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ABSTRACT
In optical packet/burst switching, fibre-loop optical buffers pro-
vide a compact and effective means of contention resolution. In
case of fixed packet length, the involved loop length is typically
chosen matched (equal to the packet length), and the loops are ar-
ranged in parallel, constituting a single-stage buffer. In this contri-
bution, we investigate the performance of such a buffer in an asyn-
chronous network setting, assuming batch-Poisson arrivals and as-
suming a so-called void-avoiding schedule. We show that by time-
discretisation, the fibre-loop dynamics can be captured by a partic-
ular type of exhaustive polling model. We obtain performance mea-
sures such as the moments of the optical queue content and packet
delay for the discretised model as well as for the asynchronous op-
tical buffer. We illustrate our approach by various numerical exam-
ples.

1. INTRODUCTION
The major growth of personalised video streaming services and the
paradigm shift toward big data all add to the bandwidth require-
ments of Internet users, urging network providers to provision them
with more capacity. While the current backbone network offers ca-
pacities of over 10 Tbit/s per fibre, this capacity is only available
for transmission from node to node. Current end-to-end communi-
cation suffers capacity loss from inflexible switching in intermedi-
ary nodes, urging for a more flexible approach to optical switching.
Addressing this need, both optical burst switching (OBS) and opti-
cal packet switching (OPS) provide alternatives, but require con-
tention resolution in intermediate nodes, which can be done by
means of buffering.

A feasible implementation of optical buffering is with pieces of fi-
bre, employed either in a feed-forward set-up (where every line is
traversed only once) [21] or, more compactly, as fibre loops. Many
researchers (listed in [4]) have worked on implementations similar
to the one proposed in [11]; recently, also a second type of imple-
mentation with dual-loop optical buffers (DLOB) gained attention
[13, 6, 22, 24]. Both types can accommodate for a single packet
and are arranged in parallel in the design of loop optical buffers.

In this contribution, we provide a performance evaluation of a loop
optical buffer with asynchronous operation, accommodating pack-
ets with fixed length S. We assume a single loop length for all fibre
loops, with actual delays amounting to multiples of this length. We
assume that this length is matched to the packet length, i.e., the
loop length is S.

The buffer is assumed located at the outgoing port of an optical
switch, associated with a single wavelength outgoing fibre chan-
nel. The buffer resolves contention between packets that request
for transmission over the outgoing channel during overlapping time
windows. Due to the nature of the delay medium, packets are de-
layed somewhat more than strictly needed, receiving a delay that
is realizable. Indeed, as packets recirculate within a fibre loop, re-
alizable delays are within a given set {i · S} , with i = 0,1,2 . . ..
Consequently, small time gaps or voids occur in between packets
transmitted on the outgoing channel, which are undesired in the
sense that they reduce resource utilization of the channel’s capac-
ity.

The functioning of a fibre-loop optical buffer is characterised by
the reservation scheme, on the one hand, and the actual scheduling
discipline, on the other hand. As proposed in [19], two reservation
schemes can be identified.

1. Pre-reservation: packets may reserve the outgoing channel
upon arrival, before entering the buffer. All contention is thus
resolved at the input, by deciding on the exact delay before
the packet enters one of the loops.

2. Post-reservation: packets do not reserve the outgoing chan-
nel upon arrival, but only upon leaving their respective fibre
loop. All contention is thus resolved at the output, by let-
ting packets freely enter into the buffer, only deciding later
on when a given packet exits its loop.

As can be intuitively understood, there is no benefit in reserving the
outgoing channel earlier in time, since this prohibits rescheduling
of packets present in the buffer as new packets arrive. This is con-
firmed in [19], where the specific case of a single fibre loop is con-
sidered. Essentially, post-reservation outperforms pre-reservation
in terms of overall buffer performance, as it provides for better re-
source utilization of the outgoing channel, with relatively smaller
voids between successive outgoing packets. While post-reservation
is thus the scheme with superior performance, preservation is the
only option if no recirculation is possible in the given hardware, as
in feed-forward optical buffers, analysed in e.g. [17], and in the
often-cited [5].



In terms of actual scheduling of packets, a broad variety of schedul-
ing disciplines can be devised, operating either under a pre- or a
post-reservation scheme. Key pre-reservation schemes for a single-
wavelength buffer are

1. First-Come First-Served (FCFS): scheduling is done upon ar-
rival. Packets are delayed for the smallest multiple of the
loop duration S larger than the time needed for all previ-
ously arrived packets to have left the buffer, the so-called
scheduling horizon. This approach corresponds to the pre-
reservation scenario considered in [19], as well as to horizon
scheduling (with pre-reservation required by the hardware)
in [17].

