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ABSTRACT
This paper identifies two different parametrized dynamic
priority queue disciplines, earliest due date (EDD) based
and head of line priority jump (HOL-PJ), which are found
to be mean waiting time complete in two class M/G/1 queue.
An explicit one-to-one non linear transformation is obtained
between earliest due date and delay dependent priority pol-
icy. Mean waiting time equivalence between these queue
disciplines is established. Motivation behind the mean com-
pleteness and equivalence results is discussed from optimal
control perspective. Notion of minmax fairness is introduced
and it is argued that a simple global FCFS policy is the
only solution for minmax fairness problem in two class by
exploiting completeness in the structure of EDD based dy-
namic priority. Further, these completeness results are used
to propose a simpler way for developing optimal control pol-
icy in celebrated c/ρ rule for two class M/G/1 queues.
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1. INTRODUCTION
Multi-class queues offer a flexible way of modelling a variety
of complex dynamic real world problems where customers
arrive over time and each class of customers have different
quality of service requirement. Choice of queueing discipline
plays a significant role in such scenarios. Different types of
priority schemes are possible to schedule multiple classes
of customers for service at a common resource. Suppose
absolute or strict priority is given to one class of customers,
then the lower priority class may starve for resource access
for very long time.

Various types of parametrized dynamic priority rules are
possible to overcome the starvation of lower priority classes.
Kleinrock [15] proposed Delay Dependent Priority (DDP)
scheme based on delay in queues. Other parametrized dy-
namic priority rules are Earliest Due Date (EDD) based dy-
namic priority (see [10]) and Head Of Line Priority Jump
(HOL-PJ) [18]. Relative priority, recently proposed in [14],
is yet an another class of parametrized dynamic priority
based on numbers in queue.

Another community of researchers focused on dynamic con-
trol of multi-class queueing systems due to its various appli-
cations in computers, communication networks, and manu-
facturing systems. One of the main tools for such control
problems is to characterize the achievable region for perfor-
mance measure of interest, then use optimization methods
to find optimal control policy (see [4], [5] and [17]). Optimal
control policy for certain nonlinear optimization problems
for two class work conserving queueing systems is derived
in [13]. A finite step algorithm for optimally price server’s
surplus capacity in M/G/1 queue is proposed in [24] assum-
ing that a certain conjecture is true. A complete class of
parametrized (delay dependent) dynamic priority is used to
schedule customers across classes in this pricing problem.
Some further results on sensitivity of optimal operating pa-
rameters for the model described in [24] can be seen in [11].
Optimal control policy in two class polling system (non work
conserving) for certain optimization problems using achiev-
able region approach is recently developed in [22]. Note that
in each of these, a suitable class of parametrized dynamic
priority schemes are used; to ensure optimality, such classes
have to be complete as discussed below.

For multi class single server priority queue, average wait-
ing time vectors form a nice geometric structure (polytope)



driven by conservation laws under certain scheduling as-
sumptions (see [8], [23]). This kind of structure also helps
if one wants to optimize over all scheduling policies. Re-
searchers in this field have come up with geometrical struc-
ture of achievable region in case of multiple servers and even
for some networks (See [9], [6]). Unbounded achievable re-
gion of mean waiting time is recently identified in [22] for
two class deterministic polling system.

Consider a service system for which demand consists of dif-
ferent types of jobs, for example computer systems, produc-
tion facility, etc. Managers of such systems are often inter-
ested in selecting a scheduling strategy which will achieve a
certain pre-specified performance measure for different job
classes. A problem of more practical significance is to iso-
late the family of scheduling policies which have the prop-
erty that any performance measure requirement that is re-
alizable, can be obtained by a strategy from the family. A
suitable policy from this isolated class achieves all possible
performance vectors and this gives rise to the idea of com-
pleteness. In this paper, we deal with mean waiting time
performance measure.

In a single server multi-class queue, a parametrized schedul-
ing policy is called complete by Mitrani and Hine [20] if it
achieves all possible vectors of mean waiting times by chang-
ing the parameter of scheduling policy. Discriminatory pro-
cessor sharing (DPS) class of parametrized dynamic prior-
ity is identified as complete policy in the case of two class
M/G/1 queue and used to find the optimal control policy
in [13]. This idea of completeness is also useful in designing
synthesis algorithms where service provider wants to design
a system with certain service level (mean waiting time) for
each class. Federgruen and Groenvelt [9] came up with syn-
thesis algorithm using the completeness of mixed dynamic
priority which is based on delay dependent priority proposed
by Kleinrock [15].

