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ABSTRACT
The ongoing trend of constructing open, scalable distributed
systems such as peer-to-peer (P2P) systems demands for ef-
fective tools to manage the interactions between constituent
entities (or nodes). One such tool is through imposing de-
cision policies at the network level. However very few tech-
niques are available to allow computers autonomously iden-
tify good policies with limited human intervention. In this
paper, we propose an Extremal Programming (EP) algo-
rithm to achieve automatic policy identification. The algo-
rithm is inspired by recent advances in understanding far
from equilibrium phenomena in terms of self-organized crit-
icality (SOC). The effectiveness of EP is evaluated through a
P2P application called location-aware video streaming (LAVS).
The simulation studies in LAVS demonstrate that with EP,
the fast and effective sharing of video streams is achieved.

Categories and Subject Descriptors
I.2.8 [computing methodologies]: artificial intelligence—
problem solving, control methods, and search—Heuristic meth-
ods

1. INTRODUCTION
In recent years, through the introduction of the music-sharing
application, called Napster [4], a new “peer-to-peer” paradigm
has greatly influenced our way of constructing distributed
systems over the Internet. Instead of browsing the web and
trading email, ever more powerful machines at home and in
the office are now connecting to each other directly, collabo-
rating to become virtual super-computers and pervasive in-
formation warehouse [12]. The use of decision policies (i.e.
social norms) in P2P systems has attracted increasing re-
search interests recently [16, 19]. A policy is defined as a
globally-recognized rule that stipulates the conditions for
nodes to perform certain activities in a distributed environ-
ment. A node must make itself fully aware of the policies

available in the system. When it decides to conduct certain
activities with other nodes, this decision must be supported
by some policies.

Nevertheless, very few computational techniques are avail-
able to allow peers autonomously identify good policies with
limited human intervention. In this paper, we propsoe an
Extremal Programming (EP) algorithm in order to improve
the autonomy of the P2P network. The design of our algo-
rithm is inspired by a recently introduced general-purpose
optimization technique termed Extremal Optimization (EO)
[3]. The derivation of the EP algorithm starts from the
extremal selection mechanism that underlies the EO algo-
rithm. A population-based search strategy is utilized. Each
individual in the population stands for a separate policy.
Every time policies with relatively low fitness values are se-
lected and replaced by policies obtained from the crossover
and local search operators. We narrowed down our focus on
a simple but practically useful policy representation. Meth-
ods are proposed to evaluate the fitness of each policy in
the population. Operators to perform the crossover and the
local search operations over policies are also defined. The
result of our design decisions is the EP algorithm, which is
able to conduct policy search through evolving a population
of policies.

The EP algorithm is designed for general use in mind, and
its application and exploration are illustrated using a P2P
networks. Specifically, policies are utilized to manage the
sharing of video streams over a network of mobile phones.
The EP algorithm is applied to search policies that will re-
sult in fast and efficient sharing of video streams. Simulation
studies have been performed and we found that the EP al-
gorithm is effective in our P2P applications.

The remainder of this paper is organized as follows. Sec-
tion 2 briefly compares related research. Section 3 presents
the derivation of the extremal programming algorithm (EP).
Section 4 describes a location-aware video streaming system
and shows the simulation results after utilizing the EP al-
gorithm. Finally Section 5 concludes this paper.

2. RELATED WORK
The extremal programming (EP) algorithm proposed in this
paper is inspired by a recently introduced optimization tech-
nique termed Extremal Optimization (EO) [2, 3]. EO is a
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general-purpose local search heuristic based on recent progress
in understanding far-from-equilibrium phenomena in terms
of self-organized criticality (SOC) [13]. In the primitive form
of EO, a solution ρ to a problem is comprised of multiple
constituent variables xi, ρ = {x1, x2, ..., xn}. Each variable
xi is associated with a fitness λi. The solution to be used
in successive search steps in EO is obtained by changing
the variable xi that has the lowest λi among all variables.
Research shows that EO exhibits large fluctuations in dy-
namics, allowing it to efficiently explore the solution space.
Meanwhile, the extremal selection mechanism enforces fre-
quent returns to near-optimal solutions.