2. Void-Filling: scheduling is done FCFS, unless a void in the
existing provisional schedule allows for packets to be sched-
uled in between, leading to better performance than FCFS.

3. Void-Creating: void-filling scheduling is modified by selec-
tively creating larger voids than strictly needed, only when
these are likely to be filled later on [23], allowing for perfor-
mance gain over void-filling.

Although for a different setting (without recirculation), [17] pro-
vides results that are valid for the current setting if we enforce
FCFS, which is a pre-reservation scheme.

For a post-reservation scheme, the scheduler is not forced to sched-
ule packets upon arrival, allowing for more flexibility in terms of
scheduling discipline. In this paper, we propose a scheduling dis-
cipline called Void-Avoiding Schedule (VAS), which is quite in-
tuitive, always trying to minimize voids on the outgoing channel,
as explained below. VAS can be seen as a generalization of the
scheduling discipline proposed in [19], where the same strategy is
applied to a simpler setting of a single fibre loop. To the best of
the authors’ knowledge, we are the first to study the case of post-
reservation with a number of loops larger than one, which proves
useful, as illustrated by the performance results, with significant
deviation from the case of a single loop.

Somewhat surprisingly, the present study also relates to exhaustive
polling models. Such models consist of a number of queues that
are served by a single server. The server typically visits the queues
in a cyclic manner in order to provide service at each of the queues.
When the server has emptied a queue, it sets up for a visit to the
next queue, which usually requires a positive and possible random
switch-over time. The study of polling models originates from the
late 1950s, when the papers of Mack et al. [14, 15] concerning a
patrolling repairman model appeared. In a broader sense, polling
models can be applied when several types of customers compete
for access to a common resource which is available to only a single
type of user at a time. Therefore, they find their origin in many
present-day real-life applications, such as manufacturing environ-
ments and traffic systems. The polling model particularly received
a lot of interest during the 1980s, when it turned out to be a suit-
able model for many computer-communication applications and
protocols. This led to many seminal results, such as the pseudo-
conservation law [3] and the connection with multi-type branch-
ing processes [16] or semi-linear processes [1]. For an extensive
overview of the literature on polling systems and an overview of
their applications, we refer to surveys such as [2, 12, 20].

As a polling system, the continuous-time system considered in this
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Figure 1: Parallelly-arranged loop optical buffer

paper strongly resembles yet differs from polling on a circle, as
studied in [8, 10, 9, 18, 7]. In such a system, customers arrive at
a circle according to a Poisson process, with position on the cir-
cle determined as an independent and identically distributed (i.i.d.)
random variable (uniform in [8, 9, 18], general i.i.d. in [10]), and
wait for a single server who travels on the circle. Whenever the
server encounters a customer, he stops and serves this customer,
with i.i.d. service time. Compared to the fibre-loop model assumed
here, a parallel can indeed be drawn, as the arrival process in the
fibre-loop model is also Poisson, and the service time distribution
is deterministic and thus also i.i.d. Further, due to the match of the
loop length and the service time, one may indeed imagine a server
moving around on a circle, travelling over the circle at constant
pace in one direction, to finish the service at the exact same posi-
tion where it started. Nevertheless, the two systems differ funda-
mentally in two aspects. First, in a fibre-loop model, the customers
do not enter the loop at i.i.d. locations, but the arrival process also
moves around on the circle. Secondly, in a fibre-loop model, the
server is allowed to make jumps whenever the system turns idle, as
customers arriving in an idle system receive service immediately,
rather than having to wait for the server to move toward them. In
terms of greediness, as defined in [18], the server is non-greedy
during busy cycles, but is somehow greedy at the start of the busy
cycle. Due to these differences, the current model calls for an anal-
ysis in its own right.

The remainder of this paper is organised as follows. The next sec-
tion introduces the performance model of the fibre-loop buffer, with
an infinite number of loops, and allow for an infinite number of
recirculations. We show that by discretising time, the fibre-loop
buffer can be exactly modelled by an exhaustive polling system.
Moreover, by taking the limit of the discretisation step Δ → 0, per-
formance measures such as mean buffer content and waiting time
for the original model are obtained. We then illustrate our findings
by various numerical examples in section 3 and draw conclusions
in section 4.

