
Query-Driven Indexing for
Scalable Peer-to-Peer Text Retrieval∗

Gleb Skobeltsyn†, Toan Luu†, Ivana Podnar ˇZarko‡, Martin Rajman†, Karl Aberer†

†Ecole Polytechnique Fédérale de Lausanne (EPFL)
Lausanne, Switzerland

{gleb.skobeltsyn,vinhtoan.luu,martin.rajman,karl.aberer}@epfl.ch

‡University of Zagreb
Zagreb, Croatia

ivana.podnar@fer.hr

ABSTRACT
We present a query-driven algorithm for the distributed in-
dexing of large document collections within structured P2P
networks. To cope with bandwidth consumption that has
been identified as the major problem for the standard P2P
approach with single term indexing, we leverage a distributed
index that stores up to top-k document references only for
carefully chosen indexing term combinations. In addition,
since the number of possible term combinations extracted
from a document collection can be very large, we propose to
use query statistics to index only such combinations that are
indeed frequently requested by the users. Thus, by avoid-
ing the maintenance of superfluous indexing information, we
achieve a substantial reduction in bandwidth and storage. A
specific activation mechanism is applied to continuously up-
date the indexing information according to changes in the
query distribution, resulting in an efficient, constantly evolv-
ing query-driven indexing structure.

We show that the size of the index and the generated
indexing/retrieval traffic remains manageable even for web-
size document collections at the price of a marginal loss in
precision for rare queries. Our theoretical analysis and ex-
perimental results provide convincing evidence about the
feasibility of the query-driven indexing strategy for large
scale P2P text retrieval. Moreover, our experiments confirm
that the retrieval performance is only slightly lower than the
one obtained with state-of-the-art centralized query engines.

Categories and Subject Descriptors: H.3.1 [Informa-
tion Storage and Retrieval]: Content Analysis and Index-
ing – Indexing Methods; E.1 [Data Structures]: Distributed
Data Structures

General Terms: Algorithms

Keywords: P2P, DHT, IR, Query-Driven index, Scalability

∗
The work presented in this paper was (partly) carried out in

the framework of the EPFL Center for Global Computing and
supported by the Swiss National Funding Agency OFES as part
of the European projects BRICKS (507457) and ALVIS (002068).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Infoscale 2007, June 6–8, 2007, Suzhou, China.
Copyright 2007 ACM 978-1-59593-757-5 ...$5.00.

1. INTRODUCTION
Extensive bandwidth consumption has been identified as

one of the major obstacles for the adoption of peer-to-peer
(P2P) technology in the field of information retrieval as re-
cent studies [9, 23] have shown unscalable traffic require-
ments of web size document collections, even when sophisti-
cated protocols are used to reduce retrieval costs. In our pre-
vious work, instead of indexing all single terms found in the
document collection, which might lead to potentially very
large posting lists and thus unscalable bandwidth consump-
tion, we suggested an approach based on Highly Discrimi-
native Keys (HDKs) [14]. This approach relies on indexing
with terms and term combinations (hereafter called keys)
that occur in at most DFmax documents, where maximal
document frequency DFmax is a parameter of our model.
Keys with a document frequency exceeding the predefined
DFmax threshold are associated with truncated posting lists,
only storing top-DFmax ranked documents and are expanded
into possibly several larger keys (i.e., keys consisting of more
indexing terms) with smaller document frequencies. Our
scalability analysis [14] has shown that the number of gen-
erated keys grows linearly with the number of documents
which is acceptable under a reasonable assumption that the
ratio between the total number of documents and the total
number of peers in the network remains bounded.

However, we have observed that the HDK approach gen-
erates a large number of keys that are never or rarely used
in queries. Indeed, as the keys are generated only on the
basis of their document frequencies, their popularity (and
thus practical usefulness) is not taken into account. Ob-
viously, the creation and maintenance of such superfluous
keys causes substantial consumption of both bandwidth and
storage, which represent valuable resources in large scale
networks.

In this perspective, in parallel to our work on HDKs,
we also designed the Distributed Cache Table (DCT) ap-
proach [17] that implements a purely query-driven indexing
strategy. DCT’s main assumption is that each peer is will-
ing to provide only limited bandwidth and storage: it is
therefore important to create an indexing structure that ef-
ficiently exploits the available resources. To do so, DCT
generates an index on-the-fly by broadcasting queries that
cannot be answered using the available indexing informa-
tion and caches the obtained answers for future use. Only
top-profitable query answers are cached, where profitabil-
ity is defined to be proportional to the query popularity (or
query frequency) and inversely proportional to its document
frequency. To answer a query, a peer first looks up the dis-

fezzardi
Text Box
INFOSCALE 2007, June 6-8, Suzhou, ChinaCopyright © 2007 ICST 978-1-59593-757-5 DOI 10.4108/infoscale.2007.881

tributed index for previously cached results that might an-
swer the query. It is done by local filtering, as each cached
result stores not only document references but also docu-
ment digests containing the list of all distinct indexing terms
per document. In particular, if the result for a query q is
cached, any query containing q can be answered by local fil-
tering of q’s result. As more and more queries get answered,
the distributed cache repository progressively evolves, main-
taining caches for popular and discriminative queries.

The main difference between the above mentioned index-
ing strategies (HDK and DCT) is in the process of handling
rarely/never occurring queries. The HDK approach gener-
ates keys using solely the document collection, thus requir-
ing no specific processing for queries containing rarely or
never used keys, but at the price of substantial bandwidth
and storage usage. Conversely, DCT uses both the docu-
ment collection and the query history, and adapts the index
to the current query popularity distribution thus yielding a
more compact indexing structure. However, DCT requires
expensive broadcasts to process rare queries and is rather
suitable for middle size P2P text retrieval systems as it re-
lies on local postprocessing of possibly large posting lists.

In this paper we describe a novel indexing strategy ini-
tially proposed in [18] that corresponds to a combination of
the HDK and DCT indexing approaches and relies on pop-
ular highly-discriminative keys (pHDKs). The use of query
statistics inherited from DCT leads to a substantial reduc-
tion of the generated key set. However, it does not require
an immediate broadcast to answer a query, but relies only
on the existing index to compute the query result. As a con-
sequence, the quality of the result obtained for a given query
depends on the popularity of the term combinations it con-
tains. We have observed that this leads only to a marginal
loss in retrieval quality, as the indexing structure constantly
evolves by reacting to changes in the query distribution.

The paper is organized as follows: We describe the index-
ing/retrieval model in Section 2 followed by the algorithm
description in Section 3. We then present the scalability
analysis in Section 4 and the experiments in Section 5. We
position our approach with respect to related work in Sec-
tion 6 and provide a conclusion in Section 7.

2. DISTRIBUTED INDEXING/RETRIEVAL
Let us consider a structured P2P network with N peers

Pi, 1 ≤ i ≤ N , and a possibly very large document collection
D, consisting of M documents dj , 1 ≤ j ≤ M . M is referred
to as the size of D, while TD is the term vocabulary in D
and |TD| is used to denote the number of terms in TD.

In addition, we assume that a large query log L is avail-
able, where each query q ∈ L is a set of terms. The set of
all terms present in the query log is denoted by TL, and the
result of the intersection TL ∩ TD corresponds to the terms
used in meaningful queries (producing non-empty results).

In the P2P network, each peer Pi plays two complemen-
tary roles. First, Pi stores a fraction of the global document
collection D, denoted by Di, and builds a local index for
Di. Second, Pi contributes to store and maintain the global
inverted index that associates indexing keys (i.e., indexing
term sets) to documents in D. The fraction of the global
index under the responsibility of Pi consists of all the keys
and associated posting lists (i.e., document references) that
are allocated to Pi by the Distributed Hash Table (DHT)
built on top of the P2P network.

As far as indexing is concerned, each peer Pi is responsible
for the following complementary tasks:

• First, Pi is responsible for indexing Di, i.e., for com-
puting the indexing keys and associated posting lists
that can be locally derived from Di, and for inserting
them into the global P2P index.

• Second, Pi is responsible for maintaining its fraction of
the global index. More precisely, Pi maintains pairs of
the form (k, PL(k)), where k is an indexing key that
Pi is responsible for and PL(k) = {dj ∈ D | k ∈ dj}
is the posting list associated with k. Notice that a
(k, PL(k)) pair stored in the fraction of the global
index under the responsibility of Pi has no a priori
reason to be the one that Pi extracts from Di.

• And third, Pi maintains a fraction of the global query
statistics for all terms and term combinations it is re-
sponsible for.

As far as retrieval is concerned, each peer Pi is responsible
for the following complementary tasks:

• First, while processing a query q, Pi interacts with
the P2P network in order to retrieve and rank the list
of documents in D that contain indexing keys that
maximally overlap with the set of terms q consists of.

• Second, Pi triggers the update of the query statistics
for the queries it is processing.

• Third, based on the updated query statistics, Pi might
initiate the key activation mechanism described in Sec-
tion 2.2.

A detailed description of the above-mentioned indexing
and retrieval models is given below.

2.1 Indexing/Retrieval Model
The goal of distributed indexing is to generate and main-

tain a suitable set of indexing keys associated with the cor-
responding global posting lists. Since the indexing process
is computationally intensive, peers share the indexing load
to collaboratively build the required distributed index.

First, the peers build the global single-term index for D.
To do so, each peer Pi performs local indexing, i.e., it ex-
tracts all single-term keys that can be found in its local
collection and inserts them into the P2P network, along
with the corresponding posting lists, possibly truncated to
their top-DFmax ranked elements if their size exceeds the
predefined DFmax threshold. We call this index the basic
single-term index as it enables the basic query processing
functionality.

The following document indexing process is fully driven
by the query processing, and is performed in parallel with
retrieval. More precisely, as soon as a peer receives a new
query q, it starts to explore the lattice of the query term
subsets in a top-down fashion (hereafter simply called the
query lattice), in decreasing subset size order, starting with
the query itself. An example query lattice is given in Fig-
ure 1. For each explored query term subset q′ ⊆ q (hereafter
called a query key), the peer interacts with the P2P network
to check whether the query key q′ is already associated with
an existing posting list, and to update (and retrieve) its es-
timated probability of use EPU(q′). EPU(q′) is computed

a b c d

ab bc adac bd cd

abc abdacd bcd

abcd
T
o
p
-d
o
w
n
 l
a
tt
ic
e

e
x
p
lo
ra
ti
o
n
 (
q
u
e
ry
in
g
)

B
o
tto
m
-u
p
 la
ttic
e
 e
x
p
lo
-

ra
tio
n
 (k
e
y
 a
c
tiv
a
tio
n
)

Figure 1: Query lattice exploration (an example)

for the term combination q′ based on its usage frequency
statistics.

If a posting list is retrieved from the P2P network, it is
locally stored, and the part of the query term lattice dom-
inated by the query key q′ (i.e., all term subsets contained
in q′) is excluded from the lattice exploration process (see
Section 2.4).

Once the top-down query lattice exploration process is
completed, all the retrieved posting lists are cumulated, re-
ranked, and the top-ranking document references are pre-
sented to the user as a result to the submitted query.

Subsequently, the bottom-up query lattice exploration is
initiated starting with the query keys of size 2. For each ex-
plored query key q′ that is not yet associated with a posting
list1, if the estimated probability of use EPU(q′) exceeds the
predefined threshold EPUmin, the peer triggers the produc-
tion of the posting list to be associated with q′ (we say that
the query key q′ is activated) by starting the opportunistic
notification mechanism described in Section 2.3. A query
term subset q′ is activated only if all direct descendants of
q′ (all immediate subsets of q′) are already associated with
truncated posting lists due to redundancy filtering as ex-
plained in Section 2.4.

To summarize, there are two independent processes con-
stantly running at each peer in the network:

• Document indexing : Each peer takes care that its lo-
cal document collection is properly represented in the
global distributed index. As the content of the global
index is driven by the query-load, it is constantly evolv-
ing. Hence, when the document indexing module is
notified that a new term combination should be in-
dexed (a new key was activated), it queries its local
document collection for the combination and reports
the result (if any) to the peer responsible for the key.

• Query processing : Since every peer maintains a por-
tion of the global index, it might be requested to pro-
vide a part of it or/and update the popularity statis-
tics. The query initiating peer, however, coordinates
the query processing as it is interested in obtaining the
final result.

2.2 Query-driven key activation
Since querying and indexing are in general two indepen-

dent processes, the implementation of the query-driven key
generation is complex as it requires the knowledge about
query statistics that might not be available for a given key
at the moment when the document matching the key is be-
ing indexed. To cope with this asynchronism, an activation

1Recall that all single terms are initially associated with
(possibly truncated) posting lists.

mechanism is employed that triggers the generation of a new
key only when its estimated probability of use reaches a cer-
tain threshold.

Definition 1. A key k is non-superfluous iff 1) its size ≥ 2
and 2) EPU(k) ≥ EPUmin, where EPU(k) is the estimated
probability of use computed for the key k.

Indeed, as the quality of query results provided by the
basic single-term index is not sufficient, we are interested in
populating the rest of the index with non-superfluous keys,
ensuring that all such keys are actually used during query
processing. We also apply the size and redundancy filters as
described in Section 2.4 to further optimize the index.

During the retrieval process, a key of size ≥ 2 can be
identified as popular based on its usage statistics and has
to be “activated”. It can be used for query answering when
the associated global posting list is generated and stored in
the network. To do so, an “indexing request” is sent to all
the peers that hold documents containing the activated key.
However, as the exact list of such peers is unknown at ac-
tivation time, to efficiently propagate the indexing request
we use the opportunistic notification mechanism, described
in Section 2.3. Upon receiving the indexing request for an
activated key k, each peer queries its local index for k and,
provided the result is non-empty, sends it to the peer re-
sponsible for k.

Thus, the processing of new queries leads to the activation
of new keys, which, in turn, results in better result quality
for subsequent queries.

2.3 Opportunistic Notification Mechanism
The opportunistic notification mechanism (ONM) is used

to inform all peers in the network that a certain key has been
activated. Essentially, ONM is a bandwidth-friendly version
of broadcast. It has several distinguishing features described
below that considerably reduce the bandwidth consumed by
the key activation/indexing process.

We assume the underlying P2P network supports a shower
broadcast algorithm as described in [5] that guarantees that
each peer receives at most one and sends at most log N mes-
sages, where N is the number of peers in the network. More-
over, the overall latency of such a broadcasting mechanism
is O(log N).

ONM messages have low priority and small size, hence, we
use the so-called “hitchhiking” (or piggybacking) mechanism
to propagate them. As we can tolerate a certain delay to
accomplish the indexing request dissemination, every ONM
message is not sent immediately to the next-hop peer, but
waits for another higher priority message to reach the same
destination. Such an event is likely to happen, as routing
or maintenance messages are being frequently sent between
neighboring peers. If such a “carrier” message is detected
within a TTLONM period, the notification information is
appended to the high-priority message. We call it hitchhik-
ing because the ONM message uses the available space of
the carrier’s TCP/IP packet. After TTLONM expires, the
message is sent directly.

Instead of broadcasting the request to all peers at once,
the ONM is split in several multicast sessions. When a key
is activated, the request is propagated only to the first ran-
dom fraction of peers. After a random timeout, or when the
popularity of the key further increases, the next fraction of
peers is contacted and so on until all the peers are notified.

The shower mechanism (shower multicast) can still be ap-
plied for each session separately if the fraction of peers is
specified by a continuous key range [5]. Notice that even
partial posting lists obtained from the first session have the
potential to improve precision. As a result of this notifica-
tion process performed in iterations, the bandwidth load is
distributed over time.

The indexing traffic generated by peers responding with
their local indexing information for activated keys can be
reduced using the following principle. If the relevance of
a document to the activated key is low, it might not ap-
pear among the top-DFmax records and the indexing peer
should avoid the transmission of documents with relatively
low scores to the peer responsible for the key. Thus, in the
subsequent multicast sessions, a current rank threshold2,
denoted as minRank, is also propagated, causing pruning
of documents ranked lower than the announced threshold.
Thus, we reduce the bandwidth consumption and the load
on the peer responsible for the activated key. The reduc-
tion is substantial for keys that occur in a large number of
documents.

2.4 Document-driven key filtering
Apart from determining the potential of indexing keys

from the query distribution, the indexing procedure is based
on the principle of choosing the adequate keys from docu-
ments based on the HDK approach originally introduced
in [14]. The HDK approach is used to generate a key set
of a scalable size from the document collection, based only
on document frequencies. In this work, we are rather in-
terested in the set of keys that appear in the intersection
between the exhaustive set of popular keys obtained from
the query-log and the set of keys generated using the HDK
indexing principle. The idea behind the HDK approach is
quite intuitive and is depicted in Figure 2. The generated set
of keys is based on selected terms and term sets that occur
in at most DFmax documents, where DFmax is a parame-
ter of our model. The crucial characteristic of this indexing
method is that it leads to an increase in the total number
of index entries, but, at the same time, limits the size of the
associated posting lists to DFmax, which strictly bounds the
traffic generated during retrieval. This approach is fully in
line with the general properties of P2P networks that can
easily store large amounts of data (provided that enough
peers are available), but must be carefully controlled with
respect to the volume of information transmitted between
the peers.

In this section we outline several filtering techniques we
apply to reduce the number of keys based on their distribu-
tion in the document collection. For a more detailed descrip-
tion of the filtering techniques please refer to [14]. Notice
that a peer applies these filters to prune the activation of
redundant keys and requires no knowledge about the query
statistics.

Size filtering limits the size of an indexing key to a max-
imal size smax. For example, in the case of web retrieval,
the average query size is currently estimated to be between
2 and 3 terms. Notice that limiting the size of the candidate
keys does not have any substantial impact on the global
indexing quality because, for a well chosen value of smax,
most of the user queries would have a size smaller than or

2Rank threshold is the score of the DFmax-st document from
the already obtained partial result.

term 1 posting list 1

term 2 posting list 2

term T-1 posting list T-1

term T posting list T

... ...

long posting lists

s
m
a
ll
v
o
c
.

key 11 posting list 11

key 12 posting list 12

key 1i posting list 1i

... ...

short posting lists

la
rg
e
 v
o
c
.

PEER 1

...

key N1 posting list N1

key N2 posting list N2

key Nj posting list Nj

... ... PEER N

PEER 1

PEER N

...

HDK approach

Naïve approach

Figure 2: The basic idea of HDK indexing

equal to smax. For a few queries of size bigger than smax,
the retrieval mechanism described in Section 3.2 is applied.
Obviously, setting smax = ∞ disables the size filtering and
can also be handled by our approach.

Discriminative and non-discriminative keys. Each
key k ∈ K is associated with its document frequency df(k)
corresponding to the number of documents in the collection
D that contain k.

Given a document frequency threshold DFmax such that
1 ≤ DFmax ≤ M , we use the key document frequencies to
classify the keys into two distinct categories: discriminative
keys and non-discriminative keys.

Definition 2. Kd = {k ∈ K | df(k) ≤ DFmax} is the
set of discriminative keys (DKs), i.e., the keys that appear
in at most DFmax documents and therefore have a high
discriminative power w.r.t D.

Definition 3. Knd = {k ∈ K | df(k) > DFmax} is the set
of non-discriminative keys (NDKs), i.e., the keys with low
discriminative power w.r.t D.

Notice that the DKs (resp. NDKs) verify the following
subsumption property : Any key containing a DK of smaller
size is also a DK. Respectively, any key contained in an NDK
of bigger size is also an NDK.

Redundancy filtering. This filtering method relies on
the subsumption property of the DKs to further reduce the
number of candidate keys. If a key k1 contains a discrimi-
native key k2 of a smaller size, then k1 is also discriminative
and the answer set PL(k1), which is contained in PL(k2),
can be produced by local postprocessing of PL(k2). In other
words, k1 is practically redundant with respect to k2 and
therefore does not need to be stored in the global index.

Definition 4. A key k is highly discriminative iff 1) |k| ≤
smax (size filtering); 2) k is discriminative; and 3) all its sub-
keys of strictly smaller size are non-discriminative. In the
rest of this paper, highly discriminative keys will be referred
to as HDKs.

In other words, redundancy-based filtering implies con-
sidering only highly-discriminative keys and all their (non-
discriminative) sub-keys for indexing. It greatly reduces
the number of candidate keys, but, due to the subsumption
property, fully preserves the indexing exhaustiveness.

3. INDEXING/RETRIEVAL ALGORITHMS

3.1 Indexing
The goal of the query-driven indexing (QDI) algorithm

is to maintain, for the global document collection D dis-
tributed over N peers, Single-Term Keys (STKs), popular
NDKs and HDKs (pNDKs and pHDKs), and to associate
them with the corresponding global posting lists. Exhaus-
tive posting lists are stored for pHDKs, while for pNDKs
and for non-discriminative STKs posting lists are truncated
to their top-DFmax elements.

Algorithm 1 describes the indexDocuments routine that
is executed by every peer when it is notified that a new key k
has been activated. The peer executes a lookup over its local
document collection (line 1) and, if the result is not empty,
sends the list of documents with scores above minRank to
the peer responsible for the key (lines 3–4).

Algorithm 1 indexDocuments(k, minRank)

1: result ← LocalQueryLookup(k, minRank);
2: if result 6= null then
3: peer = DHT.route(generateKey(k));
4: peer.updatePostingList(k, result);
5: end if

However, a peer responsible for a frequent key can be
overloaded with the number of incoming messages. This
situation is efficiently resolved by the DHT-level congestion
control module [8] developed in our group. Moreover, this
module takes care of the on-the-fly aggregation of the mes-
sages with the same next-hop destination. Also, note that
the ONM mechanism would further reduce the indexing traf-
fic by propagating the notification in several rounds and by
communicating the rank value threshold (minRank) in each
subsequent round as described in Section 2.3.

3.2 Retrieval
The goals of the retrieval algorithm are: 1) to locate, for a

given query q = {t1, t2, . . . , t|q|}, the corresponding keys in
the global P2P index, 2) to retrieve the posting lists associ-
ated with the keys, 3) to rank the union of obtained posting
lists, and 4) to output the computed top-k result to the user.

To process a query, the query originator first probes all
peers responsible for all keys of size min(smax, |q|) extracted
from the query (see the loop in lines 4–23 in Algorithm 2).
Recall that it is done by hashing a string representation of
each term combination extracted from the query. The popu-
larity statistics for each key are updated at these peers (line
8) and for already activated (indexed) keys their posting lists
are located (line 10). Then, term combinations of smaller
sizes are processed in the same way with one exception: no
sub-combinations of a combination that was discovered be-
fore as indexed have to be considered (line 6). E.g., if we are
processing a query {a, b, c, d} and the index item for {a, b, c}
is found, there is no need to process any sub-combination of
{a, b, c} such as {a, b}, {b, c}, {a, c}, {a}, {b} and {c}, since
they would not provide any new relevant results. Generally,

the union of obtained results provides the list of peers that
have to be contacted to obtain the final, properly ranked
result. Notice that due to the set containment property,
whenever a posting list of a size below DFmax for a key
k ⊆ q is found, the final result for the query q is contained
in the exhaustive posting list of k.

While processing a query q, the estimated probability of
use for some key k ⊆ q might exceed the EPUmin thresh-
old. In case all sub-combinations of size |k| − 1 are already
indexed and their posting lists are truncated to DFmax post-
ings, k is activated and the ONM is executed to announce
the new key (line 24). If at least one sub-key k′ ⊂ k of
size |k| − 1 does not exist, it has to be created first, as its
EPU(k′) is guaranteed not to be smaller than EPU(k). Al-
ternatively, if there exists any indexed key of size |k| − 1
that is associated with a posting list smaller than DFmax,
no extra key has to be activated.

Algorithm 2 processQuery(q)

1: result ← ∅; /*stores obtained document identifiers*/

2: found ← ∅; /*stores keys that were identified as indexed*/

3: candidates ← ∅; /*stores keys that will be activated after*/

4: for i = min(smax, |q|) downto 1 do
5: for k ← generateNextTermCombination(q, i) do
6: if ∀s ∈ 1..|found|, k * found[s] then

/*route to the peer and increase the popularity of k: */

7: peer = DHT.route(generateKey(k));
8: peer.incPopularity(k);

/*k is indexed ⇒ request its posting list, add to result:*/

9: if peer.getIndexState(k) = INDEXED then
10: result ← result ∪ peer.getResult(k);
11: found ← found ∪ k;
12: end if

/*k is not indexed and popular ⇒ add to candidates: */

13: if (peer.getIndexState(k) = NOT-INDEXED)
and (peer.getPopularity(k) > EPUmin) then

14: candidates ← candidates ∪ k;
15: end if

/*k is not indexed OR k is a discriminative key ⇒ */

/*delete all already found candidates that contain k: */

16: if (peer.getIndexState(k) = NOT-INDEXED)
or (peer.getFrequency(k) ≤ DFmax) then

17: while (∃k′ ∈ candidates, s.t. k ⊂ k′) do
18: candidates ← candidates \ k′;
19: end while
20: end if

21: end if
22: end for
23: end for

24: DHT .executeONM (candidates); /*index new keys if any*/

25: return result;

In order to estimate EPU(q) = qf (q)/|L|, where qf (q)
denotes the query frequency for q, each peer should be able
to estimate the global number of queries |L|, which can be
propagated among the peers, e.g., using [1]. Alternatively
EPU(q) can be estimated by maintaining a number of re-
cent “hits” during a globally known period of time, though
it would require a slightly more complicated counting facil-
ity. Note that considering recent statistics facilitates timely
reaction to changes in the query popularity distribution.

4. SCALABILITY
The QDI approach presented in this paper is scalable in

terms of bandwidth consumption because: 1) the retrieval
traffic generated while processing a query is low, since all
transmitted posting lists are of size limited to DFmax, 2)
the indexing traffic generated to activate a key (the ONM
traffic) and populate the global posting list is scalable.

The amount of retrieval traffic generated while answering
a query q is bounded by

RT (q) = DFmax

min(smax,|q|)X
i=1

|q|
i

!

that depends only on the size of the query and the smax

parameter.
The number of indexed keys determines the amount of

indexing traffic sent through the network while populating
the index. Indeed, activation of a key k requires execution of
the ONM that transmits at most baN bytes, where ba is the
size of the transmitted notification, which contains the key
itself and the minRank value. Once, the ONM is executed,
indexing a key k consumes at most bidf(k) bytes, where
df(k) is the document frequency of k and bi is the size of
transmitted indexing information including an IP-address,
a port number, and a document reference. Therefore, the
upper bound for the indexing traffic generated for a key k
can be estimated as:

IT (k) = baN + bidf(k),

where the first part grows linearly with the number of peers
and the second part grows linearly with the size of the doc-
ument collection.

Hence, the number of indexed keys is crucial to ensure the
indexing traffic scalability.

In [14] we showed that the number of keys generated for
a given document collection by applying the HDK indexing
described in Section 2.4 grows linearly with the collection
size. The query-driven key activation mechanism results in
a substantial decrease of the number of keys as it can be
viewed as an additional filter based on the query distribu-
tion properties that eliminates superfluous keys. Here, we
derive an upper bound on the number of keys that can be
generated from the queries contained in the query log and
show that it scales linearly with the query log size. Since
we cannot capture analytically the correlation between the
term combination popularity and its document frequency,
the upper bounds are computed based on the query dis-
tribution properties only. Moreover, in Section 5.1 we will
experimentally show that despite of significant reduction of
the number of indexed keys, the QDI approach causes only
a marginal loss of the answer quality even for web-size doc-
ument collections and real query distributions.

If we abandon the correlation between the term combi-
nation popularity and its posting list size, the number of
possible combinations selected for indexing depends only on
the query log properties. Our analysis of real query distri-
butions shows that the number of term combinations found
in the query log follows the Pareto [15] distribution. We
use this assumption to analyze the number of keys that can
be potentially generated from the queries appearing in the
recent query log. This number, however, is an upper bound
and is significantly reduced in practice by applying the data-
driven key filtering.

We are interested in deriving the number of combinations
with minimum query frequency (popularity) QFmin after
|L| queries were observed in the query log. Recall, that the
number of single term keys does not depend on the query
distribution as all terms found in the document collection
are indexed. According to the Heaps’ law [7], the number of
distinct terms grows as O(

√
n) with the size of the document

collection n, and, therefore can be practically managed in a
P2P network. For our future analysis, we ignore single term
keys and concentrate on combinations of size 2 and larger.

We assume that frequencies of keys of sizes 2, ..., smax are
Pareto distributed, i.e., the probability that the query fre-
quency qfk of a key k is higher or equal to a predefined
QFmin is given by

P (qfk ≥ QFmin) = QF−α
min, |k| ≥ 2,

where α > 0 denotes the Pareto index.
Note that since qfk = |L| EPUk and QFmin = |L| EPUmin,

the expression above can be rewritten as:

P (EPUk ≥ EPUmin) = (|L| EPUmin)−α,

where EPUk denotes the estimated probability of use for k.
We define |K1| as the number of keys that have appeared

only once in the query log. The total number of combina-
tions γ found in a query log L is thus

γ = |K1|
Z +∞

1

(QFmin)−α d(QFmin).

Assuming3 α > 1:

γ =
|K1|
α− 1

or

|K1| = γ (α− 1).

The number of keys to be indexed for the chosen QFmin is
the following:

|KQFmin | = |K1| P (qf ≥ QFmin) =

= (α− 1) (QFmin)−α γ = O(γ).

Assuming the number of term combinations generated for
a query is bounded by a constant calculated from the max-
imum query size, we can write

|KQFmin | = O(|L|).
Therefore, the number of indexed keys grows linearly with

the number of queries submitted to the system. Moreover, if
we increase the QFmin parameter, the proportionality factor
(α − 1) (QFmin)−α falls exponentially, and the constant is
rather small for reasonably chosen QFmin.

In [14] we have shown that key generation based on the
HDK approach produces the key set KD of size |KD|, which
grows linearly with the document collection size. On the
other hand, the upper bound for the number of keys ex-
tracted from the queries |KQFmin | grows linearly with the
query log size. In practice, as we combine the query-driven
key generation with the document-driven filtering the total
number of generated keys is the size of intersection of the
two sets: |KD ∩KQFmin |. Indeed, by removing all superflu-
ous keys from KD, we obtain KQFmin .

Thus, we have shown that the number of generated keys
and, hence, the total generated traffic is indeed scalable.
3Our experiments suggest values of α being close to 2.

5. EXPERIMENTS
We showed that the QDI approach scales to web sizes with

respect to the size of the index. However, by pruning super-
fluous keys we have to tolerate a certain degradation of the
retrieval quality. Since we cannot capture analytically the
correlation between the popularity of a certain term combi-
nation and its document frequency, we conducted a large-
scale experiment described in Section 5.1 that shows that
the retrieval quality remains acceptable for reasonably cho-
sen EPUmin.

In Section 5.2 we also report obtained simulation results.
In particular, we observed a significant bandwidth consump-
tion decrease when compared with the HDK approach.

5.1 Overlap experiment
For our experiments we used a real query log from the

Wikipedia online encyclopedia [22], which contains more
than 9M queries logged during September and October 2004.
We used this query log to implement a query generator
that produces random query sets following the true observed
query popularity distribution. We then generated a test set
of 3000 queries and, for each of these queries, built a refer-
ence answer set by retrieving the top-20 results produced by
the Google search engine.

We also extracted all the term combinations present in the
query log and evaluated their estimated probability of use.
The query log contained more than 9M queries and we ob-
served around 10M unique term combinations. Notice that
these combinations form the set of all non-superfluous keys
K1 corresponding to QFmin = 1.4 For values of QFmin ≥ 1,
we can obtain KQFmin by filtering out keys with query fre-
quency below QFmin.

Before running our experiments, the (distributed) single
term index was generated by retrieving top-DFmax Google
answers for each single term. Afterwards, all 9M queries
were processed by our distributed retrieval engine to activate
popular keys. The final content of the distributed index
therefore consisted of all the keys in KQFmin , along with all
the single terms in TD. Notice that the activation process is
sensitive to the QFmin parameter.

To evaluate the quality of the answer set produced by our
query-driven retrieval engine for a query q, we compared the
union of the posting lists associated with all the keys con-
tained in q and present in the distributed index with the
reference answer set produced for q by the Google search
engine. More precisely, for each of the queries, we measured
the overlap between the produced answer and the reference
result set. E.g., an overlap of 100% means that the pro-
duced answer set contains all the documents present in the
reference set. The DFmax parameter was set to 100.

Figure 3-a shows the achieved overlap values for different
QFmin and smax. Figure 3-b shows the fractions of the
queries corresponding to full, partial or no overlap when
smax is set to 3.

Some interesting observations can be made from these
plots: 1) There is almost no benefit in considering keys of
size ≥ 3 (notice however that our approach can efficiently
handle keys of any size); 2) Good overlap can be obtained
for reasonable values of QFmin (e.g. an overlap of 80% for
QFmin set to 8); 3) The 80% overlap corresponds to 6% of
the queries with no intersection with the reference set.

4QFmin = x for a 9M query log implies EPUmin = x/9M .

10
8

6
4

3
2

100
50

30
20

15

0

10

20

30

40

50

60

70

80

90

100

1 10 100

QF_min / 9M queries

 m
ax

im
um

 o
ve

rla
p

fo
r t

op
20

 (%
)

unlimited s_max

s_max=3

s_max=2

only single terms

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 6 8 10 15 20 30 50 100

QF_min / 9M queries

no top20 results found

some of top20 results found

all top20 results found

a)

b)

Figure 3: The overlap obtained with Google.

We performed the same experiment using the Yahoo search
engine and obtained very similar results. This is an ad-
ditional evidence that our query-driven approach delivers
good quality retrieval for real web-size document collections.
However, we admit that Wikipedia logs are quite specific as
users usually search for concrete articles in the encyclope-
dia. Thus, our results could be slightly worse for real search
engine logs. Investigation of this issue is an important part
of our future work.

5.2 P2P index simulations
In this section we analyze the performance of our ap-

proach in a dynamic setting. Starting from the basic single-
term index, we observe how processing of new queries trig-
gers indexing of newly activated keys and improves the re-
trieval quality. We conducted a set of experiments with
the Wikipedia document collection (containing 650K arti-
cles) and the query log mentioned in Section 5.1. The ex-
periments were carried out with the following parameters:
DFmax = 100, EPUmin = 4

2M
(i.e., a key is considered non-

superfluous if it occurs at least 4 times among the 2M recent
queries) and smax = 3.

Figure 4 shows the number of generated keys as queries
are being processed. Notice that, out of 1.3M single-term
keys, less then 200K were actually used in queries, and that
the total number of generated keys was reduced by 1 − 2
orders of magnitude when compared to the HDK approach
without the query-driven key activation. We estimated that
the HDK approach would produce around 65M keys in this
scenario, whereas our approach requires only 0.5M keys to
be activated with EPUmin = 2/4M , in addition to the 1.3M
single-term keys, while, as shown in Figure 5, the retrieval
quality remains reasonable.

Based on the experimental data we will show now that
the QDI approach generates less traffic than the HDK ap-

0

500K

1.0M

1.5M

2.0M

0 1M 2M 3M 4M 5M 6M 7M 8M 9M

Queries processed

N
um

be
r

of
 g

en
er

at
ed

 k
ey

s

All keys

1-term

2-terms

3-terms

Figure 4: Number of generated indexing keys as a
function of the number of processed queries.

proach, which was proven to be scalable with respect to
bandwidth consumption during indexing. To do so, we es-
timate the indexing traffic of the HDK approach as the
sum of document frequencies for all keys in the index KD:
ITHDK = bi

P
|KD| df(k), where bi is the size of the trans-

mitted indexing information. The QDI approach would con-
sume ITQDI+ONM = bi

P
|KQDI | df(k)+baNKQFmin , where

the first part corresponds to the actual indexing traffic and
the second one reflects the extra traffic consumed by the
ONM executions. As the number of keys is significantly
smaller compared to the HDK approach, QDI requires less
indexing traffic. As the number of peers grows, the ONM
mechanism becomes more and more expensive. However, as
the number of peers is correlated to the size of the document
collection, i.e., each new peer adds some constant number of
new documents in the collection, the QDI approach would
induce significantly lower traffic. Moreover, the bandwidth-
saving features of the ONM algorithm would further reduce
the bandwidth consumption.

Let us make a simple example with real numbers. Our
test collection contains 650K documents. Each document
contains 128 distinct terms on average. If we set up bi to 25
bytes, the generation of the single term index would require
ITST = 650K ·128 ·25 ≈ 2 Gb of indexing traffic. The HDK
approach generates roughly 1600 keys per document, result-
ing in ITHDK = 650K ·1600·25 ≈ 26Gb. The QDI approach
prunes all superfluous keys and indexes only 0.5M/65M ≈
0.8% of the keys of size 2 and 3 when compared to the HDK
approach. Thus, ITQDI = ITST + 0.008 · 26Gb ≈ 2.2Gb.
Therefore, ITQDI is an order of magnitude smaller than in
the case of the HDK approach. The price we pay is the extra
ONM traffic estimated as ITONM = 10 · 0.5M · N = 5 · N
Mb, assuming we pack an ONM notification in 10 bytes. For
instance, if each peer stores 65K documents, the whole col-
lection of 650K documents will be distributed at around 100
peers. Thus, the total indexing traffic generated by the QDI
approach would be 2.2GB +5M ·100 ≈ 2.7 Gb which is still
an order of magnitude smaller then the traffic generated by
the HDK approach.

We plan to provide more experimental evidence on the
bandwidth scalability of the QDI approach with the proto-
type we are currently developing.

We also measured the average overlap for the query results
obtained with our approach compared to the full single-term
index based on the Terrier retrieval engine [21]. With the
same evaluation methodology as for the overlap experiment
described in section 5.1, the obtained overlap values are

shown in Figure 5. These values show that the retrieval qual-
ity grows quite fast with the number of processed queries,
starting from a relatively low value corresponding to the sin-
gle term index. At each point the overlap value was obtained
by processing of a test set of 50K queries with a given state
of the index. Index updates were frozen during the over-
lap measurements. For comparison we show similar plot
obtained for EPUmin = 3

2M
.

70

75

80

85

90

95

100

0 2M 4M 6M 8M

queries processed

ov
er

la
p

fo
r t

op
 2

0
(%

)

Upper bound
Query-driven (QFmin=3/2M)

Query-driven (QFmin=4/2M)
Only single terms

Figure 5: Average overlap for the index formed after
processing a number of queries.

Figure 6 shows the upper bounds for the overlap that
can be achieved with our indexing mechanism for different
EPUmin values. This figure is similar to Figure 3, but,
as the document collection is much smaller shows higher
overlaps.

70

75

80

85

90

95

100

1 10 100

QF_min / 9M queries

 m
ax

im
um

 o
ve

rla
p

fo
r t

op
20

/to
p5

0
(%

)

Top 20

Top 50

Top20: single terms

Top50: single terms

Figure 6: Overlap upper bound for the Wikipedia
document collection with different EPUmin.

The plots show the obvious tradeoff between the quality of
answers and the number of generated keys (and, therefore,
the amount of the indexing traffic) in the network. Finally,
we showed that real savings in storage and bandwidth re-
quirements can be achieved with a marginal degradation of
the answering quality.

6. RELATED WORK
A number of solutions for text-based retrieval in decen-

tralized environments have been proposed in the literature.
They are based on either unstructured [4], hierarchical [11,
2], or structured P2P networks [3] populated with peer-
level collection descriptions to facilitate the peer-selection
process followed by document-level retrieval at the selected
peers. Such solutions depend on the quality of peer-level de-
scriptors and in general perform well for clustered content
when a small subset of peers holds documents relevant to a
given query. On the contrary, our solution assumes a ran-
dom distribution of documents over the peers and performs

document-level indexing in structured P2P networks. It is
the continuation of our efforts to design scalable solutions
for full-text P2P search [13, 14, 18] with a goal of minimizing
the traffic generated during indexing and retrieval.

While implementing full-text retrieval with structured P2P
networks, the problem of long posting lists has been iden-
tified as a major obstacle [9]. When large posting lists are
the major concern for global single-term indexing, the au-
thors of [16] and [19] propose top-k posting list joins and
Bloom filters as promising techniques to reduce the search
cost. However, the study reported in [23] shows that such
optimizations cannot offer scalable retrieval for web-size doc-
ument collections.

Similarly to our HDK approach, the KSS System [6] pre-
computes and stores results of inverted list intersections for
popular queries. However, exhaustive term combinations
generation leads to unrealistic storage requirements for the
index. An extension of the KSS system is presented in [10].
This technique requires a query log available in advance and
might not adapt well to future queries. Our approach is
different to KSS since the index is constantly evolving by
activating new keys during the query processing.

The importance of term co-occurrences has recently been
identified in [12] where profitable term combinations are as-
sociated with corresponding “peerlists”, thus improving the
peer selection process during querying. While performing
well in a small network it is unclear whether the retrieval
quality will remain acceptable in a large-scale setting due to
the peer granularity of the index used in this approach.

The work presented in [20] uses a hybrid indexing struc-
ture to reduce the bandwidth consumption during the query-
ing process. In such a hybrid index, posting lists contain not
only document references, but also top-k terms of a docu-
ment. This index facilitates local multi-term query process-
ing at the peer responsible for any query term. This ap-
proach requires an overhead in storage space and the query
expansion process must be applied to guarantee a satisfac-
tory retrieval quality. Notice, that a similar idea was used
in the DCT approach [17] to store caches.

7. CONCLUSION
In this paper we presented a novel query-driven indexing

strategy for multi-term query processing in structured P2P
networks. Our QDI approach avoids maintenance of rarely
used index entries by adapting to the query popularity dis-
tribution observed in the query log. In summary, the paper
makes the following contributions in the P2P information
retrieval area: 1) introduces a P2P query-driven indexing
paradigm, 2) outlines the design of the novel QDI approach,
based on popular and highly-discriminative keys, 3) shows
the scalability analysis based on both theoretical and ex-
perimental evaluations, 4) provides an estimate of the QDI
approach retrieval performance with real web-size document
collections and the Wikipedia query logs.

Whereas a purely data-driven approach would lead to gen-
eration of a large number of keys, generation of keys from a
substantially smaller query log facilitates more compact and
targeted indexing structure. Thus, the bandwidth consump-
tion while indexing is significantly reduced as no additional
traffic is used for the maintenance of superfluous index en-
tries. At the same time query processing generates bounded
traffic thanks to the limited posting list size. Moreover, by
adjusting the minimum popularity of candidate term com-

binations found in the query log, we can tradeoff the size of
the index and the bandwidth consumption with the query
answering quality.

8. REFERENCES
[1] K. Albrecht, R. Arnold, M. Gahwiler, and R. Wattenhofer.

Join and Leave in Peer-to-Peer Systems: The Steady State
Statistics Service Approach. Technical Report 411, ETH
Zurich, 2003.

[2] W.-T. Balke, W. Nejdl, W. Siberski, and U. Thaden. DL
Meets P2P - Distributed Document Retrieval Based on
Classification and Content. In ECDL, 2005.

[3] M. Bender, S. Michel, P. Triantafillou, G. Weikum, and
C. Zimmer. Improving Collection Selection with Overlap
Awareness in P2P Search Engines. In SIGIR, 2005.

[4] F. M. Cuenca-Acuna, C. Peery, R. P. Martin, and T. D.
Nguyen. PlanetP: Using Gossiping to Build Content
Addressable Peer-to-Peer Information Sharing
Communities. In HPDC, 2003.

[5] A. Datta, M. Hauswirth, R. Schmidt, R. John, and
K. Aberer. Range Queries in Trie-Structured Overlays. In
P2P, 2005.

[6] O. D. Gnawali. A Keyword Set Search System for
Peer-to-Peer Networks, 2002. Master’s thesis, MIT.

[7] H. S. Heaps. Information Retrieval: Computational and
Theoretical Aspects. Academic Press, Inc., 1978.

[8] F. Klemm, J.-Y. L. Boudec, and K. Aberer. Congestion
Control for Distributed Hash Tables. In NCA, 2006.

[9] J. Li, B. Loo, J. Hellerstein, F. Kaashoek, D. Karger, and
R. Morris. The Feasibility of Peer-to-Peer Web Indexing
and Search. In Workshop on Peer-to-Peer Systems, 2003.

[10] Z. Liang, Z. Fu-tai, and M. Fan-yuan. KRBKSS – a
Keyword Relationship Based Keyword-Set Search System.
SCIENCE, 2005.

[11] J. Lu and J. Callan. Federated Search of Text-Based
Digital Libraries in Hierarchical Peer-to-Peer Networks. In
ECIR, 2005.

[12] S. Michel, M. Bender, N. Ntarmos, P. Triantafillou,
G. Weikum, and C. Zimmer. Discovering and Exploiting
Keyword and Attribute-Value Co-occurrences to Improve
P2P Routing Indices. In CIKM, 2006.

[13] I. Podnar, M. Rajman, T. Luu, F. Klemm, and K. Aberer.
Beyond Term Indexing: A P2P Framework for Web
Information Retrieval. Informatica, Special Issue on
Specialised Web Search, 2006.

[14] I. Podnar, M. Rajman, T. Luu, F. Klemm, and K. Aberer.
Scalable Peer-to-Peer Web Retrieval with Highly
Discriminative Keys. In ICDE, 2007.

[15] W. J. Reed. The Pareto, Zipf and other Power Laws.
Economics Letters, 74(15-19), 2001.

[16] P. Reynolds and A. Vahdat. Efficient Peer-to-Peer Keyword
Searching. In Middleware, 2003.

[17] G. Skobeltsyn and K. Aberer. Distributed Cache Table:
Efficient Query-Driven Processing of Multi-Term Queries in
P2P Networks. In P2PIR, 2006.

[18] G. Skobeltsyn, T. Luu, I. Podnar Žarko, M. Rajman, and
K. Aberer. Query-Driven Indexing for Peer-to-Peer Text
Retrieval. In WWW, 2007.

[19] T. Suel, C. Mathur, J.-W. Wu, J. Zhang, A. Delis,
M. Kharrazi, X. Long, and K. Shanmugasundaram.
ODISSEA: A Peer-to-Peer Architecture for Scalable Web
Search and Information Retrieval. In WebDB, 2003.

[20] C. Tang and S. Dwarkadas. Hybrid Global-Local Indexing
for Efficient Peer-to-Peer Information Retrieval. In NSDI,
2004.

[21] http://ir.dcs.gla.ac.uk/terrier/.
[22] http://en.wikipedia.org.
[23] J. Zhang and T. Suel. Efficient Query Evaluation on Large

Textual Collections in a Peer-to-Peer Environment. In P2P,
2005.

