
BUST: Enabling Scalable Service Orchestration

Dong Liu, Ralph Deters
Department of Computer Science, University of Saskatchewan

Saskatoon, Saskatchewan, S7N 5C9 CANADA
dong.liu@usask.ca, deters@cs.usask.ca

ABSTRACT
Service-Orientation (SO) is a design and integration para-
digm that is based on the notion of well defined, loosely
coupled services. Within SO, services are viewed as compu-
tational elements that expose functionalities in a platform-
independent manner and can be described, published, dis-
covered, and consumed across language, platform, and orga-
nizational borders. SO principles emphasize composability,
by which a set of services can be composed to achieve the
desired functionality. Service orchestration is the dominate
approach to service compositions. A key issue in imple-
menting service orchestrations is their efficient concurrent
execution.

This paper focuses on the scalability challenges of simulta-
neously executing many long-running service orchestration
instances. We present a novel approach for implementing
service orchestrations called BUST (Break-Up State Tran-
sition) that significantly improves processing rate and scal-
ability.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distrib-
uted Systems—client/server, distributed applications; C.4
[Computer Systems Organization]: Performance of Sys-
tems—design studies, performance attributes

General Terms
Design, Performance

Keywords
SOA, services, service orchestration, BPEL, multithreading,
performance, scalability, queueing model

1. INTRODUCTION
Service-Orientation (SO) is a design and integration para-

digm that is based on the notion of well defined, loosely

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Infoscale 2007 June 6-8, 2007, Suzhou, China
Copyright 2007 ACM 978-1-59593-757-5 ...$5.00.

coupled services. Within SO, services are viewed as com-
putational elements that expose functionality in a platform-
independent manner and can be described, published, dis-
covered, orchestrated and consumed across language, plat-
form and organizational borders [20, 4]. The Service-Oriented
Architecture (SOA), first introduced by Gartner in 1996, is a
conceptual framework that identifies service consumers, ser-
vice providers, and service registries. Web Services (WS) are
the most commonly used technologies to develop SO appli-
cations, due to the standardization efforts and the available
tools and infrastructures.

SO principles emphasize service composability, by which
a set of services can be composed to achieve the desired
functionality. The service compositions are also called ser-
vice assemblies [8]. A service participating in a composition
is called a composition member. It is important to note
that service orchestration and service choreography are two
fundamentally different approaches for composition. Ser-
vice orchestration depends on a conductor-like central ser-
vice that executes a plan/workflow that defines when and
how the members are to act. Service choreography, on the
other side, does not have a central service and is based on
the idea that the members are able to interact according to a
previously agreed choreography description. Consequently
choreography assumes that the members are collaborative
enough to be able to achieve the common goal while the
members of a service orchestration do not need to know any
details about the orchestration and is therefore much easier
to implement. Not surprisingly, service orchestration is the
dominant approach for achieving service compositions. To
explain service orchestration in more detail, Figure 1 shows
the messaging sequence of a simple service orchestration for
loan application. The node with an ‘O’ inside is the service
orchestration. The numbers within the message names de-
note different messages and their sequence. A message may
have a corresponding response that is denoted by an ‘r’ af-
ter the sequence number. Two messages with the same first
sequence number are sent in parallel, e.g. 2.1 and 2.2.

As can be seen, a client sends a loan application with
the personal information to the loan approval service (LAS),
and the LAS checks the client’s credit by invoking the credit
checking service. If the credit rating is good, the LAS sends
the application to two loan suppliers, and the loan offer with
lower interest will be sent back to the client. Typically
this business process will be represented in orchestration
language like the Web Services Business Process Execution
Language (WSBPEL, formerly known as BPEL4WS, BPEL
for short) [21] to specify all details for the automated service

fezzardi
Text Box
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. INFOSCALE 2007, June 6-8, Suzhou, ChinaCopyright © 2007 ICST 978-1-59593-757-5 DOI 10.4108/infoscale.2007.901

0. Loan app
Loan

client

Mapleloan

service

S
e
rv
ic
e
 d
e
s
c
rip
tio
n

Starloan

service

S
e
rv
ic
e
 d
e
s
c
rip
tio
n

Credit rating

service

S
e
rv
ic
e
 d
e
s
c
rip
tio
n

LAS

S
e
rv
ic
e
 d
e
s
c
rip
tio
n

1. Credit

checking

request
1r. Credit

checking

response

2.1 Loan

application

2.1r Mapleloan

offer

2.2r Starloan

offer

2.2 Loan

application

0r. Loan offer

Figure 1: The loan application service orchestration.

orchestration. To execute the BPEL-represented business
process a compiler can convert the orchestration into code
for execution on a service platform. The deployed orches-
tration and the hosting service platform together determine
the performance of the orchestration executions.

Current service platforms favor the use of multithreading
as a means for dealing with simultaneous requests. This im-
proves the performance of the platform compared to single-
threaded implementations [23]. The service discipline of the
multithreading service platform is processor sharing (PS).
Figure 2 shows the throughput and average residence time
of a web service as the functions of the number of concurrent
active threads. The web service is implemented in Axis21

and runs on Jetty 5.02. The number of concurrent active
threads for service processing is equal to the number of con-
current requests in the experiments because Jetty assigns a
thread for each request. The residence time does not include
the waiting time spent in queues, because the queue length
has been set to be zero in the experiments. As shown, the
average request residence time increases linearly with the
number of concurrent active threads in the system before
the system thrashes. Similar results have been observed on
.NET applications [12] and Java EE applications [24, 11].
The number of concurrent active threads will increase if it
takes a long time for some threads to finish their jobs and
the job arrival rate does not change. The performance of
a service platform degrades when the number of concurrent
active threads increases. This is a serious scalability problem
for service orchestrations because the threads for orchestra-
tion instances need to run longer if a service orchestration
comprises more message exchanges with the members. An
orchestration instance refers an execution of the service or-
chestration initialized by a specific service request.