In this paper, completeness via mean waiting time equiv-
alence of parametrized dynamic priority rules (EDD and
HOL-PJ) in two class M/G/1 queue is established. Com-
pleteness of relative priority is discussed in [12]. Some ap-
plications of these ideas are also presented.

This paper is organized as follows. Section 2 describes the
idea of completeness and different types of parametrized dy-
namic priorities. Section 3 presents the results on mean com-
pleteness and mean equivalence between EDD and HOL-PJ
dynamic priority. Section 4 discusses the applications of
these completeness results where global FCFS scheduling is
identified as minmax fair policy and the idea of alternate
proof of c/ρ rule is given. Section 5 ends with conclusions
and direction for future avenues.

2. COMPLETENESS AND PARAMETRIZED
DYNAMIC PRIORITY DESCRIPTION

In this section, we briefly describe the idea of completeness
and different types of parametrized dynamic priorities in
M/G/1 queue with N customer’s classes.

Consider a single server system with N different classes of
customers arriving in an independent Poisson streams each

with rate λi and mean service time be 1/μi for class i, i =
1, 2, ..., N . Let ρi = λi/μi and ρ = ρ1 + ρ2 + · · · + ρN .
Assume that ρ < 1, i.e., system attains steady state. Let the
service time variance for each class be finite, i.e., σ2

i < ∞.
The performance of the system is measured by vector W =
(w1, w2, · · · , wN ), where wi is the expected waiting/delay
time (time spent in queue not including service time) of
class i jobs in steady state (see [28]). It is obvious that all
performance vectors are not possible; for example W = 0 is
not possible (see [20]). We restrict our attention to system
where the following conditions are satisfied.

1. Service discipline is non-preemptive.

2. Server is not idle when there are jobs in the system
(work conserving).

3. Information about remaining processing time does not
affect the system in any way (non anticipative).

Under the above mentioned conditions, Kleinrock’s conser-
vation law holds [16]:

N∑
i=1

ρiwi =
ρW0

1− ρ
(1)

where W0 =
N∑
i=1

λi

2

(
σ2
i +

1

μ2
i

)
.

w1

w2

w12

w21

Figure 1: Achievable performance vectors in a two
class M/G/1 queue [19]

In case of two classes, all achievable performance vectors
W = (w1, w2) form the points lying on a straight line seg-
ment defined by conservation law. There are two special
points on this line (refer Figure 1), w12 and w21. These
two points correspond to the expected waiting times when
class 1 and class 2 are given strict priority, respectively. The
priority policy (1,2) yields the lowest possible average wait-
ing time for class 1 and the highest possible one for class
2; the situation is reversed with the policy (2,1). Thus,
no point to the left of (1,2) or to the right of (2,1) can be
achieved. Clearly, every point in the line segment is a con-
vex combination of the extreme points w12 and w21. Hence



αw12 + (1 − α)w21 achieves all the points in line segment
for α ∈ [0, 1].

Equation (1) defines a hyperplane in N -dimensional space
of W. In general, all achievable performance vectors lie in
(N -1)-dimensional hyperplane for N classes of customers.
There are (N)! extreme points, corresponding to (N)! non-
preemptive strict priority policies. Hence, the set of achiev-
able performance vectors form a polytope with these vertices.

If for a given scheduling strategy S, the value of performance
vector is W , we say that S achieves W . A family of schedul-
ing strategy is called complete if it achieves the polytope
described above (see [20]). The set of all scheduling strate-
gies is trivially a complete family; thus one is interested in
a subset of all strategies, parametrized suitably, but com-
plete. In this paper, we identify two families of parametrized
scheduling strategies which are complete. We now describe
different types of parametrized dynamic priorities from lit-
erature.

2.1 Delay Dependent Priority
Delay dependent priorities (DDP) were first introduced by
Kleinrock [15]. The logic of this discipline works as follows.
Each customer class is assigned a queue discipline parame-
ter, bi, i ∈ {1, · · · , N}, 0 ≤ b1 ≤ b2 ≤ · · · ≤ bN . Higher the
value of bi, higher the priority for class i. The instantaneous
dynamic priority for a customer of class i at time t, qi(t), is
given by:

qi(t) = (t− τ)× bi, i = 1, 2, · · · , N. (2)

where τ is the arrival time of the customer. After the current
customer is served, the server will pick the customer with
the highest instantaneous dynamic priority parameter qi(t)
for service. Ties are broken using First-Come-First-Served
rule. Hence, according to this discipline, the higher priority
customers gain higher dynamic priority at higher rate.