Every implementation of EO demands a method for evalu-
ating the fitness of each variable that together constitutes
a solution to a problem. For many complex problems, it
might not be easy to efficiently estimate the impact of these
variables (as variables depend upon each other in a complex
manner), which is essential to the success of EO. The EP
algorithm in this paper is built on top of the extremal selec-
tion mechanism to facilitate effective exploration of a policy
space. However, a population-based search strategy instead
of the local search adopted in EO is utilized to circumvent
this fitness evaluation problem. EP is designed to evolve
a population of solutions (or partial solutions) to a prob-
lem. As edvidenced by many evolutionary algorithms such
as the genetic algorithms (GA), it was often easy to evalu-
ate the performance (i.e. fitness) of a solution as a whole
than evaluating each constituent variable. In an attempt to
further enhance the search effectiveness, a crossover oper-
ator as well as a local search operator are employed when
replacing low-fitness solutions.

Similar to GA and EO, EP is an algorithm motivated by
evolution. Among the various evolutionary algorithms, it
is straightforward to show the functional similarity between
EP and the Genetic Programming (GP) algorithm [8, 9].
GP can be considered as a hierarchical genetic algorithm
operating on populations of computer programs. It aims
at efficient search of computer programs for solving many
general problems, such as the decision-making problems,
by using Darwinian principles of reproduction and survival
of the fittest. Each candidate program in GP is typically
represented in terms of a tree structure, with the nodes of
the tree denoting operators, variables, or constants. While
GP takes a hierarchical representation of a computer pro-
gram for decision-making problems, the EP algorithm takes
a rather plain view. The policies to reach a decision are
evolved as a population with low-fitness policies replaced by
newly-generated policies. The decision-making process is
driven by the combination of policies in the population, in-
stead of any single candidate program. Based on our knowl-
edge, there are few techniques of using GP to conduct policy
search. One exception is an evolutionary policy iteration al-
gorithm for solving Markov Decision Processes (MDP) [6].
However, the result of this algorithm is a single policy in-
stead of a group of policies. Based on this understanding, we
see that EP is at least a good complement to GP, especially
when decision policies rather than a computer program are
more desirable.

In the literature, machine learning techniques, such as the
reinforcement learning algorithms [18, 20], have been suc-

cessfully exploited to find decision rules for many problems.
As Koza pointed out [9], reinforcement learning, in general,
requires that a discounted estimate of the expected future
payoffs be calculated for each system state. Due to the prob-
lem of the curse of dimensionality [1], a large number of tri-
als are to be made over a large number of combinations of
possibilities before acceptable decision rules can form. While
reinforcement learning stands for a more extensive search of
the policy space, the EP algorithm may serve as a more ef-
ficient search strategy even without relying on any system
state information. It is interesting to see, however, the po-
tential of combining these two types of algorithms in order
to exploit the advantage of both.

For some applications, it is possible to prepare a group of
decision-making samples based on human experts’ knowl-
edge, practical principles, or system experiment data. Very
often useful decision policies can be discovered from these
samples in the form of decision trees [14], decision rules [10],
or even fuzzy rule systems [7]. The usefulness is judged ac-
cording to the requirement that the identified policies should
(1) accurately extract the essential information (or patterns)
hidden behind the samples, and (2) precisely predict desir-
able decisions in situations not covered by these samples.
Many techniques such as ID3, C4.5 [15], EDRL-MD [10]
have been proposed to achieve these goals. Industrial appli-
cations in fields like system monitoring and control further
bring these techniques to fruition. The EP algorithm in this
paper, however, addresses a different issue when samples
required by these techniques are unavailable.