Generally, a thread has two states, active and idle, after it
is spawned and before it is terminated. When a thread is ac-
tive, it will affect the performance of other threads. On the
contrary, an idle thread has very little impact on the perfor-
mance of active threads. When a thread switches from the
active state to the idle state, the job information that it car-
ries is removed. The top part of Figure 3 shows the sequence
of messaging events and state transitions of a thread for an
instance of the common LAS orchestration implementation.
The thread responsible for a service instance is active from

1See http://ws.apache.org/axis2/ .
2See http://jetty.mortbay.org/index.html .

0

50

100

150

200

250

300

350

0 100 200 300 400 500

Number of concurrent active threads

T
h
ro
u
g
h
p
u
t
(/
s
e
c
)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

R
e
s
id
e
n
c
e
 t
im
e
 (
m
s
)

throughput

residence time

Figure 2: The throughput and residence time of a
web service versus the number of concurrent active
threads.

common implementation

0

1 1r 2.1 & 2.2 2.xr 2.xr

active

idle

active

idle

time

0r

w1 w2

scalable implementation

w3

Figure 3: The sequence of messaging events and
state transition of a thread for common and scal-
able implementation of the LAS orchestration. The
first 2.xr can be either 2.1r or 2.2r, and the second
will be the other.

receiving the ‘0. Loan app’ message till sending the ‘0r.
Loan offer’ message. During the periods of w1, w2, and w3,
the thread is waiting for a message. If the thread can be set
to the state of idle during w1, w2, and w3 as shown in the
bottom part of Figure 3, the number of concurrent active
threads will be decreased, and the service platform perfor-
mance will be improved. However, there are three major
problems for achieving a scalable implementation:

1) How to represent a service orchestration in such a way
that the possible idle periods between the active periods can
be identified;

2) How to ensure that an inbound message triggers the
right idle-to-active state transition of an orchestration in-
stance;

3) How to maintain the state of an orchestration instance
through the different processing periods.

This paper proposes a novel Break-Up State Transition
(BUST) approach to enable scalable service orchestration
implementations. The principles of BUST are presented in
Section 2. Section 3 discusses how to apply BUST to BPEL
orchestrations with a case study. Section 4 evaluates BUST
by simulation. The related work is reviewed in Section 5.
Section 6 is the conclusion and future work.

2. BUST: BREAK-UP STATE TRANSITION
In the following a description of the BUST approach for

dealing with the inherent scalability problems is given.

2.1 Break-Up
Service orchestration can be considered as the flow of mes-

sage exchanges between the central conductor service and
the member services. Consequently, service orchestration is
composed of processing of inbound messages and generation

of outbound messages. Normally, the processing happens
consecutively with a messaging or timing event. Figure 4
shows a generic model for the interactions between an el-
ementary service unit and its environment. The model is
developed on the basis of an interaction model used in soft-
ware requirements analysis [7]. The service component first
validates a messaging or timing event. If the event is vali-
dated, corresponding processing will be triggered, and a gen-
erated outbound message may be sent. In implementation,
the event drives a thread to switch from the idle state to the
active state. The thread turns idle when the processing is
finished or a message is sent.

Messaging/timing

event

Process

Validate

Message

Figure 4: The model for an interaction between an
elementary service component and its environment.

The model shown in Figure 4 is generic enough to describe
any interaction scenarios for a service orchestration. There-
fore, it is the template for the snippets into which a ser-
vice orchestration can be disassembled. One can verify the
model’s capability by using it to describe the basic message
exchange patterns (MEP) of service interactions. There are
four basic MEP’s, in-only, out-only, in-out, and out-in [26].
The in-only and out-only patterns are for one-way messag-
ing. The in-out pattern is also referred as request-response,
and the out-in pattern is referred as solicit-reply. Figure 5
shows the MEP’s described by the interaction template. It is
straightforward to describe the in-only and in-out patterns
using the template. For out-only pattern, the outbound
messaging is combined with an inbound messaging or tim-
ing event that triggers the generation of the outbound mes-
sage. The out-in pattern is described by linking the out-only
pattern and the in-only pattern together.

in

Process

Validate

in /

timing

Process

Validate

out
Process

Validate

in

out

in/

timing

Process

Validate

out

in

Process

Validate

In-only

Out-in

In-outOut-only

Figure 5: Four MEPs described by the interaction
model.

A general rule governing the application of the interaction
template for disassembling a service orchestration is to en-
sure that there is no idle period inside a snippet. An idle
period is always introduced by waiting for an inbound mes-
sage or a timing event. The snippets should be implemented
separately, and each snippet has its own service endpoint
(called a snippet endpoint). There is no centralized control
for the execution sequence of snippets. The snippets can
be deployed on either the same service platform or several
service platforms. Figure 6 shows the break-up result of the

LASLoan

client

Mapleloan

service

Starloan

service

Credit rating

service

S1 S2

S4

0r. Loan offer

1. Credit

checking

request

1r. Credit

checking

response

2.1r Mapleloan

offer

2.1 Loan

application

0. Loan app

2.2r Starloan

offer
2.2 Loan

application

S3

Figure 6: The disassembled LAS orchestration. S1,
S2, S3, and S4 are four snippets. Note that either
S3 or S4 sends the message ‘0r. Loan offer’ to the
loan client.

Wait

Snippet1

receive(message0)

[message1 sent]

Snippet2

receive(message1r)

[message2.1 and message 2.2 sent]

receive(message2.1r)

Snippet3

receive(message2.2r)

Snippet4

Figure 7: The state machine diagram of LAS orches-
tration.

example LAS orchestration. Section 3 will present more de-
tailed rules for breaking up a service orchestration in the
BPEL language.