Mean waiting time for pth class of customers under this dis-
cipline is given by the following recursion [15]:

E(Wp) =

W0

1− ρ
+

p−1∑
i=1

ρiE(Wi)

(
1− bi

bp

)

1−
N∑

i=p+1

ρi

(
1− bp

bi

) (3)

where ρi =
λi
μi
, ρ =

N∑
p=1

ρi and W0 =
N∑

p=1

λp

2

(
σ2
p + 1

μ2
p

)
and

0 ≤ ρ < 1.

Federgruen and Gruenevelt [9] proposed a synthesis algo-
rithm by exploiting the completeness of mixed dynamic pri-
ority which is based on delay dependent priority. Mean wait-
ing time expression in case of two classes of customers for
DDP is given in Appendix A.

2.2 Earliest Due Date Dynamic Priority
This type of parametrized dynamic priority across multi-
ple classes was first proposed by Henry M. Goldberg [10].
Consider a single server queueing system with N number
of classes similar to delay dependent priority. Each class i

has a constant urgency number ui (weights) associated with
it. Without loss of generality, classes are numbered so that
u1 ≤ u2 ≤ · · · ≤ uN . When a customer from class i arrives
at the system at time ti, customer is assigned a real number
ti+ui. The server chooses the next customer to go into ser-
vice, from those present in queue, as the one with minimum
value of {ti + ui}. Let Wr denote the waiting time of class
r jobs. In steady state, E(Wr) is given by [10]

E(Wr) = E(W ) +

r−1∑
i=1

ρi

∫ ur−ui

0

P (Wr > t)dt

−
N∑

i=r+1

ρi

∫ ui−ur

0

P (Wi > t)dt (4)

for r = 1, . . . , N . Here E(W ) = W0
(1−ρ)

and ρi is the traffic

due to class i. Note that above recursion is not a closed form
equation; however, this helps in deriving mean completeness
and equivalence results.

The formulation of the scheduling discipline in terms of
urgency numbers facilitates various interpretations of the
model. One primary interpretation of urgency numbers, ui,
correspond to the interval until the due date is reached. This
model leads to a unified theory of scheduling with earliest
due dates, which is an area of great practical importance
(see [10]).

2.3 Head of Line Priority Jump (HOL-PJ)
This is another type of parametrized dynamic priority pol-
icy proposed in [18]. The fundamental principle of HOL-PJ
is to give priority to the customers having the largest queue-
ing delay in excess of its delay requirement. In HOL-PJ, an
explicit priority is assigned to each class; the more stringent
the delay requirement of the class, the higher the priority.
From the server’s point of view, HOL-PJ is the same as head
of line (HOL) strict priority queue. Unlike HOL, the prior-
ities of customers increase as their queueing delay increases
relative to their delay requirements. This is performed by
customer priority jumping (PJ) mechanism.

We briefly describe the practical significance of this model as
pointed out in [18]. This model can be used in an integrated
packet switching node serving multiple classes of delay sen-
sitive traffic (eg. voice and video traffic). Implementation of
this discipline is relatively simple and the processing over-
head is minimal.

Consider a single server serving N classes of customers. Let
Dj , j = 1, 2, . . . , N be the delay requirement for class j cus-
tomers where 0 < D1 < D2 < · · · < DN ≤ ∞. Class 1
has the most stringent delay requirement and class N the
least; class 1 has the highest priority and class N the least.
Tj , j = 2, 3, · · · , N is set to Dj − Dj−1. If a customer is
still in queue after a period of time Tj , it jumps to the tail
of queue j − 1. Figure 2 illustrates the operation of HOL-
PJ. Excessive delay of a customer is defined as its queueing
delay in excess of its original delay requirement. It is con-
cluded in [18] that all the customers are queued according
to largeness of their excessive delay. Mean waiting time for
class k customers in HOL-PJ queueing discipline is derived



Figure 2: Head-of-line with priority jump [18]

in [18] as:

E(Wk)=E(WFIFO)−
N∑

j=k+1

ρj

∫ ∑j
l=k+1

Tl

0

P (Wj > t)dt

+

k−1∑
j=1

ρj

∫ ∑k
l=j+1 Tl

0

P (Wk > t)dt (5)

Since Tj = Dj −Dj−1. This gives

E(Wk) = E(WFIFO) +

k−1∑
j=1

ρj

∫ Dk−Dj

0

P (Wk > t)dt

−
N∑

j=k+1

ρj

∫ Dj−Dk

0

P (Wj > t)dt (6)

Here E(WFIFO) is
W0

(1−ρ)
. Note that above recursion is again

not a closed form equation; however, this helps in deriving
mean completeness and equivalence results.

