδ(SK(M), v, P l)

+
∑

˜l∈N (l)

pδ(P
˜l, P l)Rδ(SK(M), v, P

˜l)

L1
=

∑
α∈A

( ∑
P̃∈B(

√
P )

pα(P̃ , P )Rα(M, v|l, P̃ )−Rα(M, v|l, P )
)

+
∑

˜l∈N (l)

(
μ
˜l,l
P (K)v

P
˜l − μl,˜l

P (K)vP l

)
= F (M, v|l)P +

∑
˜l∈N (l)

(
μ
˜l,l
P (K)v

P
˜l − μl,˜l

P (K)vP l

)
.