In this paper, the EP algorithm is applied to improve the
performance of a Peer-to-Peer (P2P) network. Tradition-
ally, P2P research focuses mainly on the problems of scal-
able data lookup and effective data sharing [17, 21]. De-
pending on the way they are connected and how the data
they contain is arranged, P2P networks have been classified
into two categories, namely, the structured networks and the
un-structured networks [11]. Although P2P file sharing has
won an astounding popularity, there is a continued interest
of exploring other exciting P2P applications in both struc-
tured and un-structured networks. One such application
over a network of mobile phones will be considered in this
paper. The protocol that lays the foundation of our P2P
network shares many similarities to a protocol proposed by
Chakravarti et. al. for organizing computation tasks in
P2P networks [5]. Nevertheless the object of our protocol
is to support policy-driven decision making in the process
of sharing video streams originated from certain geographic
locations.

3. THE EXTREMAL PROGRAMMING AL-

GORITHM
The EP algorithm pre-assumes that the decision-making
process of autonomous entities (e.g. a node in a P2P net-
work) is driven by their policies. In order to understand
the role played by these policies, a simple policy represen-
tation will be introduced first. Similar with a decision rule,
a policy ̺ is comprised of two parts, namely, the condition
part and the decision part. The decision part specifies the
type of decisions guarded by the policy ̺ (e.g. upload data
to other nodes in a P2P network). Potentially, there are
several alternatives α involved in this decision. For a box



moving robot, the alternatives might be the directions to
move the box [9]. While in a P2P network, the alternatives
could be the set of nodes to upload data. Policy ̺ actually
controls the alternatives acceptable by a decision.

A policy ̺ differentiates multiple alternatives α through
specifying a group of decision criteria in its condition part.
In the context of a P2P network, a criterion corresponds to
certain characteristic of a node under consideration, such
as the available storage space of the node. In case when
multiple nodes are being considered for uploading data to
them, a policy may stipulate that only those nodes with rel-
atively large storage space are selected to receive the data.
To formalize this description, a criterion ψi is defined as
a two-element tuple < µ(·), θ(·) >. µ(·) is a characteristic
function. It takes as its input an alternative α and returns a
real value that measures certain characteristic of α. θ(·) is a
response function. The input of θ(·) is a vector of real num-
bers. The output gives a response value to each member of
the input vector. Specifically, θxi

((x1, ..., xn)) denotes the
response value of xi when the input is the vector (x1, ..., xn),
θxi

((x1, ..., xn)) ∈ [0, 1]. Upon considering a set of alterna-
tives {α1, ..., αn}, an alternative αi is said to be acceptable
with criteria ψ =< µ(·), θ(·) > if and only if

1. For all αi ∈ {αi, ..., αn}, µ(αi) = xi. And

2. θxi
((x1, ..., xn)) > ǫ

ǫ is a decision threshold between 0 and 1. In our policy im-
plementation, ǫ = 0.5. Suppose that a policy ̺ has specified
n criteria {ψ1, ..., ψn} in its condition part. Among a set of
alternatives {α1, ..., αm}, an alternative αi is said to be ac-
ceptable with the policy ̺ iff it is acceptable with all criteria
ψi in ̺. For this reason, the condition part of the policy ̺
can be denoted as

ψ1 ∧ ψ2 ∧ ... ∧ ψn

It is highly possible that multiple policies will be applied
to drive the same type of decision (i.e. policies have identi-
cal decision parts). However, due to their varied condition
parts, these policies may not be semantically consistent. In
order to solve this problem of inconsistency, a priority order
is imposed over policies. Formally, let P denote a set of k
decision policies. Each policy ̺i in P is associated with a
real-valued priority π(̺i). All the policies in P form a pri-
ority list: List =< ̺1, ..., ̺k >, ordered decreasingly based
on their priority values. Upon making a decision that in-
volves a set of alternatives A = {α1, ..., αn}, the policies
in P are applied one by one as follows. The first policy ̺1

in the priority list is applied to A. If any alternative αi is
acceptable by ̺1, the decsision to choose αi is then made,
and the decision-making process terminates. When multi-
ple alternatives are acceptable by ̺1, the decision is made to
choose either all of them or a randomly selected alternative
(depending on domain-specific settings). If no alternative is
acceptable by ̺1, ̺2 is applied to A. This process continues
until either an acceptable alternative has been identified or
policies in P have all been applied. The objective of the

EP algorithm is to identify a population of policies with the
above representation. The major steps of EP is shown in
Figure 1.