3. MEAN EQUIVALENCE AND MEAN COM-
PLETENESS IN TWO CLASSES

In this section, we prove the mean completeness of EDD
and HOL-PJ parametrized dynamic priorities for two class
M/G/1 queue. We obtain the closed form expression for ex-
plicit one-to-one non-linear transformation from DDP class
to EDD. DDP is known to be complete from [9]. Hence
completeness of EDD follows. Completeness of HOL-PJ is
argued by identifying the similarity in expressions of mean
waiting time for EDD and HOL-PJ. Relative priority is an-
other complete dynamic parametrized policy. More details
about the completeness of relative priority can be seen in
[12].

3.1 Motivation
These results on mean completeness and equivalence of dy-
namic priority are substantially useful in the theory of opti-

mal control. We discuss some of the advantages here.

The above discussed parametrized dynamic priority policies
are shown to be mean complete and mean equivalent. Hence
optimality of control policy will not be lost if it is posed
over any of the complete parametrized dynamic priority dis-
cipline. One can suitably choose dynamic priority discipline
according to application domain, on hand.

EDD dynamic priority often finds applications in schedul-
ing for project management scenarios, where multiple jobs
need to be completed before their respective deadlines, using
shared resources. Due to parametrized (by urgency number)
nature of EDD dynamic priority, appropriate urgency num-
bers can be designed for each type of job in a given project
management problem.

HOL-PJ is computationally most efficient among all class
of dynamic priorities discussed here. No additional process-
ing delay is involved with HOL-PJ compared to HOL. Im-
plementation of the priority jump (PJ) mechanism would
require at each priority queue a local clock, a list of the
arrival times of the customers currently in queue, and cir-
cuitry for the timing mechanism to make the customer at
the head of the queue jump (see [18]). It is suggested in
[18] that this information can be provided without incurring
too much system complexity and/or cost. Note that this
dynamic priority will have less switching rate as compare to
other dynamic priorities due to its mechanism being similar
to HOL.

3.2 Equivalence and Completeness Results
In this section, we discuss the mean completeness and mean
equivalence of EDD based and HOL-PJ dynamic priority.

3.2.1 EDD based dynamic priority
In case of two classes, the expected waiting time is [10, The-
orem 2]:

E(Wh) = E(W )− ρl

∫ u

0

P (Th[W ] > y)dy (7)

E(Wl) = E(W ) + ρh

∫ u

0

P (Th[W ] > y)dy (8)

Here index h and l are for higher and lower priority classes
respectively. ul and uh are the weights associated with lower
and higher classes, where u = ul − uh ≥ 0. Th[W ] =
lim
t→∞

Th[W (t)] and Th[W (t)] is defined below. Let W (t) be

the total uncompleted service time of all customers present
in the system at time t, regardless of priority. W (t) → W
as t → ∞.

Th[W (t)] = inf{t′ ≥ 0; Ŵh(t+ t
′
: W (t)) = 0}

where Ŵh(t + t
′
: W (t)) is the workload of the server at

time t + t
′
given an initial workload of W (t) at time t and

considering the input workload from class h only after time
t.
Consider the more general setting (in the view of complete-
ness) with this type of priority where u1, u2 ≥ 0 be the
weights associated with class 1 and class 2. Let ū = u1−u2.
Thus ū can take value in interval [−∞,∞]. Class 1 will
have higher or lower priority depending on ū being negative



or positive. By using equations (7) and (8), mean waiting
time for this general setting in case of two classes can be
written as:

E(W1) = E(W ) + ρ2

[∫ ū

0

P (T2(W ) > y)dy 1{ū≥0}

−
∫ −ū

0

P (T1(W ) > y)dy 1{ū<0}

]
(9)

E(W2) = E(W ) + ρ1

[∫ ū

0

P (T2(W ) > y)dy 1{ū≥0}

−
∫ −ū

0

P (T1(W ) > y)dy 1{ū<0}

]
(10)

Note that ū = −∞ and ū = ∞ provide corresponding mean
waiting times when strict higher priority is given to class
1 and class 2 respectively. DDP also achieves these strict
priority mean waiting time at β = 0 and β = ∞ (see Ap-
pendix A). Hence we suspect a one-to-one transformation
from DDP to EDD priority. We prove our intuition below
and find the explicit nonlinear transformation.