2.2 State Transition
When a service orchestration is disassembled into snip-

pets, its execution transforms into the execution the snip-
pets with idle periods in between. This execution can be
modeled by a virtual state machine. Each snippet is cor-
responding to a state in the state machine. There is also
a special state called “Wait” representing that the machine
halts and wait for a messaging or timing event to happen.
Figure 7 shows the diagram for the state machine of LAS
orchestration using UML notations [3].

Since there is no centralized control for the execution of
the service orchestration, successful state transitions depend
on the cooperation of the member services. A successful
state transition has two requirements:

1) a message is delivered to the correct snippet endpoint,
and

2) the message is correlated with the correct orchestration
instance.

Each snippet puts the information about to which snip-
pet endpoint a reply message should be sent in the mes-
sages that it sends to a member service. In this way, the
first requirement is accomplished. Once an orchestration in-
stance is initialized, the first executed snippet will create a

unique id for the instance. This id will be included in every
message sent to the member services by each snippet. The
member services are also required to include the id in the
reply messages. So the correct orchestration instance can be
identified when an inbound message is parsed. Each snippet
endpoint should be able to correlate an inbound message
to the corresponding orchestration instance and assign the
reply-to endpoint address and instance id to the outbound
messages.

2.3 State Management
Services are often referred to be stateless [8, 19]. The

statelessness is a design principle of services to achieve scal-
ability. In fact, no service is really stateless. The states
have to be managed in many cases, especially for service or-
chestrations. State management is critical for the following
scenarios in service orchestration executions:

1) the service orchestration correlates a message to an
instance based on the identifiers of messages and in-
stances;

2) the execution logic of a service orchestration depends
on the runtime information included in messages; and

3) the details of interactions with business partners need
to be stored for later access.

For BUST-style service orchestration implementations, the
states can be classified into two categories by their lifetime.
Some states exist with a message. When the message is
received and processed, the states disappear. Other states
persist across the execution of several snippets or the whole
orchestration. These states are critical for the transitions
of the virtual state machine and the inner logic of snip-
pets. The first type of states does not need to be specially
managed as far as the message transportation is reliable.
We need to consider the management of the second type of
states. Without the loss of service scalability, there are two
methods to maintain the states:

1) the messages carry the state information across the
snippets; and

2) the state information is maintained by a persistent
storage, like a database, with which the snippets can
interact.

BUST depends on a persistent storage to store the states
that can be accessed by all snippet endpoints. BUST favors
representing the orchestration states and storing the entries
in the persistent storage explicitly. Object persistence is not
good for state persistence in BUST because it will increase
the coupling between snippets and degrade scalability. Some
states, e.g. the reply-to snippet endpoint address and the
instance id, should always be carried by the messages, be-
cause the messages are also means to trigger the transitions
of the virtual state machine. The case study in Section 3
shows how to apply these principles to a BPEL orchestration
implementation.

3. APPLYING BUST TO BPEL IMPLEMEN-
TATIONS

BPEL is a widely used description language for web ser-
vice orchestrations. The members of a BPEL orchestration
are often called partners in business context. A BPEL or-
chestration is composed of scopes and activities. A scope
provides context for the activities inside. Table 1 lists major
basic activities and structure activities defined in BPEL ver-
sion 2.0. The orchestration’s messaging and timing events

receive(client, loanApp)
assign(loanApp/SIN, creditRatingRequest/SIN)
invoke(creditRatingService, creditRatingRequest,

creditRatingResponse)
assign(creditRatingResponse/creditRating,

loanApplication//creditRating)
flow{

sequence{
invoke(mapleLoanService, loanApplication)
receive(mapleLoanService, mapleLoanOffer)

}
sequence{

invoke(starLoanService, loanApplication)
receive(starLoanService, starLoanOffer)

}
}
if(mapleLoanOffer/interest<=starLoanOffer/interest){

assign(mapleLoanOffer, loanOffer)
else

assign(starLoanOffer, loanOffer)
}
reply(client, loanOffer)

Figure 8: The BPEL description of the loan approval
service orchestration in pseudocode. / and // are
notations in XPath. / is the child operator. A/B
denotes B that is an immediate child of A. // is the
recursive descent operator. A//B denotes B that is
the first children found in the zero or more levels of
B.

Table 2: BPEL Basic Activities Break-Up Rules
Activity Break-up results
· · ·
invoke(S, mOut,
mIn)
· · ·

· · ·
invoke(S, mOut)
//end

//start
receive(S, mIn)
· · ·

· · ·
receive(S, mIn)
· · ·

· · ·
//end

//start
receive(S, mIn)
· · ·

· · ·
waitFor(ms)
· · ·

· · ·
register(Timer,
SYSTEM.current
+ ms) //end

//start
receive(Timer, alarm)
· · ·

· · ·
waitUntil(time)
· · ·

· · ·
register(Timer, time)
//end

//start
receive(Timer, alarm)
· · ·

No break-up operations are needed for reply(), assign(), and
exit(). · · · ’s are the context of an activity. Timer is an inter-
nal service that accepts registrations of timing events and sends
alarms. SYSTEM.current is the systems current time. regis-
ter(Timer, time) registers a timing event specified by time on the
Timer.

are represented by the basic activities. Figure 8 shows the
BPEL description of the LAS orchestration example. The
sections of partner links and variables are not included in
the description.

3.1 BPEL Break-up
The general principle for disassembling a BPEL orches-

tration is that a snippet always starts with an inbound mes-
saging or timing event. Table 2 lists the break-up rules for
the basic activities.