1. Randomly initialize a population of policies
{̺1, ̺2, ..., ̺m}.

2. For the current population of policies:

(a) Determine the priority order of each policy,
π(̺i).

(b) Evaluate the fitness of each policy, λ(̺i).

(c) Select a policy ̺i within the population.

(d) Generate a set of candidate policies G(̺i, N(̺i))
and evaluate their fitness.

(e) Replace ̺i and N(̺i) with two policies in
G(̺i, N(̺i)).

3. Repeat at step 2 as long as desired.

4. Return the policy population finally reached.

Figure 1: The Extremal Programming Algorithm.

In addition to the methods for fitness evaluation, candidate
policy generation and replacement, the EP algorithm de-
mands for a method to evaluate the priority order of each
policy (Ref. step 2a in Figure 1), which will be discussed in
the following subsections. Now it is necessary to define the
neighbor relation concept. In EP all policies in the popu-
lation are linked together to form a ring. As policies may
have different decision parts, the neighbor of any policy ̺,
N(̺), should satisfy either of two conditions:

1. Policy N(̺) has the same decision part as policy ̺.

2. On the route from policy ̺ to policy N(̺) by following
the directed ring link, no other policies have the same
decision part as policy ̺.

The rational of this definition of the neighbor relation is
to remove the possibility of generating candidate policies
from two policies that have different decision parts. The
system performance concept is introduced at step 4 of Figure
1. In the ES algorithm, the system performance refers to
some globally-defined real-valued performance index, which
is expected to be improved through changing the decision
policies. To be more general, we consider a system as a
black box that accepts a population of policies and in return
produces a real value to indicate its performance.

3.1 Determine the Priority of Each Policy
For any given set of policies P, through changing the pri-
ority order, the system may produce considerably different
performance results. Our goal is to find a priority order
over P such that the system can achieve a relatively better
performance. As the effect of these policies is not known
a priori, a simple heuristic as shown in Figure 2 is used to
determine the priority order.



1. Randomly assign a priority value to each policy ̺ in
the population.

2. Repeat for l iterations:

(a) Order the policies according to their prior-
ity values to form a priority list List =<
̺1, ..., ̺m >.

(b) Repeat for each policy ̺i in the population:

i. Move ̺i to the first position in the priority
list List.

ii. Evaluate the system performance Peri and
set the priority value of ̺i to Peri.

iii. Move ̺i back to its original position in the
list List.

Figure 2: Priority value determination method.

3.2 Evaluate the Fitness of Each Policy
As the ultimate goal is to find a group of policies so as to
improve the system performance, it is desirable to build a
strong correlation between the fitness of policies and the
system performance. Specifically, the fitness of a policy ̺i
should be relatively higher if the system performance be-
comes worse after removing this policy from the population
(i.e. positive impact). Conversely, λ(̺i) should be relatively
lower if the system performance can even be improved with-
out this policy (i.e. negative impact). Figure 3 shows the
method utilized by the EP algorithm for evaluating the fit-
ness of policies. In essence, this method intends to estimate
the impact of each policy ̺i through calculating the dif-
ference between the system performance obtained with and
without policy ̺i. This estimated impact will serve as the
fitness of ̺i.

1. Record the system performance Per observed when
policies in the population are ordered according to
List =< ̺1, ..., ̺m >.

2. Repeat for each policy ̺i in the population:

(a) Remove ̺i from the policy population.

(b) Evaluate the system performance Peri.

(c) Set λ(̺i) = Per − Peri.

(d) Add ̺i back to the policy population.

Figure 3: Policy fitness evaluation method.