Lemma 3.1. Delay dependent priority and earliest due date
priority are mean equivalent in two classes and their priority
parameters β and ū are related as:

β =
μ− λ

λ2 +
ρ2

μW0
(μ− λ)λ1Ĩ(ū)

[
λ2

μ− λ
− ρ2(μ− λ1)Ĩ(ū)

μW0

]

×1{−∞≤ū≤0} +
λ2

(
μW0
μ−λ

+ ρ2I(ū)
)

μλ2W0
μ−λ

− ρ2(μ− λ2)I(ū)
1{0≤ū≤∞}

where integrals Ĩ(ū) =
∫ −ū

0
P (T1(W ) > y)dy and I(ū) =∫ ū

0
P (T2(W ) > y)dy.

Proof. See Appendix B.

Note that β is a monotone function of Ĩ(ū), and Ĩ(ū) is a
monotone function of ū. Due to this monotonicity, there is
a one-to-one transformation between ū and β. Since DDP
is a mean complete dynamic priority discipline in case of
two classes [9], EDD is also mean complete for two classes
of customers. Thus we have following result:

Theorem 3.2. EDD with two classes of priorities is mean
complete.

A separate proof of above theorem is also given in Ap-
pendix B. This proof gives one-to-one correspondence be-
tween ū of EDD and α, convex combination parameter, of
conservation law (as discussed in Section 2).

3.2.2 HOL-PJ dynamic priority
It can be observed from Equation (4) and (6) that the mean
waiting time expression in HOL-PJ is same as that in EDD
priority policy. Urgency number and overdue in EDD corre-
spond to delay requirement and excessive delay in HOL-PJ.

Similar to EDD, we consider the more general setting in
HOL-PJ where D1, D2 ≥ 0 is the delay requirement asso-
ciated with class 1 and class 2. Let D̄ = D1 − D2 be the
parameter associated with HOL-PJ similar to ū of EDD.
Note that the mean waiting time expression for HOL-PJ is
same as EDD. Hence, we have following lemma from our pre-
vious result on mean equivalence and completeness of two
class EDD dynamic priority.

Theorem 3.3. There is a one-to-one non-linear transfor-
mation for mean waiting time between HOL-PJ and DDP
discipline, and hence HOL-PJ is mean complete in two class
M/G/1 queues. �

4. APPLICATIONS
In this section, we consider global FCFS policy in case of two
class parametrized queue. We discuss the notion of minmax
fairness and argue that the only solution of minmax fair-
ness problem is global FCFS policy by posing this problem
as continuous semi-infinite program (see [3],[1]). We further
illustrate the usefulness of these completeness results in find-
ing the optimal scheduling policy for linear cost objective in
two class M/G/1 queue.

4.1 Global FCFS as minmax fair policy
Global FCFS is the policy where customers are served ac-
cording to the order of their arrivals irrespective of the pri-
ority classes. Global FCFS is achieved by DDP, EDD, and
HOL-PJ based priority by keeping all bi’s, ui’s and Di’s
equal. The mean waiting time for each class is equal in
global FCFS policy and is given by W0

(1−ρ)
. In the case of two

class parametrized queueing system, global FCFS policy is
realized by delay dependent priority with β = 1, by EDD
with ū = 0 and by HOL-PJ dynamic priority with D̄ = 0 .