2. MODEL
We first introduce the modelling assumptions and the discretisation
procedure which leads to a tractable queueing model. The analysis
of the discretised fibre-loop model is then presented in section 2.2.
Finally, we consider the limit to the original model in section 2.4.

2.1 Assumptions and discretisation
We consider an asynchronous fibre-loop optical buffer, situated at
the output port of the switch, resolving contention between pack-



ets heading for the same outgoing (single) wavelength by means
of PostRes scheduling. The fibre-loop buffer consists of an infinite
number of fibre loops in parallel, each loop being capable of delay-
ing a packet for a time S. Moreover, there are no constraints on the
number of times a packet can recirculate.

As scheduling discipline, we adopt a simple and effective mecha-
nism we refer to as void-avoiding schedule (VAS), mitigating voids
on the outgoing channels. Packets start transmission upon arrival if
the outgoing channel is found available; if not, they enter an avail-
able fibre loop and have the opportunity to exit the fibre loop at an
offset S. If the outgoing channel is available then, the packet exits
its loop (resulting in a actual transmission). If the channel is still
not available, the packet recirculates in its loop, again experiencing
a delay S.

New packets arrive in accordance with a batch-Poisson process.
Let λ denote the arrival rate of the Poisson process, and let B(z)
denote the probability generating function of the batch size. The
ith moment of the batch size is denoted by E[Bi]. The packet length
is fixed and the transmission time of a packet corresponds to the
delay S, experienced by a packet in a fibre loop.

For convenience, we first assume that time is slotted, and that ar-
rivals are synchronised. That is, all packet arrivals are postponed
till the end of their arrival slot. Moreover, the slot-length is chosen
such that the packet length can be expressed as an integer number
of slots. Let Δ denote the slot length and let d be the packet length,
expressed in slots, such that,

S = dΔ .

With the assumptions above, the number of packet arrivals at the
consecutive slot boundaries constitutes a sequence of independent
and identically distributed random variables, with common proba-
bility generating function,

A(z) = exp(λΔ(B(z)−1)) = exp(λ
S
d
(B(z)−1)) . (1)

Finally, note that the asynchronous fibre-loop buffer is obtained by
sending d to ∞, while keeping S constant.

2.2 System equations
The analysis of the asynchronous fibre-loop buffer is non-trivial.
Indeed, a Markovian description of the queueing process needs to
track the arrival instant of every packet in the buffer, as the packet
delay in the buffer is a multiple of the delay S in a fibre loop. In the
discretised setting however, the Markov description considerably
simplifies. Indeed, as packets arrive at slot boundaries, the packets
in the system can be divided into d classes, all packets in a class
having the same offset with respect to the current time at which
their transmission can start.

We first consider the queue content at transmission opportunities. A
transmission opportunity is a slot boundary where the transmission
line is available. At such a slot boundary, a packet can start its
transmission if it comes out of its recirculation buffer or if it just
arrived. Hence, a transmission opportunity is either a slot where a
packet leaves the system, or the end of a void slot. Let Ui

k be the
number of packets with offset i in the buffer at the kth transmission
opportunity. For ease of presentation, Ui

k is assumed to include all

arrivals at the transmission opportunity. Moreover, let Ai
k be the

number of packet arrivals at the ith slot boundary following the kth
transmission opportunity. If U0

k > 0, there is a packet that can start
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Figure 2: Two consecutive transmission opportunities, for d = 3
and for U0

k > 0.
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Figure 3: Two consecutive transmission opportunities, for d = 3
and for U0

k = 0.

transmission at transmission opportunity k, i.e., the transmission
opportunity corresponds to an actual transmission. Then, the next
transmission opportunity is the departure slot of this packet, and Ui

k
and Ui

k+1 (i = 0, . . . ,d −1) relate as,

U0
k+1 =U0

k +A0
k+1 −1 ,

Ui
k+1 =Ui

k +Ai
k for i = 1, . . . ,d −1. (2)

The relation between the different random variables is also visu-
alised in figure 2, in an example with d = 3.