3.3 Candidate Policy Generation
According to Figure 1, a set of candidate policies are to be
generated to replace selected policies ̺ and N(̺). As the
decision parts of ̺ and N(̺) are identical, the crossover as
well as the local search operator will only be applied to the
condition parts of the two policies. Suppose that a total-
order relation ≤ψ is defined over the set of decision criteria
that are possible to be employed by a policy. A uniform
crossover operator as shown in Figure 4 is applied for gen-
erating candidate policies.

1. Order the criteria in policies ̺ and N(̺) based on ≤ψ
to form two lists, List and List′, respectively. Let ψi
stand for the i-th element of List. Let ψ′

j stand for
the j-th element of List′.

2. Create two policies ̺1 and ̺2 with initially empty
condition part.

3. Initialize two integers a = 1, b = 1.

4. If ψa ≤ψ ψ
′

b or the end of List′ is reached:

(a) ψa is assigned to eigher ̺1 or ̺2 with equal prob-
ability, provided that no criteria ψ∗ in the se-
lected policy satisfies ψa ≤ψ ψ

∗.

(b) a is incremented by 1.

5. if ψ′

b ≤ψ ψa or the end of List is reached:

(a) ψ′

b is assigned to either ̺1 or ̺2 with equal prob-
ability, provided that no criteria ψ∗ in the se-
lected policy satisfies ψ′

b ≤ψ ψ
∗.

(b) b is incremented by 1.

6. Repeat at step 4 util both List and List′ reach their
ends.

Figure 4: The uniform crossover operation in the
EP algorithm.

The candidate policy set contains not only policies ̺1 and ̺2

generated in Figure 4, but also policies obtained through the
local search operator. For every criterion ψ =< µ(·), θ(·) >
in either ̺1 or ̺2, the local search operator will introduce a
small deviation to the response function θ(·) (i.e. by chang-
ing parameters of the function). All candidate policies will
be temporarily added to the policy population to estimate
their priority and fitness. Based on the fitness evaluated,
the policy replacement method is performed. The EP algo-
rithm continues with the next iteration at step 2 in Figure
1 until a group of desirable policies have been found.

4. LOCATION-AWARE VIDEO STREAMING

IN P2P NETWORKS
In this Section, a P2P application termed location-aware
video streaming (LAVS) is explored. In LAVS, a group of
nodes (i.e. mobile phones) need to share the video stream
originated from one node at certain geographic location. We
use this application to evaluate the effectiveness of the EP
algorithm, and it is not our interest to investigate the prac-
ticality of LAVS based on the actual usage of mobile phones.
Instead we assume that:

A1: Mobile phones have GPS function. Upon sharing a
video stream, a phone will encode its location informa-
tion into the shared video stream so that other phones
are able to check whether they need to download the
video stream.

A2: Initially, a mobile phone η is only aware of those phones
(i.e. neighbor nodes) geographically close to it. η ex-



plores the mobile phone world by sending a message
containing its contact information to one of its neigh-
bors. This message is relayed between phones. When
another phone η′ not known to η before received the
message, η′ can directly contact η using the contact-
ing information in the message. The communication
bandwidth between η and η′ is independent of the ge-
ographic distance between the two phones.

LAVS can be useful in many situations. For example, in
case of a traffic jam caused by a transportation accident,
a person who is close to the accident location can capture
the scene using his mobile phone and share the video stream
so that other people may know the updated progress of the
police work. Based on assumptions A1 and A2, it is con-
venient to form a decision-making problem, which is called
the LAVS problem in the sequel. Without losing generality,
assume that nodes in a mobile phone network are arranged
geographically based on a ring topology. Figure 5 illustrates
one such ring structure.
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Figure 5: The location-aware video streaming
(LAVS) problem.