In addition to the focus on performance metrics such as re-
sponse time, queue length, throughput, etc., it is often im-
portant to ensure that the customers (jobs) across classes
are fairly treated. A vast literature has evolved on the re-
finement of the notion of fairness (as in [26] [27] [2]). We
define fairness for multi-class queues: minimize the maxi-
mum dissatisfaction of the system. Here dissatisfaction of a
customer is quantified in terms of mean waiting time of that
customer’s class. Mathematically, it can be written as:

min
α∈F

max
i∈I

E(W (i)
α ) (11)

where I is set of classes and F is given class of work conserv-
ing, non pre-emptive and non anticipative queueing disci-

pline. E(W
(i)
α ) is the mean waiting time for class i customers

when scheduling policy α ∈ F is employed. Minmax prob-
lem can also be described as an optimization problem via
lexicographic ordering (see [21], [25]). We solve this prob-
lem by rewriting it as continuous semi-infinite program [1]:

min
α

εα

E(W (i)
α ) ≤ εα α ∈ F , i ∈ I (12)

εα ≥ 0, (13)

We now consider two classes of customers. Since EDD is a
complete parametrized dynamic priority discipline in case of



two classes, it can be re-written as

min
ū

εū

E(W
(i)
ū ) ≤ εū ū ∈ [−∞,∞], i ∈ I (14)

εū ≥ 0, (15)∑
i∈I

ρiE(W
(i)
ū ) =

ρW0

(1− ρ)
(16)

Constraint (16) is necessary as parametrized policy should

satisfy conservation law. Let E(W
(i)
0 ) be the mean waiting

time of class i with scheduling policy ū = 0. It follows

from Equation (9) and (10) that E(W
(i)
0 ) = W0

(1−ρ)
for i =

1, 2. Note that ū = 0 is one of the feasible solution to the
above optimization problem. We now argue the optimality
of policy ū = 0. It is clear from Equations (9) and (10) that
with a policy ū �= 0 (say ū′) the mean waiting time of one

of the class (class 1 or class 2) will be more than E(W
(i)
0 ).

Hence εū′ corresponding to that policy will be always more
than εū=0 (due to Constraint (14)). Hence, the minima of
the semi-infinite program will be given by the policy ū = 0.
Similarly, the semi-infinite program can be solved by posing
it over HOL-PJ parametrized discipline and D̄ = 0 will be
the solution. ū = 0 and D̄ = 0 correspond to global FCFS.
Note that the global FCFS is achieved by relative priority
also if all pi’s are equal for multi-class queues (p1 = p2 = 1/2
achieves mean waiting time for global FCFS for two classes
of customers).

Now, we find the weights given to the extreme points of line
segment of Figure 1 to achieve global FCFS in case of two

classes. Consider weights α1 = (1−ρ1)
(2−ρ1−ρ2)

to class 1 and

α2 = (1−ρ2)
(2−ρ1−ρ2)

to class 2. On simplifying, we have

[
α1 α2

] [E(W
(1)
12 ) E(W

(2)
12 )

E(W
(1)
21 ) E(W

(2)
21 )

]
=

[
W0

1− ρ

W0

1− ρ

]
(17)

where E(W
(i)
12 ) is the mean waiting time for class i, i = 1, 2,

when class 1 has strict priority over class 2. Note that with
two classes, we have exactly one and unique pair of weights
given to extreme points to get the global FCFS point in the
interior of the polytope (line segment).

4.2 Optimal Scheduling Policy
It is well known in literature (see [19, page 110], [29]) that
linear cost objective function of mean waiting time, C =∑K

i=1 ciE(Wi), is minimized by c/ρ rule if all work conserv-
ing non-preemptive scheduling policies are considered. Here
ci and E(Wi) are the cost and mean waiting time associated
with class i respectively. This rule states that the optimal
scheduling discipline with respect to objective C is strict
priority scheme where priority is given in the order of the
ratios ci/ρi.

We give the idea for the proof of this result in two class
M/G/1 queue using completeness arguments discussed in
this paper. Consider the objective

P1 min
α∈F

c1E(W (1)
α ) + c2E(W (2)

α )

where F is set of all work conserving, non pre-emptive and
non anticipative scheduling policies. Note that optimizing
over F is same as optimizing over set of EDD priority as this
class of priority is mean complete by Theorem 3.2. Hence
problem P1 is equivalent to P2 defined below:

P2 min
ū∈[−∞,∞]

c1E(W
(1)
ū ) + c2E(W

(2)
ū )

Note that above optimization problem P2 can be easily
solved to yield the optimal c/ρ rule. Relative priority is
also identified as a complete class and optimal c/ρ rule is
obtained using relative priority in [12].