3.2 State Transition by WS-Addressing
As discussed in Section 2.2, the state transitions involve

message deliveries and instance correlations in the virtual
machine of snippets. BUST solves the two problems to-
gether by applying the Web Service Addressing (WSA) to
the inbound and outbound messages of BPEL orchestra-
tions. The WSA specification describes a transport-neutral
mechanism for the addressing issues of web services and mes-

Table 1: BPEL Activities and Corresponding Pseudocode
BPEL

Type notation Meaning Pseudocode

B
a
si

c
a
c
ti

v
it

ie
s

<invoke> Invoke an operation of a partner service. The MEP can be either in-out or in-only. invoke(S, mOut, mIn)
or invoke(S, mOut)

<receive> Receive a message from a partner. receive(S, mIn)
<reply> Reply a message to the client or a partner service. reply(S, mOut)
<assign> Update a variable. assign(xA, xB) // xB:=xA
<wait> Delay for a period or until a deadline. waitFor(ms), or waitUntil(time)
<exit> End the execution of the instance. exit()

S
tr

u
c
tu

r
a
c
ti

v
it

ie
s <sequence> The inside activities are executed sequentially. sequence{}

<if> Condition structure. It can be combined with <elseif> and <else>. if(condition) {} else {}
<while> Repeat the execution of inside activities. while(condition)
<pick> Execute an activity on a messaging or timing event in a set of them. pick{onMessage(S, mIn) {}}
<flow> Concurrency and synchronization. flow{}

S: service partner, mIn: inbound message, mOut: outbound message, ms: time duration in millisecond, time: a time point, {}: a segment
containing one or more activities.

sages [25]. A SOAP message header contains elements like
<To>, <From>, <ReplyTo>, <MessageID>, and
<RelatesTo> when the WSA is engaged. We take advan-
tage of the elements of <ReplyTo>, <MessageID>, and
<RelatesTo> for state transitions in BUST.

A SOAP message sent out by a BPEL orchestration must
have a <ReplyTo> header element. The <ReplyTo> ele-
ment contains the endpoint address of the snippet that is
supposed to receive the corresponding response message. In
this way, when the service partner receives the message, it
knows where the response message should be sent to. This
requires to implement service endpoints for each of the re-
ceive(S, mIn) activity in snippets, including the one resulted
from the disassembling of invoke(S, mIn, mOut).

A SOAP message sent out by a BPEL orchestration must
have a <MessageID> header element. According to the
WSA specification, the content of <MessageID> in the re-
quest message should be copied to the <RelatesTo> ele-
ment in the corresponding response message. In BUST, the
<MessageID> contains a string composed of a unique identi-
fier for the message and a unique identifier for the orchestra-
tion instance, like <MessageID>messageid:instanceid
</MessageID>. A partner service will have no awareness
of what the identifier string means in the request message,
and it just put the id string in the <RelatesTo> elements
of the response messages to the snippet endpoint specified
in <ReplyTo>. The snippet can parse out the instanceid
from an inbound message and correlates it to the correct
orchestration instance.

The transitions triggered by timing events are achieved
similarly like messaging. The Timer works as an internal
service. When a snippet registers a timing event on the
Timer, the information about the snippet endpoint to re-
ceive the timing alarm and the orchestration instance id are
included in the registration request. Therefore, the Timer
will know to which snippet and instance it sends the alarm.

3.3 Explicit State Management
The state information of a BPEL orchestration can be

classified into two types, the states represented by <variable>
elements and those that are not explicitly described by BPEL.
In BUST, all the states that need to be managed are explic-
itly represented. The BPEL syntax is extended by adding
features of state management activities. The extension does
not change the original semantics of BPEL, and therefore
the BPEL compilers and code generators can be reused for
BUST-style implementations. Table 3 lists the extension
activities for state management.

Table 3: BPEL Extension for State Management
Notation Meaning Pseudocode
<create> Initialize an instance by specify

the database and the instance
id. An entry for the instance
will be created in the database.

create(DB, instan-
ceID)

<update>

Update certain state of an in-
stance in the database.

update(DB, instan-
ceID, ID, state)

Update the value of the vari-
able.

ID: variableName
state: value

The message has been sent. Or
a message related to the id has
been received.

ID: messageID
state: transportation

For a <flow> structure, the
state is the number of concur-
rent activities that have fin-
ished.

ID: structureID
state: syncNum

For a <while> structure, the
state is whether the current
message will finish the loop.

ID: loopID
state: finished

For a <pick> structure, the
state is whether the current
message will triggered a picked
activity.

ID: pickID
state: picked

<retrieve> Check certain state of an in-
stance in the database. There
are similar cases for <retrieve>
to those of <update>.

retrieve(DB,
instanceID, ID,
state)

The final break-up result of the LAS orchestration are
shown in Figure 9. Although Snippet4 is very similar to
Snippet3, they cannot be merged together because the in-
terfaces to receive messages from the Starloan service and
the Mapleloan service can be different.

4. EVALUATION
Most current service delivery systems are implemented

on the basis of a three-tier client-server architecture [16].
The architecture of such service delivery systems is shown
in Figure 10. A model will probably miss the key character-
istics of service performance if it includes all the components
in Figure 10. It is better to just focus on the service plat-
form. Most service platforms work in a multithreading fash-
ion. The threads are controlled by the application server on
which a service platform is deployed. A number of threads
are created and put in a thread pool when an application
server is initialized. When an arrival request is dispatched to
a thread in the pool, the thread becomes active. An active
thread will return to the idle state when its job is finished.
When the number of idle threads in the pool is less than
a minimum number, new threads will be spawned and put
into the pool. However, the total number of threads includ-
ing both active and idle ones in the pool can never be more

than a maximum number bound. When too many threads
are idle, some idle threads will be destructed and removed
from the pool if no new arrivals are dispatched in time. The
application server can prevent too many threads from using
up the resource by such a bounded thread pool. The state
transition diagram of a thread is shown in Figure 11. A
thread consumes the computing resource when it is active.

4.1 A Queueing Model for Common Web Ser-
vice Platforms

The Queueing Network Model (QNM) has been widely
used for software system performance evaluation [22, 2]. The
advantage of applying the QNM to software performance
evaluation is that the performance of a large-scale complex
system can be precisely predicted based on the knowledge of
its architecture and performance characteristics of its com-
ponents. Hence, the service orchestration is an appropriate
case to apply the QNM. First of all, it is necessary to model
the service platforms. Figure 12 shows the architecture of
typical web service platforms using HTTP as the transporta-
tion methods.