When U0
k = 0, there is no packet ready for transmission at the kth

transmission opportunity, no transmission takes place, hence the
creation of a void is unavoidable. The next transmission opportu-
nity occurs at the end of this void slot. Therefore, the queue con-
tents at consecutive transmission opportunities relate as,

U0
k+1 =U1

k +A0
k+1 ,

Ui
k+1 =Ui+1

k for i = 1, . . . ,d −2,

Ud−1
k+1 = 0. (3)

The relation between the different random variables is also visu-
alised in figure 3, again for d = 3.

The former set of system equations further reveals an uncanny equiv-
alence with polling system dynamics. Indeed, in polling terminol-
ogy, all packets that have the same offset reside at the same station.
As the transmission time equals the delay in a fibre loop, all these
packets can be sent without the creation of voids. This means that
the server remains at the same station till there are no more packets.
We have an exhaustive polling system. When there are no packets
left, a single-slot void is created. In polling terminology there is
a single-slot switch-over time to the next station. At the next sta-
tion, the server then serves until there are no more packets and then
moves again, etc.



2.3 Probability generating functions
From the equivalence with an exhaustive polling system, the queue-
ing system is stable provided that,

ρ .
= λ E[B]S < 1 .

In this case, there exists a stationary distribution of the queue con-
tent at transmission opportunities. Let Ui be the queue content at
offset i at a transmission opportunity in a stationary regime. The
joint probability generating function of the queue content at trans-
mission opportunities is denoted by,

F(z0,z1, . . . ,zd−1) = E

[
d−1

∏
i=0

zUi

i

]
.

In view of the system equations (2) and (3), this joint probability
generating function satisfies the functional equation,

F(z0,z1, . . . ,zd−1) = F(0,z0, . . . ,zd−2)A(z0)

+
F(z0,z1, . . . ,zd−1)−F(0,z1, . . . ,zd−1)

z0

d−1

∏
i=0

A(zi) , (4)

where the first term of the right-hand side corresponds to the event
that there is no packet ready for transmission at the service instance.
The second term represents the event that there is a packet ready
for transmission. Next, we implicitly define the joint generating
function χ as follows:

χ(z1, . . . ,zd−1) = A(χ(z1, . . . ,zd−1))
d−1

∏
i=1

A(zi) . (5)

It is not hard to see that χ is the joint probability generating func-
tion of the number of arrivals at the different offsets from the present
slot (excluding offset 0) during a so-called sub-busy period, which
is the time needed to reduce the queue content at offset 0 by one.
This notion stems from the observation that during a packet trans-
mission, the number of arrivals at the offsets other than 0 equals

∏d−1
i=1 A(zi). However, during the last slot of a packet transmission,

a number of packet arrivals, which is represented by the probabil-
ity generating function A(·), occurs at offset 0. The queue content
at offset 0 will not have been effectively reduced by one, how-
ever, before each of these packets are transmitted too. As these
packet transmissions themselves each lead to a number of arrivals
at the other offsets that is represented by the probability generating
function χ(z1, . . . ,zd−1), the total contribution from these arriving
offset-0 packets is given by A(χ(z1, . . . ,zd−1)).

By substituting z0 = χ(z1, . . . ,zd) into (4) and by solving for the
partial generating function F(0,z1, . . . ,zd−1), we obtain the follow-
ing functional equation for this generating function,

F(0,z1, . . . ,zd−1) =

F(0,χ(z1, . . . ,zd−1), . . . ,zd−2)A(χ(z1, . . . ,zd−1)) . (6)

Equations (4), (5) and (6) and the moment generating property al-
low for calculating all moments of the number of customers at the
different offsets on transmission opportunities. These can then in
turn be used to obtain moments of the queue content at departure
epochs, arrival epochs and random slot boundaries as can be seen
from the following arguments.

Let a start instant be a slot boundary where a transmission effec-
tively starts. Clearly, a start instant is a transmission opportunity

where the queue content at offset 0 is non-zero. Therefore, the
probability generating function of the queue content (irrespective
of the offset) at start instants equals,

Us(z) =
F(z,z, . . . ,z)−F(0,z, . . . ,z)

1−F(0,1, . . . ,1)
.

As a service starts at an actual transmission, there is a departure d
slots away. Hence the probability generating function of the queue
content at departure instants equals,

Ud(z) =Us(z)
A(z)d

z

The generating function of the queue content at arrival instants
Ua(z) and at departure instants Ud(z) are equal, if arrivals and de-
partures occur one by one. This result does not hold in the current
batch arrival setting. However, without imposing any extra restric-
tions, we may assume that the arrivals within a batch are ordered.
The arguments that show equality of the distributions at departure
and arrival instants, then also hold in the batch arrival setting pro-
vided that the queue content as seen by an arrival also includes all
arrivals within the batch that have a lower order.

Finally the queue content at arrival instants as defined above re-
lates to the queue content at random slot boundaries by applying
the classic inspection time paradox. The queue content at arrival
instants is the sum of the queue content at random slot boundaries
and the number of simultaneous arrivals, that have a lower order.
In view of these arguments, we find,

Ur(z)
A(z)−1

A′(1)(z−1)
=Ua(z) =Ud(z) ,

where Ur(z) is the probability generating function of the queue con-
tent at random slot boundaries.

In view of the expressions above, it only remains to apply the mo-
ment generating property of generating functions to obtain the mo-
ments of the queue content at random slot boundaries. First, the nth
order partial derivatives of χ evaluated in z1 = z2 = . . . = zd−1 =
1 can be retrieved by evaluating the nth order partial derivatives
of the functional equation (5) in z1 = z2 = . . . = zd−1 = 1. In-
deed, these derivatives yield a system of equations that allows one
to solve for the nth order partial derivatives and express these in
terms of lower order derivatives. Hence, all partial derivatives of
χ in z1 = z2 = . . . = zd = 1 can be obtained recursively. Sec-
ondly, the partial derivatives of the functional equation (6) in z1 =
z2 = . . . = zd = 1 can be likewise expressed in terms of the partial
derivatives of χ . Finally, solving (4) for F(z0,z1, . . . ,zd) expresses
F(z0,z1, . . . ,zd−1) in terms of F(0,z1, . . . ,zd−1). Hence, the par-
tial derivatives of F(z0,z1, . . . ,zd−1) in z0 = z1 = . . . = zd = 1 are
easily obtained. After tedious but straightforward calculations the
following expressions for the mean and the variance of the queue
content at random slot boundaries are obtained:

E[U (d)
r ] =

d
2

E[A] (1−E[A])+Var[A]
1−d E[A]

, (7)



and,

Var[U (d)
r ] =

d
3

E[A3]

1−d E[A]
+

d2

4

Var[A]2

(1−d E[A])2

+
d Var[A]

12

6−24E[A]+20E[A]2

(1−E[A])(1−d E[A])2

+
d2 Var[A]E[A]

12

−(6−18E[A]+17E[A]2)+4E[A]d −E[A]2d2

(1−E[A])(1−d E[A])2

+
d E[A]

12

E[A]2d2 −4E[A]2 −3dE[A]+2

1−d E[A]
. (8)

Here A denotes the number of arrivals at a random slot boundary,
which has generating function A(z).

2.4 Back to the asynchronous queueing model
With the expressions for the moments in the discrete setting estab-
lished we return to the continuous-time model. Recall that A(z)
was defined in terms of the continuous-time arrival process in (1).
Hence, the mean and variance and third-order moment of A equals,

E[A] = E[B]
λ S
d

, Var[A] = E[B2]
λ S
d

, (9)

and,

E[A3] =
λ S
d

E[B3]+3
λ 2S2

d2
E[B]E[B2]+

λ 3S3

d3
E[B]3 . (10)

Plugging the former expressions into (7) and (8) and taking the
limit d → ∞, yields the following expressions for the mean and
variance of the queue content at random time instants:

E[Ur] =
ρ
2

E[B]+E[B2]

E[B](1−ρ)
,

and,

Var[Ur] =
ρ2 E[B2]2

4(1−ρ)2 E[B]2
− ρ (ρ3 −4ρ2 +6ρ −6)E[B2]

12(1−ρ)2 E[B]

+
ρ
12

(2−ρ)+
E[B3]ρ

3(1−ρ)E[B]
.

In the absence of batches, that is B = 1 with probability 1, the for-
mer expressions further simplify to the surprisingly and intrigu-
ingly simple expressions,

E[Ur] =
ρ

1−ρ
, (11)

and,

Var[Ur] =
ρ
6

4−ρ
(1−ρ)2

+
ρ
6
(2−ρ) .

Note that the load in the absence of batches is ρ = λS. Remarkably,
the mean queue content is the same as in an M/M/1 queue with
the same load and twice the size of the queue content in an M/D/1
queue! From the former expressions, we see that mean and variance
of the queue content only depend on the load and not on the packet
length S in the absence of batches. Moreover, this is also the case
for the discretised system as can be seen from equations (9) and
(10).
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Figure 4: Mean queue content versus the load ρ (a) and the
corresponding discretisation error (b) for different values of d
and for the asynchronous queue (d = ∞).

3. NUMERICAL EXAMPLES
In this section, we first consider the link between the discrete and
the continuous system, with figures 4 and 5, to then highlight the
impact of the scheduling discipline, in figure 6.

Figures 4(a) and 5(a) show the mean and variance versus the load
ρ for two values of the discretisation parameter d and for the asyn-
chronous system. For the discrete system, the batch size B follows
a Poisson distribution; for the asynchronous system with d = ∞,
batch sizes are reduced to 1 (B = 1), with single arrivals. In view of
the remarks at the end of the previous section, any packet length S
can be assumed. The figures immediately reveal that discretisation
improves performance. This is not unexpected as all arrivals within
a slot are postponed until the end of the slot, and the transmission
of arrivals at equal offset takes place uninterruptedly, with voids of
zero length in between. For better comparison between the discre-
tised and asynchronous systems, we depict the discretisation gain
in figures 4(b) and 5(b) for the mean and variance, respectively. The
discretisation gain of the mean φE(d) and of the variance φV (d) are
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Figure 5: Variance of the queue content versus the load ρ (a)
and the corresponding discretisation error (b) for different val-
ues of d and for the asynchronous queue (d = ∞).

defined as,

φE(d) =
E[Ur]−E[U (d)

r ]

E[Ur]
100% ,

and,

φV (d) =
Var[Ur]−Var[U (d)

r ]

Var[Ur]
100% .

As can be understood from the figures, the gap between the discrete
and continuous model is very limited for low values of the load,
both for the mean value as the variance of the queue content. For
high traffic load, the difference is substantially larger, especially
for d = 1, where it amounts to up to 50%. For higher values of d,
however, the gap is much lower, amounting to no more than 10%
for d = 5 for the entire range of the load.

Next, we focus on the influence of the scheduling discipline, con-
trasting the proposed VAS with classic FCFS in terms of sojourn
time or waiting time, i.e., the mean time elapsed between moment
of arrival and departure. We assume an asynchronous setting with
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Figure 6: Mean waiting time versus the load ρ for VAS and
FCFS (a) and the relative cost θ for FCFS (b).

single arrivals and a Poisson arrival process. The mean waiting time
under VAS is obtained easily from the mean queue content (11) by
Little’s law, as

E[WVAS] =
S

1−ρ
.

The mean waiting time for FCFS is derived for a different (but, in
terms of waiting time, equivalent) setting in [17], and reads

E[WFCFS] =
S

2− exp(ρ)
.

As suggested by this formula, the critical load under FCFS schedul-
ing is not 1 but rather a smaller value, equal to ln(2). To compare
both, we choose a value S = 10, resulting in figure 6(a). Clearly, the
difference between the two scheduling disciplines is negligible as
long as the load is (very) low. This quickly changes for intermedi-
ate to high load, with a much larger waiting time for FCFS than for
VAS, and a final ‘split’ when the critical load for FCFS is reached
(displayed as a vertical dashed line at ρ = ln(2)). To get a better
view on the difference, we also consider the relative cost of FCFS



scheduling instead of VAS, by a cost parameter θ , defined as

θ =
E[WFCFS]−E[WVAS]

E[WFCFS]
100% .

Figure 6(b) sets out θ as a function of the load. As can be seen from
the definition of θ , the cost (and thus, the figure) is independent of
S. The figure confirms the qualitative observation of 6(a), with a
cost reaching 200% as load increases to about 60%. Clearly, VAS
outperforms FCFS by far in the given system, due to the effective
mitigation of voids between outgoing packets, avoiding voids.

4. CONCLUSIONS
This paper provides an exact performance analysis for optical fibre-
loop buffers with a void-avoiding schedule, in which packets find-
ing the outgoing channel available upon arrival are transmitted im-
mediately. Key to our performance analysis was an auxiliary time-
discretisation step which, rather unexpectedly, transformed the fibre-
loop queueing system into an exhaustive polling system. By letting
the slot length approach 0, we obtained the moments of the queue
content of the fibre-loop buffer. The formulas for the mean queue
content are surprisingly simple. In particular, in the absence of
batch arrivals, the mean queue content equals the mean queue con-
tent of an equally loaded M/M/1 queue.
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