5. CONCLUSIONS AND FUTURE WORK
The notion of completeness is discussed for work conserving
queueing systems. Certain parametrized dynamic priorities
(EDD and HOL-PJ) are shown to be mean complete in two
class M/G/1 queue. Mean equivalence between EDD, DDP
and HOL-PJ is established. An explicit one-to-one nonlinear
transformation is given between EDD and DDP. Significance
of these results in optimal control of queueing system is also
discussed. The notion of minmax fairness in queues is in-
troduced and solution of this minmax fairness is obtained
by exploiting the mean completeness of EDD policy. Impor-
tance of global FCFS policy is discussed and it is shown as
minmax fair policy in two class M/G/1 queue. It will be in-
teresting to extend these ideas in higher dimensions (N class
queue). Another fascinating future avenue will be to come
up with synthesis algorithm with different parametrized dy-
namic priority. Other parametrized dynamic policy classes
can also be explored.
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APPENDIX
A. DELAY DEPENDENT PRIORITY (DDP)
It is clear from Equation (3) that average waiting time ex-
pressions in delay dependent priority (DDP) depends on ra-
tios bi only. Define β := b2/b1. Average waiting time ex-

pression for class 1, E(W
(1)
β ), and for class 2, E(W

(2)
β ), in

two customer’s classes DDP can be derived using Equation
(3) as follows:

E(W
(1)
β ) =

λψ(μ− λ(1− β))

μ(μ− λ)(μ− λ1(1− β))
1{β≤1}

+
λψ

(μ− λ)(μ− λ2(1− 1
β
))
1{β>1} (18)

E(W
(2)
β ) =

λψ

(μ− λ)(μ− λ1(1− β))
1{β≤1}

+
λψ(μ− λ(1− 1

β
))

μ(μ− λ)(μ− λ2(1− 1
β
))
1{β>1} (19)

where λ = λ1 + λ2, ψ = (1 + σ2μ2)/2 and 1{.} is indicator
function. Here μ is the common service rate for both the
classes and σ2 is the variance of service time. Note that
β = 0 and β = ∞ give the corresponding mean waiting
time when strict higher priority is given to class 1 and class
2 respectively. Also β = 1 achieves mean waiting time for
global FCFS scheduling policy.

B. PROOFS OF LEMMA AND CLAIMS
Proof of Lemma 3.1: Global FCFS, strict priorities are
achieved by ū = 0,−∞,∞ in EDD and β = 1, 0,∞ in
DDP respectively. This can be verified using the expres-
sions (Equations (9), (10), (18) and (19)) of mean waiting
times. On considering following two cases, we have

1. −∞ ≤ ū ≤ 0 and 0 ≤ β ≤ 1 : On equating the mean
waiting time for class 1 under these two dynamic pri-
orities, we have (using Equations (18) and (9)):



E(W )− ρ2
∫ −ū

0
P (T1(W ) > y)dy =

λψ(μ− λ(1− β)

μ(μ− λ)(μ− λ1(1− β))
(20)

On simplifying the above equation for β, we have

β =
μ− λ

λ2 +
ρ2

μW0
(μ− λ)λ1Ĩ(ū)

×

[
μ− λ1

μ(1− ρ)
− ρ2(μ− λ1)Ĩ(ū)

μW0
− 1

]

=
μ− λ

λ2 +
ρ2

μW0
(μ− λ)λ1Ĩ(ū)

×

[
λ2

μ− λ
− ρ2(μ− λ1)Ĩ(ū)

μW0

]
(21)

as ū → 0, Ĩ(ū) → 0 so β → 1 from above equation. Sim-

ilarly, as ū → −∞, Ĩ(ū) → E(T1(W )) or
W0

(1− ρ)(1− ρ1)
(mean waiting time of class 1 when class 1 has strict
priority over class 2). Hence β → 0. So

−∞ ≤ ū ≤ 0 ⇔ 0 ≤ β ≤ 1

Above relation follows from Equation (21) and by the

fact that β is monotonically increasing with ū as Ĩ(ū)
is monotonically decreasing.