We use AnyLogic 5.53 to develop the QNM models and
run the simulation experiments. Figure 13 shows a QNM for
service platforms. The TCP layers and the HTTP sender are
not included in the model because they have little impact
on service performance in most cases. The HTTP listener is
a queue to accept requests. The dispatcher assigns a request
to an idle thread in the thread pool. Then the request is pro-
cessed. When the processing is finished, the job departs the
system and the thread will return to the idle state. In exper-
iments with Jetty, we found that the threads are spawned
so fast that there will always be idle threads in the thread
pool when a request waits for being dispatched before the
maximum thread number is reached. There is very small
overhead for thread spawn and destruction when the arrival
rate is relatively stable. Since the thread pool has less influ-
ence on the performance of the service platform, the model
excludes the thread pool without loss of precision.

Table 4: Service Platform QNM Configurations
Component Configuration

Arrival

In an open network, we assume the inter-arrival
time is exponential distributed, i.e. Poisson ar-
rivals. The parameter is the average arrival time
λa.

HTTP
listener

The listener is a limited capacity queue. The ser-
vice discipline is FIFO (First In First Out). The
arrivals in the queue will expire if they cannot
be served in time. When the queue is full, new
arrivals are rejected. The capacity is Cl. The
timeout duration is TO.

Dispatcher

When there is an idle thread, the dispatcher as-
signs the first arrival in the listener queue to the
thread. This happens very fast. Therefore, we do
not count the time.

Processing

We assume the service discipline is PS, and the
service time is Erlang distributed. The parame-
ters are the rate λp and the shape k. The capacity
of the processing component, i.e. the thread pool
maximum number bound, is Cp.

Departure
Once its processing finished, the request leaves
the system immediately.

The details about the model configurations are listed in
Table 4. It would be the most straightforward to assume
that the service time distribution is exponential distributed,
which yields an M/M/1 queue. However, we found that
the service time distribution of the PS service component is

3See http://www.xjtek.com/anylogic/ .

//Snippet1
receive(client, loanApp)
create(DB, instanceID)
update(DB, instanceID, loanAPP)
assign(loanApp/SIN, creditRatingRequest/SIN)
update(DB, instanceID, creditRatingRequest)
invoke(creditRatingService, creditRatingRequest)
update(DB, instanceID, creditRatingRequest//MessageID)

//Snippet2
receive(creditRatingService, creditRatingResponse)
update(DB, instanceID, creditRatingResponse//RelatesTo)
update(DB, instanceID, creditRatingResponse)
assign(creditRatingResponse/creditRating,

loanApplication//creditRating)
update(DB, instanceID, creditRatingResponse)
flow{

sequence{
invoke(mapleLoanService, loanApplication)
update(DB, instanceID, loanApplication//MessageID)

}
sequence{

invoke(starLoanService, loanApplication)
update(DB, instanceID, loanApplication//MessageID)

}
}

//Snippet3
receive(mapleLoanService, mapleLoanOffer)
update(DB, instanceID, mapleLoanOffer//RelatesTo)
update(DB, instanceID, mapleLoanOffer)
update(DB, instanceID, flowID, syncNum)
retrieve(DB, instanceID, flowID, syncNum)
if (syncNum == readyNum) //in this case readyNum is 2
{

retrieve(DB, instanceID, starLoanOffer)
if(mapleLoanOffer/interest<=starLoanOffer/interest){

assign(mapleLoanOffer, loanOffer)
update(DB, instanceID, loanOffer)

else
assign(starLoanOffer, loanOffer)
update(DB, instanceID, loanOffer)

}
reply(client, loanOffer)
update(DB, instanceID, loanOffer//MessageID)

}

//Snippet4
receive(starLoanService, starLoanOffer)
update(DB, instanceID, starLoanOffer//RelatesTo)
update(DB, instanceID, starLoanOffer)
update(DB, instanceID, flowID, syncNum)
.../the rest is similar to Snippet3

Figure 9: The snippets got from the application of
BUST to the BPEL description of the LAS orches-
tration.

Load

distributor

Network

DNS

Router

Cache

Router

Firewall

Client

Application

servers

Database

servers
Web

Servers

Figure 10: The architecture of service delivery sys-
tems.

spawn

terminated

idle in the

pool
active

Figure 11: The state transition diagram of a thread.

Network

TCP HTTP receiver

Service Processing

HTTP senderTCP

Figure 12: The architecture of a typical web service
platform.

different from an exponential distribution in the experiments
with Jetty and Axis2. It has a heavier tail than exponential.
Generally, the PS queue can be modeled as M/G/1 [6]. The
Pareto distribution and the Gamma distribution are used as
the service time distribution is some approaches [13, 5]. We
use the Erlang distribution for the service time and model
the system as an M/Ek/1 queue. The probability density
function (pdf) of the Erlang distribution is

f(x) =
λkxk−1e−λx

(k − 1)!
, x ≥ 0, λ > 0, k ∈ N,

where λ is the rate parameter, and k is the shape parameter.
The mean of the random variable x is

E[X] = k/λ .

Figure 14 shows the cumulative distribution functions (CDF)
of the experiment data fitted by the Erlang distribution com-
pared with the exponential distribution. The empirical data
was the measurement result of the service time of a web ser-
vice implemented in Axis2 and runs on Jetty 5.0. The work-
load was generated by Apache JMeter4 when 25 concurrent
clients were simulated. Obviously, the Erlang distribution
is a much better fit than the exponential distribution.

In the model, we let k equal to the number of active
threads, and estimate λ by

λ = k/S̄k ,

where S̄k is the average service time of k concurrent ac-
tive threads obtained from experimental measurement. We
found that S̄k is linearly proportional to the number of active
threads k when the system is running in normal operational
state. Therefore, we can approximate λ by

λ = 1/S̄1 ,

where S̄1 is the average service time when there is only one
active thread in the system.

4.2 Queueing Models for the LAS Orchestra-
tion

Figure 15 shows a QNM developed in AnyLogic for the
common implementation of the LAS orchestration. We did
not explicitly include the network latencies in the model be-
cause their impacts are trivial compared with the processing
delays at the partner services and they can be combined with

4See http://jakarta.apache.org/jmeter/index.html .

Figure 13: A simplified QNM for service platforms.

0 200 400 600 800 1000 1200 1400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x (ms)

F
(x

)

Empirical
Exponential
Erlang

Figure 14: Fitting the service time of a web service
using the exponential distribution and the Erlang
distribution.

the partner services delays in needed. The ‘router’ trans-
ports the messages to the proper services. The ‘flow’ compo-
nent makes a copy for each message pass it, and sends them
to the starLoan and mapleLoan component concurrently. A
message needs to match with its copy at the ‘synch’ com-
ponent, and then they are combined together. In this way,
the <flow> structure is modeled, and the synchronization
condition is assured. All the three partner services are of PS
service discipline, and the service times follows the Erlang
distribution. A message returns directly to the processing
component without waiting for dispatching after it is pro-
cessed by partner services because there is already a thread
assigned for it. The number of active threads in the pro-
cessing component increases by one for each new dispatched
arrival, and decreases by one for each departure correspond-
ingly.

Figure 16 shows a QNM for the LAS orchestration im-
plemented in BUST style. The key difference between this
model and the previous model is that the number of ac-
tive threads decreases by one when a message leaves the
processing component. The messages returning from the
partner services need to go to the HTTP listener to wait for
dispatching. The messages from the partner services have
higher priorities than the new arrivals, and the new arrivals
will be preempted if the listener queue is full.

We did not include a database component in the model
because either CPU-intensive jobs or database-intensive jobs
are processed in a processor sharing discipline, and the ser-
vice time distributions for the two cases are very similar.
Although the requirements of state management are explic-
itly represented in BUST, it does not mean that the BUST
style implementation will need more processing time on the
database, because state persistence is a common require-
ment for all service orchestration implementations [8].

4.3 Simulation Results and Discussion
In order to compare the BUST and common orchestration

#

combine

#

#

##

#

sy nch

router

orig

copy
#

#

flow

SZ/CAP

#

LAST VAL
UTIL

creditC hecking

80%

20%

T

F
#

#

checkListener

#

dispatcherHold

INTERARR

#ARR

reject

INTERARR

#ARR
timeOut

SZ/CAP

#

LAST VAL
UTIL

processing

SZ/CAP

AV SZ

#

#
httpListener

INTERARR

#ARR
departure

#ARR

REM

#

arriv al

SZ/CAP

#

LAST VAL
UTIL

starLoan

SZ/CAP

#

LAST VAL
UTIL

mapleLoan

Note: The number of active

threads increases by one for

each dispatched arrival.

Note: The number of active

threads decreases by one for

each departed job.

Figure 15: A QNM for the common LAS orchestra-
tion implementation.

INTERARR

#ARR
preempted

#

combine

#

#

##

#

sy nch

router

orig

copy
#

#

flow

SZ/CAP

#

LAST VAL
UTIL

creditC hecking

80%

20%

T

F
#

#

checkListener

#

dispatcherHold

INTERARR

#ARR

reject

INTERARR

#ARR
timeOut

SZ/CAP

#

LAST VAL
UTIL

processing

SZ/CAP

AV SZ

#

#
httpListener

INTERARR

#ARR
departure

#ARR

REM

#

arriv al

SZ/CAP

#

LAST VAL
UTIL

starLoan

SZ/CAP

#

LAST VAL
UTIL

mapleLoan

Note: The number of active threads

increases by one for each dispatched

arrival, and decreases by one when it

leaves the processing component.

Figure 16: A QNM for the BUST LAS orchestration
implementation.

implementation, we carried out a series of simulation exper-
iments using the models developed in AnyLogic. Table 5 is
a configuration of the model parameters. We assume the
partner services are always busy and working at a stable
state. Therefore their shape parameters of service time dis-
tributions are constant. In this configuration, the partner
services all have relative fast processing rates compared to
the orchestration.

Figure 17 shows the average residence time and the failure
rate as a function of the arrival rate. The job residence time
is the duration from its arrival into the HTTP listener queue
till its departure. The failing jobs are the arrivals that are
rejected at the HTTP listener, or are preempted from the
HTTP listener queue, or leave the HTTP queue because of
timeout. Each experiment simulates the system running for
20000 time units, which means about 2 × 105 arrivals at an
arrival rate of 10 per time unit. We calculate the average
residence time using a slide window of 5000 departures when
the system is in stable operation state. The failure rate is the
proportion of failed arrivals to all the arrivals. The simula-
tion results indicate that the BUST orchestration implemen-
tation has shorter average residence time and lower failure
rate than the common one throughout the tested range of
the arrival rate. However, the difference between the two
approaches is not significant.

Table 6 is the other configuration of the models. We only
changed the parameters of partner services service time in

Table 5: The First Configuration of the Models
Component Configuration

Arrival λa (sec−1) changes to simulate different
workload.

HTTP listener Cl = 100, TO = 30 sec.

Processing λp = 50 sec−1, k = the number of active
threads, Cp = 200 .

Credit checking service λ = 1000 sec−1, k = 100, C =infinity

Star loan service λ = 1000 sec−1, k = 200, C = infinity

Maple loan service λ = 1000 sec−1, k = 150, C = infinity

10 12 14 16 18 20
0

5

10

15

20

arrival rate (sec−1)

av
er

ag
e

re
si

de
nc

e
tim

e
(s

ec
)

common
BUST

10 12 14 16 18 20
0

0.05

0.1

0.15

0.2

arrival rate (sec−1)
fa

ilu
re

 r
at

e

common
BUST

Figure 17: The average residence time as a function
of the arrival rate of common and BUST orchestra-
tion implementation. The models are configured as
Table 5.

such a way that some partners have relative slow processing
rate compared to the orchestration.