As shown in Figure 5, each node η on the ring is assigned
a positive-integer index Ind(η) to represent its geographical
location. To simplify our discussion, a node with index i is
denoted as ηi, Ind(ηi) = i. Starting from the node with the
lowest index, the index of each node visited by following the
clockwise ring link forms an increasing arithmetic series (i.e.
1,2,3,...). Based on node indexes, the geographical distance
between any two nodes ηi and ηj on the ring is defined as

‖ηi, ηj‖ = Min

(

|i− j| ,
Min(i, j) + ‖Σ‖ −Max(i, j)

)

(1)

where Σ refers to the set of all nodes. ‖Σ‖ returns the
cardinality of Σ. With this distance concept, any node ηi
initially is only aware of those nodes ηj such that ‖ηi, ηj‖ ≤

κ (Ref. assumption A2). ηj is called the neighbor node of
ηi. In our simulation system, κ is set to 2. For example, the
neighbors of η4 in Figure 5 include nodes η2, η3, η5, and η6.

Nodes will generally play different roles in the process of
sharing a video stream. Due to assumption A1, the sharing
of multiple video streams can be differentiated and consid-
ered separately. For this reason, the LAVS problem only
focuses on sharing a single stream. In Figure 5, the shared
video stream is captured originally by node η4, which is
termed the stream source. Node η4 uploads this video stream
to node η1. As η1 will further upload the video stream to
nodes η6 and η9, η1 is termed a stream provider, whereas η6
and η9 are termed stream consumers. Node η7 intends to
download the video stream from η4 but has not connected
to the streaming service yet. For this reason, η7 is called a
stream seeker. Of course, there also exist some nodes (called
linkers) that do not want to download video streams. Their
major activity in the LAVS problem is to relay messages
sent by other nodes. Starting from the stream source η4, a
streaming tree is formed over all nodes that actually shared
the video stream. The number of child nodes of every node
η in the tree (i.e. Nc(η)) is upper bounded by the capability
of η, C(η). The LAVS problem can be described as follows.
Suppose that a P2P network as shown in Figure 5 contains
only a single stream source at the beginning. Other nodes in
the network are either stream seekers or linkers. The ques-
tion is what local decisions should every node η make over
time such that

R3: All stream seekers will become either stream providers
or consumers after a short period of time.

R4: The average length of the paths from the stream source
to any node in the tree is as small as possible.

R4 is desirable as uploading video streams to other nodes
in the network will induce a delay for the transferred video
content. It is easy to transform R3 and R4 together into a
real-valued performance index J . Let Anc(η) denote the set
of ancestor nodes of any node η in a streaming tree. More-
over, Let Σtr represent the set of all nodes in the streaming
tree. The performance index J is defined on a P2P network
as

J = −
∑

η∈Σtr

(‖Anc(η)‖) − ‖Σ‖ × ‖Σs‖ (2)

where Σs denotes the set of service seeker nodes in the net-
work. Each node η in the network can only send probing
messages to other nodes. Inside a probing message, node η
indicates its contact information as well as its role played
while sharing the video stream (e.g. stream provider or
stream seeker). Let η be the node whose probing message
has been received by another node η′. Node η′ is possible
to make three types of decisions subject to its role:

D1: Send the probing message received from η to other
nodes in the network.



D2: Send the probing message of node η′ itself to other
nodes in the network.

D3: Replace one of the child nodes of η′ in the streaming
tree by node η. The replaced node will be put at the
position previous occupied by η.

Each node η in the network maintains the local information
of several other nodes, which will serve as the alternatives
(Ref. Section 3) when η makes its local decisions. Potential
alternatives include the neighbor nodes, ancestor nodes, and
child nodes of η. A video stream sharing protocol is provided
in Figure 6. Every node η will follow this protocol while
making its deicisons.

1. If node η is a stream seeker :

(a) Perform decision D2 with an alternative node.

2. If η is a stream consumer or stream provider, perform
decision D2 with an alternative node.

3. Repeat for every probing message received from an-
other node η′:

(a) If η is a linker or stream seeker, perform decision
D1 with an alternative node.

(b) Else if η′ is a stream seeker :

i. If Nc(η) < C(η), set η′ as a child node of η.

ii. Else perform decision D1 with an alterna-
tive node.

(c) Else:

i. If Nc(η) < C(η), set η′ as a child node of η.

ii. Else perform decision D3 with an alterna-
tive node.

4. Repeat at step 2.

Figure 6: The stream sharing protocol.

A policy-driven approach is utilized to guide the local decision-
making of each node. In LAVS policies will be applied for
selecting alternative nodes with respect to decisions D1, D2,
and D3. An alternative node η is acceptable by a policy ̺ iff
η is acceptable with all the criteria specified in the condition
part of ̺. The ultimate goal of the LAVS problem is there-
fore to find a group of policies so as to effectively improve
the performance index J. The EP algorithm (Ref. Section 3)
is utilized in the LAVS problem to explore the policy space.
The main task of building a policy is to specify the decision
criteria ψ =< µ(·), θ(·) > in its condition part. Table 1 ex-
plains the meaning of those criteria that are allowable in a
policy.

A simulated P2P system has been built up in order to esti-
mate the performance index J with respect to a population
of policies. In our experiment, 300 nodes are simulated un-
der a ring topology (Ref. Figure 5). The node with index
150 is set to be the stream source. Other nodes are either
stream seekers or linkers. The capability of each node fol-
lows a normal distribution with mean 5 and deviation 1. The

Decision type Allowed decision criteria ψ
D1 ψ1: The distance between an alternative

node and the stream source.
ψ2: The maximum length among the
paths between an alternative node and
any of its descendent nodes in the
streaming tree.

D2 ψ2

ψ3: The capability of an alternative
node η′, C(η′).
ψ4: ‖Anc(η′)‖ of an alternative node η′.
ψ5: The avaialble capability of an
alternative node η′, C(η′) −Nc(η

′).
D3 ψ2, ψ3, and ψ5.

Table 1: Allowed criteria in a policy for each type
of decisions.

simulation advances in time steps of 1 second. During each
time step, every node will perform one round of the stream
sharing protocol (Ref. Figure 6). The simulation terminates
after 15 simulated seconds. After that, the performance in-
dex J is evaluated. J will be used to determine the priority
as well as the fitness of each policy in the population and
therefore drives the extremal search process. Figure 7 shows
the best J found by the EP algorithm from search steps 0
to 200 when about 60% of the 300 nodes are initially stream
seekers.
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Figure 7: The highest performance index J found
during each search step.

Figure 7 demonstrates that the EP algorithm is effective in
searching for good policies since J is continuously improved
and finally hits -569. The policy population after 200 search
steps has been studied. Without elaborating on the details
of every policy in the population, several high priority poli-
cies are highlighted below:

̺1: The highest-priority policy for decision D1. An alter-
native node η is acceptable with ̺1 if η is relatively
close to the stream source (i.e. using ψ1 in Table 1
with e=-1.0) and has a smaller sub-tree (i.e. using
ψ2 with e=0.003). ψ1 is in accordance with our in-
tuition since by sending the probing message towards



the direction of the stream source, the probability of
reaching a stream provider becomes higher. Similarly,
ψ2 is preferred since a node usually can quickly find
its position in a smaller sub-tree.

̺2: The highest-priority policy for decision D2. ̺2 con-
tains three criteria, namely criteria ψ2, ψ3, and ψ5 in
Table 1. A node η is acceptable with ̺2 if it has a rel-
atively higher capability (e=1.38) and higher available
capability (e=-1). Node η should also have a larger
sub-tree (e=0.39).

̺3: The highest-priority policy for decision D3. Two cri-
teria, ψ2 and ψ3 in Table 1, are exploited in ̺3. A
node η is acceptable with ̺3 if it has a relative low ca-
pability (ψ3 with e=1.07) and a smaller sub-tree (ψ2

with e=0.36). ̺3 is desirable since positions closer
to the stream source in the streaming tree are ex-
pected to be occupied by high-capability nodes. This
is achieved by replacing low-capability nodes in deci-
sion D3. Meanwhile Smaller sub-trees are preferred as
moving a larger sub-tree closer to the stream source
may help balance the streaming tree.

Based on policy ̺3, the reason for an alternative node to
have a larger sub-tree in ̺2 becomes clear. Obviously, a
larger sub-tree will prevent the nodes in the sub-tree from
being replaced by other sub-trees through ̺3. In general,
it is found that the fitness of a policy is not identical to its
priority. A typical example is a policy ̺4 for decision D1.
̺4 contains only one criterion (i.e. ψ1 in Table 1 with e=-
1.90), which states that an alternative node that is closer to
the stream source should be selected. The fitness of ̺4 is
the highest among all the policies in the population, because
without ̺4 the system performance will deteriorate dramati-
cally. Nevertheless, three other policies are to be applied for
decision D1 before applying ̺4. The rationale behind this
observation is due to the fact that ̺4 is only useful when
node η in Figure 6 is a linker or service seeker. Despite of
this result, high-fitness policies commonly will have a high
priority. Figure 8 gives a partial view of the streaming tree
obtained after applying the identified policy population. All
stream seekers are vanished after 15 simulated seconds.
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Figure 8: The streaming tree obtained through the
identified policy population.

The “depth” adjacent to each node in Figure 8 refers to
the maximum length among all the paths of the sub-tree
starting from that node. Two of the three child nodes of the
stream source have depth 3. The remaining one child node
has depth 2. In fact, for any node η in the streaming tree,
the depths of η and its siblings have a difference of at most
1. Overall, an average depth at 3.14 has been achieved. It
suggests that the identified policies are effective in balancing
the streaming tree. Besides, it is easy to see in Figure 8 that
high-capability nodes are positioned very close to the stream
source. For example, the only three stream seekers in the
network that can support more than 6 child nodes finally
become the child nodes of the stream source. The obtained
streaming tree is nearly optimal. In fact there is less than
2% difference in J from the optimum streaming tree.

Experiments have also been performed in order to test the
effectiveness of the identified policies when the application
environment changes. In one such experiment, only 30% of
the 300 nodes in the network are initially stream seekers. Us-
ing the policy population identified previously (denoted as
{̺}), we found that the system performance J after 15 sim-
ulated seconds is around -204. As a comparison experiment,
the EP algorithm is applied to search for good policies based
on randomly initialized policy population. Figure 9 depicts
the highest J found by the EP algorithm from search steps
0 to 200. The maximum J reached during the experiment is
-203, which is only a tiny improvement to J obtained from
{̺}. It suggests that {̺} may lead to near-optimal perfor-
mance even after changing the P2P network configurations.
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Figure 9: The highest performance index J found
during each search step when 30% of the nodes in
the network are initially stream seekers.

As mentioned in Subsection 3.1, policies’ priority values can
have a strong impact on the system performance. In or-
der to demonstrate this impact, a simple experiment is per-
formed with the identified policy population {̺}. We ran-
domly changed the priority values of several policies in the
population. The method in Figure 2 is then applied to de-
termine the priority of each policy. Figure 10 depicts the
best system performance witnessed during consecutive rep-
etitions at step 2 and step 2b in Figure 2. As shown in



Figure 10, the performance is improved considerably after
resetting the changed priority values.

- 60 2 - 5 82 - 5 80 - 5 74 - 5 72 - 5 69

Sy stem Performance ( J )

Figure 10: Performance improvement through pri-
ority evaluation.

5. CONCLUSION
In this paper, an Extremal Programming (EP) algorithm
has been proposed to achieve effective search of decision poli-
cies in a open, scalable distributed system. The effectiveness
of the EP algorithm was evaluated in a location-aware video
streaming application. In this application, a group of nodes
collaborate with each other in order to share a video stream
originated from certain geographic location. A policy-based
approach is utilized to guide nodes’ local decisions. Sim-
ulation studies were performed and the experiment results
showed that the EP algorithm was effective in finding good
policies such that the average delay experienced by every
node in the network was as small as possible.
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