
Anysee2: An Auto Load Balance P2P Live Streaming
System with Hybrid Architecture

(Work-in-Progress)
Qi Huang, Hai Jin, Ke Liu, Xiaofei Liao, Xuping Tu

Services Computing Technology and System Lab
Cluster and Grid Computing Lab

School of Computer Science and Technology
Huazhong University of Science and Technology, Wuhan, 430074, China

hjin@hust.edu.cn
ABSTRACT
Nowadays, Peer-to-Peer Technology has been widely used in live
streaming applications and many related systems are proposed.
However, their single overlay design and unbalanced scheduling
methods lead to some inefficiency including high control
overhead and bad playback experience. This paper mainly
discusses how to address these certain problems. We introduce a
hybrid architecture to solve the locality problem and reduce the
control overhead. We also propose a scheduling method to
achieve load balance. All solutions are implemented in Anysee2.

Categories and Subject Descriptors
C.2.4 [Distributed Systems]: Distributed applications.

General Terms
Algorithms, Design.

Keywords
Peer-to-Peer; Live Streaming; Hybrid Overlays; Load Balance

1. INTRODUCTION
There are three key problems in P2P live streaming system,
including constructing an efficient overlay, managing the buffer
and keeping the load balance. Former researchers have proposed
different approaches. However, since they have not solved all the
problems above, there still exists some inefficiency.

Structured/Tree-based system like PeerCast [3] is scalable. But
parent peers in it suffer a heavy transferring burden. Moreover,
complex tree adjustment in the dynamic network often affects the
Qos (Quality of Service). Mesh-based system like Coolstreaming
[6] is popular for the adaptability of network fluctuation. But
gossip based protocol limits their scalability. And in a network
resource constraint environment, observation shows that load
imbalance would result in bad streaming experience [4].

Anysee [5] and Bullet [2] tried to optimize the system by

transferring compensatory data through multi overlays. However,
they still have to take a tradeoff between control and data
overhead in any single overlay. This paper proposes an advanced
version of Anysee called Anysee2 to address these problems.
Anysee2 takes a hybrid architecture to divide control and data
into different independent overlays. Anysee2 also proposes a new
scheduling policy to achieve the load balance.

2. DESIGN AND ALGORITHMS
2.1 Tree-Mesh Hybrid Architecture
Anysee2 proposes a hybrid architecture to transfer the control
message and media data in different overlays. Control Tree
guarantees the scalability and efficiency of control messages
transfer. Data Mesh guarantees the good QoS in dynamic
network.

In Anysee2, every peer has its own GUID (Global Unique
Identifier) denotes as [ISP, city, postcode, public IP, private IP,
type, extend]. It is generated by bootstrapping server based on the
information of IP database and used as the landmark for Control
Tree construction.

Control Tree is the tree-based control overlay of Anysee2
system. It separates all the control messages from media data
transfer. Therefore, mechanisms of peer join; peer leave and data
supplier selection can be solely optimized in this structured
overlay. Moreover, concerning about the tradeoff between control
flow and data transfer efficiency is not needed anymore. The
Broadcaster serves as the root and peers form the tree-based
overlay layer by layer as the order of fields in GUID. The first
layer children are from different ISP, the second are from
different city under the same ISP and etc. Therefore, adjacent
peers are placed in the same branches of the control tree, which
can be called as the Swarm.

Data Mesh is another overlay of Anysee2. It is a mesh-based
overlay for media data transfer. Through the Control Tree, peers
can easily find their neighbors from the swarm. Moreover, no
need of gossip messages makes the startup delay much lower.
Why we choose the mesh instead of tree for data transfer is based
on the reason that mesh-based overlay does not need some strong
parents and have great churn tolerance.

In Anysee2, data buffer is synchronized by Time-Driver method
instead of Packet-Driven method, since in latter condition media
player would stop playing when network traffic is heavy. Control
Tree can be used to broadcast the synchronizing information.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
InfoScale’07, June 6-8, 2007, Suzhou, China.
Copyright 2007 ACM

fezzardi
Text Box
INFOSCALE 2007, June 6-8, Suzhou, China
Copyright © 2007 ICST 978-1-59593-757-5
DOI 10.4108/infoscale.2007.894

2.2 Bandwidth Estimation and Auto Load
Balance Scheduling

In a P2P overlay, it is very difficult to achieve load balance for
two reasons. One is that bandwidth of Internet varies from time to
time. Another is the traditional streaming dissemination makes
peers near the source popular and load heavier. Anysee2 uses
bandwidth estimation based on the actual data transfer, and an
auto load balance scheduling method to achieve load balance.

In every scheduling cycle, the peer will request and adjust the
supplier’s service capacity by data retrieval. Every partner’s
service capability is initialized as Max_capability. Algorithm in
Figure 1 shows the Max_capability should be adjusted closer to
practical available bandwidth in different conditions.

With estimated bandwidth, load balance scheduler of every peer
would request data from best suppliers. The urgent data should be
requested directly from Broadcaster to assure the startup QoS.
The sequence of common data request is that the scarcest data in
the overlay should be requested first, which is the same as that in
Coolstreaming. Peers in the network those have spare capability
will prefetch further data from Broadcaster with a probability
corresponding to the size of the network.

3. SIMULATIONS
Time unit T is introduces as the logical scheduling unit in our
simulations and one T is about 2 seconds in real-life. We use
BRITE [1] to generate a topology with a set of 1000 router nodes
and assign 2-8 terminal hosts to each of them. The join process
follows poisson distribution. Assume the delay between two hosts
is the link delay along the shortest path (omitting the queue time
of each router), the link delay between each router follows
uniform distribution automatically set to 4-15 segments per T in
BRITE. We set the delay and bandwidth between hosts and

routers to 20 segments per T respectively. Each node maintains a
256-segment capacity buffer, and it is connected with 3-8 partners
based on the experiment result described in [6]. Assuming that the
Broadcaster produces 8 new segments each T, each peer is
assigned to run 2000 Ts before stop over 5 times. At last, we
collect the simulation logs for our analysis.

Control Tree is introduced not only to achieve peers’ contiguity in
the overlay, but also to reduce control overhead. The first is
obvious due to the construction, and the latter can be proven by
comparing with Coolstreaming. The result shows that the control
overhead of Anysee2 (about 0.9 percent) much lower than that of
the CoolStreaming (about 1.4 percent).

Buffer full percentage is an important metrics of quality of live
streaming. We have tested the average buffer full percentage of
peers in the overlay which size changes from 50 to 2000. From
the result we can conclude the full percentage of Anysee2 (about
55%) is much bigger than that of CoolStreaming (about 35%).

4. CONCLUSION
From the simulation, Anysee2 has been proven effective. Hybrid
architecture design reduces the control overhead while keeping
great scalability and stability. Auto load balance algorithm make
peers guarantees the good QoS.

5. REFERENCES
[1] A. Medina, A. Lakhina, I. Matta, and J. Byers, “BRITE: An

Approach to Universal Topology Generation”, Proceedings
of IEEE MASCOTS'01, August, 2001, Cincinnati, Ohio,
USA.

[2] D. Kostic, A. Rodriguez, J. Albrecht, and A. Vahdat, "Bullet:
High Bandwidth Data Dissemination Using an Overlay
Mesh", Proceedings of the 19th ACM SOSP, October 19-22,
2003, Bolton Landing, NY, USA.

[3] PeerCast. http://www.peercast.org.
[4] S. Saroiu, P. Gummadi, and S. Gribble. “A measurement

study of peer-to-peer file sharing systems”, Proceedings of
Multimedia Computing and Networking (MMCN02), January
2002, San Jose, CA, USA.

[5] X. Liao, H. Jin, Y. Liu, L. M. Ni, and D. Deng, “AnySee:
Inter-Overlay Optimization based P2P Live Streaming”,
Proceedings of IEEE INFOCOM, April 2006, Barcelona,
Spain.

[6] X. Zhang, J. Liu, B. Li, and T.-S. P. Yuan, “CoolStream-
ing/DONet: A Data-driven Overlay. Network for Peer-to-
Peer Live Media Streaming”, Proceeding of IEEE INFO-
COM’05, March 2005, Miami, FL, USA.

Figure 1. Pseudocode of Bandwidth Estimation.