Figure 18 shows the average residence time and the fail-
ure rate as functions of the arrival rate in the experiments
using the configuration in Table 6. The figure indicates that
BUST can improve the orchestrations performance dramati-
cally when a jobs processing time spent at partner services is
relatively long. This result perfectly accords with the design
goals of BUST because the thread scalability problem gets
worse when the threads need to wait longer for the messages
from the partner services. BUST achieves the predominance
by efficiently decreasing the number of concurrent threads
in the service platform. More experiments are to be car-
ried out in our future work to see how the system behaviors
change with various partner service rates and arrival rates
as well.

5. RELATED WORK
The Representational State Transfer (REST) architectural

style, introduced by Fielding [10, 9], is an abstract model
for the Web architecture and can be used to design loosely-
coupled, extensible, and scalable web applications. Although
many of current web services practices did not follow the
REST principles, REST is still valuable to guide the design
of web services applications. BUST is a design based on
REST principles. In REST, a well-designed Web applica-
tion can be viewed as a virtual state machine, where a user
triggers the state transition by sending requests to the appli-
cation through a web browser. In BUST, the service orches-

Table 6: The Second Configuration of the Models
Component Configuration

Credit checking service λ = 100 sec−1, k = 200, C =infinity

Star loan service λ = 25 sec−1, k = 200, C = infinity

Maple loan service λ = 20 sec−1, k = 200, C = infinity

2 4 6 8 10 12
10

20

30

40

arrival rate (sec−1)

av
er

ag
e

re
si

de
nc

e
tim

e
(s

ec
)

common
BUST

2 4 6 8 10 12
0

0.1

0.2

0.3

arrival rate (sec−1)

fa
ilu

re
 r

at
e

common
BUST

Figure 18: The average residence time as a function
of the arrival rate of common and BUST orchestra-
tion implementation. The models are configured as
Table 6.

tration is a similar virtual state machine, where a partner
service triggers the state transition by sending messages to
it.

Spring Web Flow (SWF) is a component of Spring Frame-
work’s web stack5. Like a service orchestration, a web flow
involves a number of HTTP requests, is stateful, and is often
dynamic and long-running. In SWF, the flow execution key
and the event identifier are used to correlate the request to
a started flow execution and resume it. BUST applies a sim-
ilar method for instance correlation. SWF has an executor
object that play the role of centralized controller for the flow
execution. On the contrary, there is no centralized controller
for the execution of a service orchestration in BUST.

A continuation is a representation of the state of a com-
putation entity, i.e. a program or a process, at a point of
its execution. A process can be stopped during execution
and be resumed later with the help of a continuation. It is
easy to control complex flows by using continuations. Some
web applications use continuations to solve the scalability
problem of threads by suspending a thread waiting for an
event and resume it later6. Manolescu proposed an object-
oriented (OO) workflow framework called micro-workflow by
combining continuations and asynchrony together [15, 14].
The Jacob (Java Concurrent Objects) framework7 provided
a service orchestration execution virtual machine that was
developed on the basis of the ACTORS model [1] and the
Pi calculus [17]. Continuations and asynchrony are key fea-
tures of the Jacob virtual machine. These approaches can be
applied to tackle the thread scalability problem. However,

5See http://www.springframework.org/documentation .
6See http://docs.codehaus.org/display/JETTY/
Continuations .
7See http://incubator.apache.org/ode/jacob.html .

it may bring other scalability problems. Continuations are
implemented or simulated by objects in OO languages, and
the objects need to contain messaging and orchestration ex-
ecution contexts. That will create a huge memory footprint.
And it gets worse when the continuation objects need to live
for a long time. If the continuation objects are serializable,
the memory footprint problem can be solved by saving the
objects to and loading them from a persistent storage. How-
ever, this may cause compatibility problems when a service
platform tries to resume the continuation object created and
saved by the other service platform. It will be very difficult
to execute an orchestration instance across several service
platforms in a decentralized manner. BUST does not bring
such problems, because the states are explicitly managed.

Welsh et al. proposed an architecture named SEDA (staged
event-driven architecture) for scalable Internet services [28,
27]. Applications in the SEDA style are a network of event-
driven stages connected by queues. A stage represents a
robust building block with an event queue. SEDA aims to
enable the Internet services to support massive concurrency
and self-tuning resource management. The concept of stage
in SEDA is similar to the concept of snippet in BUST. How-
ever, SEDA seems to focus on the macro architectural aspect
of Internet services, while BUST focuses on service orches-
trations and workflows. SEDA does not have the notion that
the whole system can be viewed as a virtual state machine
like those in REST and BUST.

Nanda et al. proposed an approach to partition a BPEL
orchestration into decentralized processes [18]. The approach
is based on a complex algorithm to partition program de-
pendence graphs representing BPEL orchestrations. By this
way, a BPEL orchestration can be deployed and executed in
a decentralized fashion, which is supposed to decrease the
load on each server that hosts part of the orchestration.
However, this approach introduces a mass of message ex-
changes between the partitionings, which brings more loads
to the partitionings. Decentralized and distributed deploy-
ment and executions of service orchestrations are naturally
supported by BUST. Different from this approach, BUST
avoids the cost of message exchanges between snippets by
event-driven state transition. BUST also provides a much
simpler mechanism to partition a BPEL orchestration into
snippets.

6. CONCLUSIONS AND FUTURE WORK
This paper presents the BUST architectural style for scal-

able service orchestration implementations. BUST assimi-
lates the essentials of other architectural styles like REST
and SEDA, and applies them to service orchestrations. Our
preliminary simulation experiments show that BUST can
improve the system’s performance dramatically when a ser-
vice orchestration involves message exchanges with partner
services of large latency. BUST is a promising approach to
tackling the scalability problem of long-run complex service
orchestrations.