2. 0 ≤ ū ≤ ∞ and 1 ≤ β ≤ ∞ : Again on equating the
mean waiting time for class 1 under these two dynamic
priorities by using equations (18) and (9):

E(W ) + ρ2
∫ ū

0
P (T2(W ) > y)dy =

λψ

(μ− λ)(μ− λ2(1− 1
β
))

(22)

On simplifying the above equation for β, we have

β =
λ2

(
μW0
μ−λ

+ ρ2I(ū)
)

μλ2W0
μ−λ

− ρ2(μ− λ2)I(ū)
(23)

as ū → 0, I(ū) → 0 so β → 1 from above equation. Sim-

ilarly, as ū → ∞, I(ū) → E(T2(W )) or
W0

(1− ρ)(1− ρ2)
(mean waiting time of class 1 when class 2 has strict
priority over class 1). Hence β → ∞. So

0 ≤ ū ≤ ∞ ⇔ 1 ≤ β ≤ ∞
Above relation follow from Equation (23) and by the

fact that β is monotonically increasing with ū as Ĩ(ū)
is monotonically increasing.

Note that above analysis considered mean waiting time for
class 1. Similar analysis can be done with the mean waiting
time of class 2. Hence lemma follows. �

Proof of Theorem 3.2: Consider the notation E(W
(i)
12 ) to

be the mean waiting time for class i, i = 1, 2, when class 1
has strict priority over class 2. Mean waiting time are [7]:

E(W
(1)
12 ) =

W0

1− ρ1
and E(W

(2)
12 ) =

1

(1− ρ1)(1− ρ1 − ρ2)
W0

(24)

Point W12 = (E(W
(1)
12 ), E(W

(2)
12 )) is shown in Figure 1. Sim-

ilarly, when class 2 has strict priority over class 1. We have

E(W
(1)
21 ) =

W0

(1− ρ2)(1− ρ1 − ρ2)
and E(W

(2)
21 ) =

1

(1− ρ2)
W0

(25)

W21 = (E(W
(1)
21 ), E(W

(2)
21 )) is other extreme point shown in

Figure 1. Consider the notation Wα,i for class i as Wα,i =

αE(W
(i)
12 ) + (1 − α)E(W

(i)
21 ). On using Equation (24) and

(25), we have

Wα,1 =
αρ2(ρ1 + ρ2 − 2) + 1− ρ1

(1− ρ1)(1− ρ2)(1− ρ1 − ρ2)
W0 (26)

Average waiting time in EDD priority depends on ū being
positive or negative (see equation (9) and (10)), consider the
following two cases:

1. 0 ≤ ū ≤ ∞ : Expected waiting time for class 1 is given
by (using equation (9))

E(W1) = E(W ) + ρ2

∫ ū

0

P (T2(w) > y)dy

= E(W ) + ρ2I(ū)

On equating E(W1) with Wα,1 and solving for α, we
have

α =
1− ρ1

2− ρ1 − ρ2
− I(ū)(1− ρ1)(1− ρ2)(1− ρ)

W0(2− ρ1 − ρ2)
(27)

ū = 0 ⇒ I(ū) = 0 so α =
1− ρ1

2− ρ1 − ρ2
and ū =

∞ ⇒ I(ū) =
∫∞
0

P (T2(w) > y)dy = E(T2(W )) =
W0

(1− ρ)(1− ρ2)
(See [10, page 152]). On putting back

this value of I(ū) in (27), we get α = 0. Since I(ū) is
monotone increasing in ū, we have

0 ≤ ū ≤ ∞ ⇔ 0 ≤ α ≤ 1− ρ1
2− ρ1 − ρ2

(28)

2. −∞ ≤ ū ≤ 0 : Expected waiting time for class 1 is
given by (using Equation (9))

E(W1) = E(W )− ρ2

∫ −ū

0

P (T1(W ) > y)dy

= E(W )− Ĩ(ū)

On equating E(W1) with Wα,1 and solving for α, we
have

α =
(1− ρ1)(1− ρ2)(1− ρ)Ĩ(ū)

(2− ρ1 − ρ2)W0
+

(1− ρ1)

(2− ρ1 − ρ2)
(29)

ū = 0 ⇒ Ĩ(ū) = 0 so α =
1− ρ1

2− ρ1 − ρ2
and ū =

−∞ ⇒ Ĩ(ū) =
∫∞
0

P (T1(w) > y)dy = E(T1(W )) =
W0

(1− ρ)(1− ρ2)
(See [10, page 152]). On putting back

this value of I(ū) in (29), we get α = 1. Since Ĩ(ū) is
monotone decreasing in ū, we have

−∞ ≤ ū ≤ 0 ⇔ 1− ρ1
2− ρ1 − ρ2

≤ α ≤ 1 (30)

So, entire range of α is achieved by unique value of ū. Similar
arguments will work if mean waiting time of other class is
considered. Hence result follows. �


