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ABSTRACT

In this paper we present framework for hierarchical calibra-
tion of multi-camera based teleimmersion systems. First,
we calibrate the internal camera parameters and geometry
of each stereo cluster using a checkerboard. Next, we present
a robust and efficient method to externally calibrate the lo-
cation of the stereo clusters using virtual calibration object
created by two LED markers. Our novel algorithm does
not require for all the cameras to share common workspace;
only pairwise overlap is required. Finally, we address geo-
metric correspondence between several remote locations by
proposing a simple calibration method.

Keywords

teleimmersion, external camera calibration, multi-camera sys-
tem

1. INTRODUCTION
For realistic experience of teleimmersion technology, the

metrics and geometry of the interaction space among re-
mote users have to be properly established. For example, a
local participant should recognize the metrics and perceive
spatial relationship to other remote users in a similar fash-
ion as in real-life experience. In case of multi-camera based
teleimmersion systems accurate and robust calibration of the
cameras with respect to their intrinsic and extrinsic parame-
ters is of high importance. Once the cameras are calibrated,
the correspondence between the remote locations has to be
defined.

In this paper we address both, multiple camera calibration
and correspondence between remote locations. Our focus are
systems for teleimmersion where multiple cameras are em-
ployed, either to reconstruct the depth using different stereo
algorithms [3, 7] or to deliver different points of view to the
users [13]. In systems with multiple cameras, two or more
cameras may be arranged into (stereo) clusters which are
used to perform the 3D reconstruction. Other systems may
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treat the multiple cameras as independent of each other un-
til different algorithms are employed to reconstruct the full
3D scene. Our algorithm can be applied to both type of
systems. We approach the calibration problem in a hierar-
chical fashion, starting with a single camera as the smallest
unit. In the first step each stereo cluster (or camera) is
independently calibrated for the internal and external pa-
rameters to define the geometry of the cluster. The intrinsic
calibration of the cameras is performed by the well-known
Tsai algorithm [16] using a checkerboard. Simultaneously,
position and orientation of the cameras within the cluster
are obtained.

Our external calibration approach [6] assumes that at least
any two given clusters (cameras) overlap. The cameras are
externally calibrated using a virtual calibration object gen-
erated by two LED markers. Global calibration is solved
by constructing a vision graph and determining the opti-
mal transformation paths from each camera to the reference
camera. Finally, the parameters are optimized using sparse
bundle adjustment implementation.

In the last part of the paper, we address calibration across
remote locations. The proposed camera calibration method
on the local level, preserves the metric information on the
scene captured by the cameras. The remote calibration on
the other hand defines the relationship between the camera
space and the physical space.

2. RELATED WORK
Camera calibration has been studied extensively in the

past decades. Several methods exist for internal camera cal-
ibration [16, 17]. Due to length constraints of this paper, we
limit our review to selected methods for external calibration
of multiple cameras. Mantzel and colleagues [12] calibrated
a set of cameras with sparse overlapping by acquiring pla-
nar checkerboard images. Similar approach was applied by
Olsen and Hoover [14] who calibrated multiple cameras with
small overlap in workspace using planar domino grid. In sev-
eral studies, calibration targets have been substituted by the
self-calibration approach [15]. In the case of self-calibration,
the internal parameters are optimized simultaneously with
the external ones. The method, however, assumes simpli-
fications regarding the internal parameters, such as image
center location is set to the center of image, distortion of
the camera lens is omitted, etc.

Several researchers have shown high accuracy for geomet-
ric calibration using one dimensional objects [17, 11, 2].
Chen et al. [2] used iterative approach combined with ex-
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tended Kalman filtering of object motion to calibrate unsyn-
chronized cameras. Machacek et al. [11] proposed two-step
calibration where cameras are fist calibrated internally, fol-
lowed by the external calibration using a virtual calibration
object.

Our algorithm combines the idea of graph theory to de-
scribe multi-camera topology and use of a virtual calibration
object. In contrast to other methods [2, 5, 15] our approach
resolves Euclidean reconstruction (preserving metric infor-
mation) and introduces novel parameters reduction in the
case of two-point bar calibration for multiple cameras as
compared to [11]. Our main contribution is the application
of weighted vision graph to determine the optimal trans-
formation between the cameras. With our hierarchical ap-
proach, we are able to accurately calibrate large number of
cameras in a short time. In the paper we present results of
the calibration on 48-camera system for teleimmersion [7].

3. SYSTEM OVERVIEW
Our teleimmersion apparatus consists of 48 Dragonfly cam-

eras (Point Grey Research Inc, Vancouver, Canada) with the
resolution of 640 × 480 pixels which are arranged in 12 stereo
clusters covering 360◦ view of the user(s). Two of the clus-
ters (#7 and #11) have cameras with 4mm lenses while the
remaining clusters use 6mm lenses. Each cluster consists of
three grayscale cameras intended for stereo reconstruction
and a color camera for texture acquisition. Real-time stereo
reconstruction algorithm is performed on each camera clus-
ter simultaneously to obtain partial images of the 3D scene.
3D mesh obtained from this algorithm is sent through the
network and displayed in the virtual environment to image
local and remote users. Interested reader is referred to [7]
for more information on the hardware setup and the 3D re-
construction algorithms.

4. CAMERA CLUSTER CALIBRATION
In the first step of the calibration, all cameras are inter-

nally calibrated using well-known Tsai algorithm [16]. A
planar checkerboard target is placed in different positions
and orientations to generate a set of points for homography
calculation. Initial guess of the internal parameters is op-
timized using LM algorithm [8]. Simultaneously we obtain
the geometric relationship of the cameras within the cluster.

4.1 Camera Model
We use the standard pinhole camera model while consid-

ering radial and tangential distortion models [10]:

xi = KfΠ0GXi (1)

The model in equation 1 represents the transformation
from a homogeneous 3D point Xi ∈ R

4 seen by camera to
the corresponding image pixel coordinate xi defined on the
image plane. Matrix Kf ∈ R

3×3 represents camera matrix,
consisting of the focal length (fx, fy), optical center (cx, cy)
and skew angle parameter α. In most cases α can be set to
1. The matrix Π0 ∈ R

3×4 is the standard projection matrix.
The matrix G ∈ R

4×4 contains rotational matrix and posi-
tion of the camera center from the object coordinate system
origin. The lens distortion is modeled by two parameters of
radial distortion (k1, k2) and two parameters of tangential
distortion (p1, p2). In total, the camera model used in this

paper consists of 8 internal parameters. All of the internal
parameters are estimated in the first step of calibration.

4.2 Intrinsic Calibration
The algorithm for camera calibration uses a set of known

points Xi (i = 1, 2,... N) defined by the corner features
of the checkerboard. The checkerboard is placed in differ-
ent positions and orientations while the camera captures the
projection xi of the points onto the image plane. Linear so-
lution of the camera parameters can be obtained by writing
a set of equations from the camera model equation 1 for
the projection of known grid coordinates Xi onto detected
image points xi. The set of linear equations can be solved
by singular value decomposition (SVD) to obtain the linear
solution of the 8 internal parameters and 6 external parame-
ters for each frame. LM algorithm is applied to further refine
the parameters and reduce the reprojection error. The er-
ror function is defined as the reprojection error between M
image points xi obtained in P positions of the calibration
board and the points projected through the camera model
with the linear parameters as the initial guess:

ei =
P

∑

p=1

M
∑

j=1

F (Ki,R
p
i , tp

i ) (2)

After each camera is calibrated independently, the relative
orientation and position of the cameras within the cluster
(Ri0, ti0) is obtained. The relative relationship between an
arbitrary camera Ci and selected reference camera C0 can
be expressed as follows:

Ri0 = RiR
−1

0 , ti0 = ti −RiR
−1

0 t0 (3)

In equation 3 the parameters (R0, t0) denote the orien-
tation and position of the reference camera and (Ri, ti)
denote the orientation and position of the arbitrary camera
with regard to the current checkerboard position p. Due to
noise, (Ri0, ti0) parameters will slightly vary for different
checkerboard positions. Average value of the parameters is
used in further computations.