We are now developing a BUST code generator that can
disassemble a BPEL orchestration description into snippets
in extended BPEL. We are also developing a BUST BPEL
engine that can convert the snippets into Java packages de-
ployable on Servlet containers. The mean value analysis
(MVA) method will be applied to the performance evalua-
tion of complex service orchestrations besides simulation in
our future work.

7. REFERENCES
[1] G. A. Agha. ACTORS: A Model of Concurrent

Computation in Distributed Systems. PhD thesis,
MIT, 1985.

[2] S. Balsamo, P. Inverardi, and C. Mangano. An
approach to performance evaluation of software
architectures. In WOSP ’98: Proceedings of the 1st
international workshop on Software and performance,
pages 178–190, New York, NY, USA, 1998. ACM
Press.

[3] G. Booch, J. Rumbaugh, and I. Jacobson. The Unified
Modeling Language User Guide. Addison Wesley
Professional, 2 edition, 2005.

[4] D. Box. Code name indigo: A guide to developing and
running connected systems with indigo. MSDN
Magazine, January 2004. http://msdn.microsoft.
com/msdnmag/issues/04/01/indigo/default.aspx.

[5] O. Boxma and J. Cohen. The m/g/1 queue with
heavy-tailed service time distribution. IEEE Journal
on Selected Areas in Communications, 16(5):749–763,
1998.

[6] J. Cao, M. Andersson, C. Nyberg, and M. Kihl. Web
server performance modeling using an m/g/1/k*ps
queue. In Telecommunications, 2003. ICT 2003. 10th
International Conference on, volume 2, pages
1501–1506 vol.2, 2003.

[7] A. Cockburn. Writing Effective Use Cases.
Addison-Wesley Professional, 2000.

[8] T. Erl. Service-Oriented Architecture: Concepts,
Technology, and Design. Prentice Hall PTR, August
2005.

[9] R. T. Fielding. Architectural styles and the design of
network-based software architectures. PhD thesis,
University of California, Irvine, 2000.

[10] R. T. Fielding and R. N. Taylor. Principled design of
the modern web architecture. ACM Trans. Inter.
Tech., 2(2):115–150, 2002.

[11] S. Haines. Pro Java EE 5 Performance Management
and Optimization. Apress, 2006.

[12] J. Hasan and K. Tu. Performance Tuning and
Optimizing ASP.NET Applications. Apress, 2003.

[13] J. John C. Sees and J. F. Shortle. Difficult queuing
simulation problems: simulating m/g/1 queues with
heavy-tailed service. In WSC ’02: Proceedings of the
34th conference on Winter simulation, pages 433–438.
Winter Simulation Conference, 2002.

[14] D. A. Manolescu. Micro-Workflow: A Workflow
Architecture Supporting Compositional
Object-Oriented Software Development. PhD thesis,
University of Illinois at Urbana-Champaign, 2001.

[15] D. A. Manolescu. Workflow enactment with
continuation and future objects. In OOPSLA ’02:
Proceedings of the 17th ACM SIGPLAN conference on

Object-oriented programming, systems, languages, and
applications, pages 40–51, New York, NY, USA, 2002.
ACM Press.

[16] J. McConnell and E. Siegel. Practical Service Level
Management: Delivering High-Quality Web-Based
Services. Cisco Press, 2004.

[17] R. Milner. The polyadic pi-calculus: a tutorial, pages
203–246. Springer-Verlag, 1993.

[18] M. G. Nanda, S. Chandra, and V. Sarkar.

Decentralizing execution of composite web services. In
OOPSLA ’04: Proceedings of the 19th annual ACM
SIGPLAN conference on Object-oriented
programming, systems, languages, and applications,
pages 170–187, New York, NY, USA, 2004. ACM
Press.

[19] E. Newcomer and G. Lomow. Understanding SOA
with Web Services. Addison Wesley Professional, 2004.

[20] OASIS. Reference model for service oriented
architecture v 1.0. Web, July 2006.
http://www.oasis-open.org/committees/download.

php/19679/soa-rm-cs.pdf.

[21] OASIS. Web services business process execution
language version 2.0. Web, Feb 2007.
http://docs.oasis-open.org/wsbpel/2.0/

wsbpel-specification-draft.pdf.

[22] J. A. Rolia and K. C. Sevcik. The method of layers.
IEEE Trans. Softw. Eng., 21(8):689–700, 1995.

[23] A. Silberschatz, P. B. Galvin, and G. Gagne.
Operating System Concepts. John Wiley & Sons, 7
edition, 2004.

[24] B. Urgaonkar, G. Pacifici, P. Shenoy, M. Spreitzer,
and A. Tantawi. An analytical model for multi-tier
internet services and its applications. In
SIGMETRICS ’05: Proceedings of the 2005 ACM
SIGMETRICS international conference on
Measurement and modeling of computer systems, pages
291–302, New York, NY, USA, 2005. ACM Press.

[25] W3C. Web services addressing 1.0 - core. Web, May
2006. http://www.w3.org/TR/2006/
REC-ws-addr-core-20060509/.

[26] W3C. Web services description language (wsdl)
version 2.0 part 2: Adjuncts. Web, March 2006.
http://www.w3.org/TR/2006/

CR-wsdl20-adjuncts-20060327/.

[27] M. Welsh. An Architecture for Highly Concurrent,
Well-Conditioned Internet Services. PhD thesis,
University of California, Berkeley, August 2002.

[28] M. Welsh, D. Culler, and E. Brewer. Seda: an
architecture for well-conditioned, scalable internet
services. In SOSP ’01: Proceedings of the eighteenth
ACM symposium on Operating systems principles,
pages 230–243, New York, NY, USA, 2001. ACM
Press.