To replace (Ri, ti) in Eq. 1, the transformation in Eq. 3
is rearranged:

Ri = Ri0R0, ti = ti0 + Ri0t0 (4)

Next, we rewrite equation 1 to only consider the orienta-
tion and position of the reference camera and the relative
orientation and position between cameras:

xi = KfiΠ0





Ri0R0 ti0 + Ri0t0

0 1



 X0 (5)

Finally, non-linear optimization of the external camera
parameters within the cluster is performed using LM algo-
rithm. The error function is defined as the total reprojection
error defined as the sum of reprojection errors of all the grid
points M as seen by N cameras in P checkerboard positions:

etotal =
P

∑

p=1

N
∑

i=1

M
∑

j=1

F (Ki,Ri0, ti0,R
p
0
, tp

0
) (6)

Since the internal parameters of the cameras are inde-
pendent and have already been optimized, only external
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Figure 1: Distribution of the reprojection error
for four cameras after cluster calibration with 10
checkerboard images. The total mean reprojection
error was 0.153 (0.091) pixels.

parameters are considered in this optimization. In total
6 × (N − 1) + 6 × P parameters are optimized.

4.3 Results
For the calibration of the stereo clusters with 4 cameras,

we used a black and white checkerboard with 15 x 10 squares
(square size was 40 mm). Number of points on each grid was
126. About 15-20 images were collected on each cluster with
the checkerboard placed in different orientations and posi-
tions. The calibration software was written in C++ using
OpenCV [1] and levmar LM algorithm [8] libraries. Numer-
ical approximation of the Jacobian matrix was used for the
optimization process.

Figure 1 shows typical error distribution as obtained on
the four cameras within the cluster. After the global opti-
mization on all four cameras, the combined error distribu-
tion resembles Gaussian distribution with the mean value
of 0.153 pixels and standard deviation of 0.091 pixels. Note
that the reprojection error on the color camera (#4) is higher
than on the grayscale cameras. The maximal error for this
set of images was 0.8 though only a small number of points
had errors in that range.

5. EXTERNAL CALIBRATION OF MULTI-

PLE STEREO CLUSTERS
Once all the cameras have been internally calibrated and

the geometry of the stereo clusters has been defined, we need
to determine the location of the clusters with regard to the
selected reference cluster. For the external calibration we
use virtual calibration object defined by two moving LED
markers located at a fixed distance. Our algorithm requires
for the cameras to at least pairwise share common volume.
The external calibration algorithm can be summarized as
follows:

(a) image acquisition and sub-pixel marker detection on
multiple cameras

(b) composition of adjacency matrix for weighted vision
graph describing interconnections between the cameras
(e.g. number of common points)

(c) computation of fundamental F and essential matrix E
with RANSAC

(d) essential matrix decomposition into rotation and trans-
lation parameters defined up to scale factor λ

(e) determination of the scale factor λ through triangula-
tion and LM optimization

(f) optimal path search using Dijkstra algorithm

(g) global optimization of the parameters using sparse bun-
dle adjustment (SBA) [8]

In the remainder of this section we described each of the
calibration steps and present the results obtained on the real
teleimmersion setup. Additional details on the calibration
algorithm and further error analysis can be found in [6].

5.1 Marker Detection
Marker detection has to be reliable and robust in different

environmental conditions. In our algorithm LED markers
were detected in real time by thresholding captured image
with low shutter setting. Ellipse fitting algorithm was ap-
plied to eliminate any large or oddly shaped objects. To
calculate sub-pixel marker center we used squared gray scale
centroid method where the marker center is determined by
a centroid of the intensities of the detected marker.

5.2 Pairwise Calibration
Given two images from calibrated cameras, camera pose

and the position of the points in space can be obtained
through epipolar geometry and essential matrix decompo-
sitions. The epipolar geometry is based on the fact that
each 3D point Xi observed by two cameras and its two im-
age projections xi1 and xi2 lie on the same plane [4]. The
geometric relationship between the two cameras can be de-
scribed by the fundamental matrix F for the image coordi-
nates x and by the essential matrix E for the normalized
image coordinates (x̂ = K−1x):

xT
i2Fxi1 = 0 and x̂T

i2Ex̂i1 = 0 (7)

The relationship described in equation 7 depends on the
internal parameters of the cameras (K1, K2) and the pose
between the two cameras (R, T). For the calibration of
a camera pair in our algorithm, the fundamental matrix is
obtained using normalized 8-point algorithm implemented
in OpenCV [1]. The essential matrix is defined as follows:

E = [t]×R = T̂R (8)

where T̂ represents antisymmetric matrix of position vec-
tor t describing the relative position between the left and
right camera coordinate system. Using singular value de-
composition (SVD), the matrices T and R can be obtained
by examining the four solutions for the one that yields the
positive depth reconstructed for all the image points [4]. Re-
sults obtained from essential matrix decomposition are fur-
ther optimized using LM algorithm for bundle adjustment
to comply with the properties of the essential matrix [6].

Due to the nature of the essential matrix, the vector t can
only be obtained up to a scale factor λ. However, λ can be
obtained from the distance between the two LED markers.
Pair of points X̂1 and X̂2 in the normalized 3D space can be
reconstructed from their respective images using stereo tri-
angulation while their coordinates in the absolute 3D space
(X1 and X2) remain unknown. The scale factor λ can be
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Figure 2: Projection of i-th frame onto three image
planes. The marker coordinates are parametrized
using initial point Xi1 and normalized direction ni.

determined from their distance in normalized space d̂ and
the actual length of the calibration bar d0 as follows:

(X1 −X2) = λ(X̂1 − X̄2) ⇒ λ =
d0

d̂
(9)

Accuracy of the obtained scale factor is improved by cal-
culating the average scale factor λ̄ over N frames and further
non-linear optimization using LM algorithm [8] to minimize
the error between calculated distance d and actual bar length
d0.

5.3 Vision Graphs
We represent the structure of the multi-camera system us-

ing tools of graph theory. The layout of M cameras is rep-
resented by graph G consisting of M vertices Vi which rep-
resent individual cameras (clusters). In order for the global
calibration to succeed, the vision graph has to be connected.
We describe the overlap between different camera pairs by
assigning weights ωij to the graph edges as 1

Nij
, where Nij

represents number of common points seen by the two cam-
eras. If there are no common points between two cameras,
value 0 is assigned to the weight.

After the relative pose between all the camera pairs has
been calculated, the location of any camera with regard to
arbitrary selected reference camera can be computed as long
as the graph remains connected. The optimal transforma-
tion path is determined using Dijkstra’s shortest path algo-
rithm which solves the single-source shortest path problem
for a graph with non negative weights.

Using the shortest path from the reference camera to each
camera, we can calculate the absolute position of each cam-
era (Figure 2). Let i, j, and k be indices of consecutive
cameras on the path found in graph G. From pairwise cali-
bration, the transformations from i to j and from j to k are
denoted as (Rij , tij) and (Rjk, tjk). The transformation
from i to k can be calculated as follows:

tik = tij + Rijtjk and Rik = RijRjk (10)

5.4 Global Optimization
Once we obtained the initial solution of the relative posi-

tion and orientation of the cameras, the results are globally

optimized using nonlinear optimization to reduce the errors.
Sparse nature of the optimization problem (i.e. all cameras
cannot see all the points), the solution can be obtained using
sparse bundle adjustment (SBA) [9]. The algorithm simul-
taneously refines the 3D structure and the external camera
parameters. The internal camera parameters are kept fixed
since they were already optimized during the cluster calibra-
tion.

The SBA algorithm assumes we have n 3D points which
are seen by m cameras. Projection of i-th point on camera
plane j is denoted as xij . Each camera can be parametrized
by vector aj and each 3D point i by vector bi. Function Q()
defines projection of the 3D point onto camera image plane
using the camera model from Eq. 1. Function d(x,y) de-
notes Euclidean distance between image points represented
by x and y. Bundle adjustment minimizes the following
reprojection error:

min
aj,bi

n
∑

i=1

m
∑

j=1

d(Q(aj ,bi),xij)
2 (11)

The non-linear minimization problem is defined by the
parameter vector P ∈ R

M , consisting of all camera pose pa-
rameters, and the measurement vector X ∈ R

N , consisting
of the measured image points across all cameras. Initial po-
sition of 3D points in the coordinate system of the reference
camera needed for the bundle adjustment are obtained us-
ing pair-wise stereo triangulation on each camera pair where
points are visible. Average position is calculated if more
than one pair sees the point.

We further reduce the number of parameters by parame-
terizing the coordinates of the two LED markers using the
starting point Xi,1, the normalized direction vector ni be-
tween the two points, and their distance d0 which is a priori
known (Figure 2). The normalized direction vector niy com-
ponent is expressed by the remaining two coordinates since
the calibration bar is kept close to vertical direction and its
value will therefore be close to 1 and nix and niz will be bal-
anced numbers. Inside the LM loop we enforce the condition
n2

ix + n2

iz ≤ 1 to keep the direction vector normalized.

ni =
Xi,2 − Xi,1

‖Xi,2 − Xi,1‖
=







nix
√

1 − n2

ix − n2

iy

n2

iz






. (12)

The parameter space is thus reduced from M = n × 3 +
6× (m− 1) to M = n

2
× 5 + 6× (m− 1) where n is number

of 3D points in the scene and m is the number of cameras.
For example of 500 3D points observed by 5 cameras, the
number of parameters is reduced from 1524 to 1274.

5.5 Results
For external calibration we used a rigid metal bar with

two LEDs attached on each end. We chose Luxeon I LED
(Phillips Lumileds Lighting Company, San Jose, CA), with
brightness 30.6 lm and 160◦ emitting angle. The distance
between the markers was measured at 317 mm using a tape
measure prior to calibration. Data analyzed in this paper
consisted of 2534 collected 3D points which were collected
in real time with frequency of 15 Hz on each cluster and
stored locally. The calibration algorithm was implemented
using C++ and OpenCV computer vision library to allow
fully automatic and fast calibration. The complete exter-
nal calibration of 12 cameras took 6 seconds on a personal
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Figure 3: Vision graph generated for 12 stereo clus-
ters with the cluster #3 selected as the reference
cluster.
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Figure 4: Reprojection error in pixels on each refer-
ence camera plane after global bundle adjustment.
The reprojection error shows no significant differ-
ence between the cameras calibrated by the indirect
and direct transformation paths.

computer with Intel Xeon 3.60 GHz processor and 2 GB of
memory.

Figure 3 shows the vision graph and the corresponding
optimal transformation path as obtained from the collected
data points. The vision graph weights were calculated based
on the number of overlapping points between the camera
pairs. Camera #3 was chosen as the reference camera due
to its central position. The results of the external calibration
are shown in Figure 3.

Figure 4 shows the reprojection error on all cameras. The
cameras whose position and orientation were obtained by
indirect transformation path with the reference camera had
no significantly different reprojection errors as compared to
the cameras calibrated directly with the reference camera.
The mean reprojection error between all the cameras was
0.3633 pixels with the standard deviation of 0.0486 pixels.

6. CALIBRATION BETWEEN REMOTE LO-

CATIONS
In this section we address the transformations between the

coordinate systems attached to different teleimmersive loca-
tions and propose a simple calibration method to calibrate
the geometry between the locations.

Figure 5: Coordinate systems for teleimmersion.

6.1 Coordinate Systems
Within the teleimmersive environment we deal with sev-

eral different coordinate systems that are related to stereo
reconstruction, display, and the virtual environment (see
Figure 5 for details). The metric consistency between differ-
ent coordinate systems is preserved as long as all the calibra-
tion procedures are performed in Euclidean space using the
same units. 3D reconstruction from multiple cameras yields
data expressed in the coordinate system of the reference
camera (Cc) determined through the calibration described
above. To achieve geometric consistency between multiple
sites, data should be transformed into a physical world coor-
dinate system (Cw) which is defined by a common plane (e.g.
floor or table top) that all the locations share. For the cal-
ibration of the workspace, we use a checkerboard placed in
horizontal orientation. The checkerboard coordinate system
(Cb) is defined in the top-left corner (black square corner in
OpenCV grid detection), while the x-axis points along the
horizontal side and the y-axis along the vertical side of the
board.

6.2 Calibration between Camera Space and
Physical Space

We propose a simple method for calibrating the reference
cluster (i.e. camera space) to the physical space. By con-
sistently defining the physical coordinates across the remote
locations, the geometric correspondence between the sites
will be well-defined.

To define the transformation between the camera and
physical space, we must calibrate the reference camera to
the physical coordinate system (Figure 5). The calibration
is performed by acquiring one image of the checkerboard
placed in the vertical position. Since the camera has al-
ready been internally calibrated, it is possible to determine
the location of the camera with respect to the checkerboard
coordinate system.

The checkerboard is mounted on a tripod to properly fix
it in this position. From the captured grid image, we can
determine the orientation (Rc

b) and position (T c
b ) of Cb co-

ordinate system with regard to Cc coordinate system. If the
origin of the physical coordinate system is defined on the
floor, the offset between the systems is T b

w = (h, w/2, 0)T

from the origin, where h is the vertical distance of the ori-
gin from the floor and w is the width of the board in metric
units. The orientation of the physical coordinate system can
be arbitrary but to simplify the measurements and calcula-
tions, the two systems are aligned.

Once we define orientation matrix Rb
w , the combined trans-

formation of the physical coordinate system with regard to
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the camera coordinate system is calculated as follows:

Rc
w = Rc

b · R
b
w

T c
w = Rc

bT
b
w + T c

b

(13)

The transformation above defines the orientation and po-
sition of the physical coordinate system in the coordinate
system of the reference camera. When transforming a point
from the camera space into the physical world space, the
following equation is used:

Xw
i = Rc

w
T · (Xc

i − T c
w) (14)

7. CONCLUSIONS
In this paper we have presented calibration framework

which can be applied to multi-camera systems. The calibra-
tion is approached in a hierarchical fashion where cameras
arranged in (stereo) clusters are calibrated internally and ex-
ternally with a checkerboard while the external calibration
is performed with a virtual calibration object generated by
LED markers. Such approach allows easy deployment of
portable cameras for stereo reconstruction and teleimmer-
sion.

Our contribution is mainly in the external calibration ap-
proach using LED markers. We use vision graph analysis to
calibrate camera setups where all the cameras do not share
common workspace. Our novel parameterization of the two-
marker approach adds robustness to the algorithm allowing
more accurate camera calibration in presence of noise as we
have demonstrated in our past experiments with the syn-
thetic data [6]. The results obtained on the real camera
setup presented in this paper show that our approach com-
pensates for error propagation when the path transformation
includes two to three nodes. The major advantage of using
the vision graph is that the algorithm does not need any
prior knowledge of approximate camera locations, allowing
for fast and robust calibration. Our algorithm, in contrast
to [15], also reconstructs metric information on camera po-
sitions. The accuracy of the external calibration depends on
several factors: (a) accuracy of internal camera calibration,
(b) accuracy of marker detection algorithm, (c) number of
common points and their distribution on image plane, and
(d) distance between the two LED markers.

In the paper, we have also addressed geometric correspon-
dence between several remote locations by proposing a sim-
ple calibration procedure to preserve metric space between
the locations.
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