
An Agent-based Decentralised Process Management
Framework for Web service Composition

Jun Yan, Phillip Pidgeon
School of Information Systems and

Technology
University of Wollongong

Wollongong, NSW, Australia
61 2 4221 5411

{jyan,pep79}@uow.edu.au

Aneesh Krishna
School of Computer Science and

Software Engineering
University of Wollongong

Wollongong, NSW, Australia
61 2 4221 4043

aneesh@uow.edu.au

Jianming Yong
Department of Information Systems

Faculty of Business
University of Southern Queensland

Toowoomba, QLD, Australia
61 7 46312448

yongj@usq.edu.au

ABSTRACT
Web service composition provision which requires efficient
coordination of the execution of component services is a critical
issue in service-oriented computing. Nowadays, BPEL4WS, the
de facto industry standard for service compositions, is
predominantly deployed in a way in which all interactions and
intermediate data must go through one server. This centralised
management results in problems such as poor performance,
impaired reliability, limited scalability, and restricted flexibility.
To address these problems, this research proposes an agent-based
decentralised process management framework for Web service
composition. This framework allows distributed BPEL engines,
each of which is represented by a software agent, to manage the
execution of relevant sub-processes, and to interact with one
another directly to coordinate the execution of the whole process.
Such a framework naturally reflects the distributed and dynamic
features of the Web services environment and subsequently offers
improved coordination support for service composition provision.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures –
Domain-specific architecture, Patterns

General Terms
Management, Design

Keywords
Agent, Process Management, Web Service Composition

1. INTRODUCTION
Over the past a few years, the paradigm of service-oriented
computing (SOC) has gained intensive attention from both
researchers and practitioners [9]. The most well-known
integration platform for SOC is the Web Services technology

which provides a framework to improve the cross-language and
cross-platform interoperability for distributed computing and
resource sharing over the Internet. Moreover, the Web services
technology offers a cost-effective way for developing distributed
applications such as business-to-business processing. By
compositing distributed services into a network of services, i.e., a
service composition, dynamic business processes and agile
applications can be created with little effort.

A service composition is actually a process consisting of a set of
independent component services which are executed in a partially-
ordered manner in order to achieve the overall business
objectives. In this sense, the execution of the component services
needs to be well coordinated according to the pre-specified
procedural rules. The de facto industry standard for Web service
composition is Business Process Execution Language for Web
Services (BPEL4WS, BPEL in short) [2]. Nowadays, BPEL is
predominantly deployed in centralised servers, which implies that
all interactions and intermediate data must go through one server.
Therefore, the problems in relation to centralised management
that have been encountered in the non-service environment are
also observed here, including poor performance, impaired
reliability, limited scalability, restricted flexibility, and so on [7]
[11]. Moreover, due to the distributed and dynamic natures of the
Web services environment, these problems are even aggravated,
thus, becoming one of the major obstacles for wide deployment of
the Web services technology, especially for applications where
transfer of large amount of intermediate data is needed.

To address these problems, this research proposes an agent-based
decentralised process management framework for Web service
composition. This framework allows a set of distributed BPEL
engines, each of which is represented by a software agent, to
manage the execution of a Web service composition jointly. A
BPEL process can be decomposed into a set of sub-processes
which are then distributed to BPEL engines located on or close to
the sites of component services. Distributed BPEL engines
manage the execution of relevant sub-processes and interact with
one another directly to coordinate the execution of the whole
process.

The rest of the paper is organised as follows. The next section
briefly introduces major related work. Section 3 presents the
design of the agent-based decentralised framework. Based on this
design, the system functionalities are described in Section 4.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference name: Infoscale 2007, June 6-8, 2007, Suzhou, China
Copyright number: 978-1-59593-757-5.

fezzardi
Text Box
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. INFOSCALE 2007, June 6-8, Suzhou, ChinaCopyright © 2007 ICST 978-1-59593-757-5 DOI 10.4108/infoscale.2007.904

Finally, Section 5 concludes this paper and outlines authors’
future work.

2. RELATED WORK
In process management research, client-server basaed centralised
process coordination contributes largely to problems like poor
performance, impaired reliability, limited scalability, and
restricted flexibility [11]. Therefore, peer-to-peer (p2p) based
decentralised process management has been recognised as one of
the most strategic future directions [7]. Fakas presents a
conceptual p2p technology for dynamic workflow management,
which is based on concepts such as a Web Workflow Peers
Directory (WWPD) and Web Workflow Peer (WWP) [6]. Using
this technology, peers are proposed to register with the system and
offer their services and resources to other peers. PeCo [5]
decentralises workflow management using collaborative
technologies and concepts while providing a pluggable framework
for integrating business process applications and human
contributors. SwinDeW [11] contributes a decentralised
framework and corresponding process coordination technologies
for process management. However, these approaches may not be
appropriate in the Web services environment, as the unique
features of this environment, such as complete distribution and
high autonomy, have raised new challenges to process
management.

Software agents have been recognised as a promising technology
for managing processes and orchestrating Web services. A well
known project [1] develops and demonstrates the basic
technology for agent-enabled process management to coordinate
information delivery from multiple business systems. Buhler and
Vidal develop a distributed multi-agent system enacting BPEL
processes [3]. Guo et al. describe a multi-agent platform for
enacting distributed business processes using LCC, a Light
Coordination Calculus that can interpret BPEL specification and
enable distributed enactment [8]. Purvis et al. propose a multi-
agent based workflow management system with embedded Web
services [10]. Nevertheless, research on agents in the context of
process management is still immature. It has typically focused on
multi-agent system architectures, agent interaction and
coordination, and other agent technology centric issues that map
to some basic requirements of distributed processes management.
Most agent-based approaches offer in fact centralised process
management where the agents are controlled by a central server or
are deployed internally within the engine for specialised
management tasks, which lead to inefficiency and vulnerability.

3. PROCESS MANAGEMENT APPROACH
3.1 Overall Framework
The key idea of the decentralised process management is to have a
set of distributed nodes in the system, each of which has the
processing capability. These nodes manage different resources
and are able to interact with one another directly. The process
coordination traditionally performed by a centralised server is
thus collectively fulfilled by this set of nodes through
collaboration. As the centralised coordination service is often
associated with the performance bottleneck and the single point of
failure, decentralised process management represents better
performance, improved reliability, and enhanced scalability.

As shown in Figure 1, the proposed decentralised process
management framework is based on a set of software agents which
are distributed across multiple hosts. Characterised by the
functions they perform, these agents can be categorised as
initialising agents, monitoring agents, and peer agents. An
initialising agent normally interacts with the end client and
initialises the execution of the overall process. It obtains the
original BPEL composition and the corresponding WSDL file,
decomposes it into separate sub-process partitions, and distributes
the sub-processes to relevant peer agents located on or close to the
nodes that provide the component services for deployment and
execution. An initialising agent is also responsible for delivering
final results to the client. A monitoring agent monitors the
execution of individual services and the whole composition by
continuously scanning the state of service enactment and the
actual values of non-functional parameters. A peer agent has the
ability to manage the execution of an atomic service or even a
sub-process in a Web service composition. At the same time, peer
agents are able to exchange information in a meaningful way so
that the execution of the composition can proceed. Please note
that a physical agent can demonstrate one or more of these
functions. For example, an initialising agent can perform the
function of monitoring as well, thus becoming a monitoring agent.
A peer agent can further decompose the sub-process when
necessary, thus playing the role of the initialising agent.

Figure 1. Overall process management framework
With support of this framework, the execution of a Web service
composition works as follows. The initialising agent invokes the
execution of the whole composition and receives the response
when the execution of the whole composition concludes. Process
coordination takes place in a distributed way through peer agent
interaction to ensure the sub-processes are deployed, started,
executed and managed. The monitoring agent subscribes the
monitoring data from peer agents during the process of execution.

3.2 Agent Architecture
Peer agents are the most fundamental units in the system. As
shown in Figure 2, a peer agent consists of a peer management
module and a peer repository, a process management module and
a process repository, and its own BPEL engine that hosts the sub-
processes distributed to it.

The peer management module manages peer-related functions for
the agents including peer registration and peer discovery, and
maintains agent-related information in the peer repository. The

WS WS

WS

WS WS

WS

Initialising agent
Monitoring
agent

Peer agent

Agent-based
decentralised
process management

peer repository is a local file directory. A peer index is stored in
the repository that containing a list of agents that share
partnerlinks with the agent’s processes, including agents that
provide alternative component Web services used by the agent’s
processes. The process management module controls and
monitors the BPEL engine of the agent. This involves managing
the process definition files received from the initialising agent,
saving the process definition files in the agent’s process
repository, configuring the BPEL engine with the process
definition files, and starting, managing, and terminating the BPEL
engine’s operations. The process repository is a local file directory
that houses process-related information used by the agent. The
agent uses the process definition files stored in this repository,
such as configuration, BPEL, and WSDL files, to deploy its
processes autonomously. The BPEL engine located within the
agent is capable of executing BPEL processes that are distributed
to this agent. The agent has control over initialisation of the BPEL
server, deployment of BPEL processes, establishment of the
incoming and outgoing partnerlinks that connect the process to
clients and/or other component Web services, and starting and
stopping the engine’s serving of the processes.

Figure 2. Agent architecture
As discussed in Section 3.1, a peer agent may exhibit additional
functions such as initialising a Web service composition and
monitoring the execution of the whole process. This is achieved
by optional modules including a decomposer, a process generator,
and a monitor. A decomposer module is able to create a set of
partitioned processes by decomposing an original BPEL process.
A process generator module is capable of re-constructing
partitioned BPEL processes as a collection of files from the
original process BPEL file, the process WSDL file, and the
component Web services WSDL files. A monitor module is
responsible for process execution monitoring.

4. SYSTEM FUNCTIONALITIES
4.1 Process Deployment
On each host that is involved in the decentralised process
management, an agent environment is created, which joins with
each other into a single multi-agent environment. An initialising
agent is created dynamically on the host that is responsible for the
execution of the whole BPEL process. In order to deploy the
process, the initialising agent firstly obtains a configuration file

from the service composition system. This configuration file
defines the full detail of the BPEL process including the reference
information for the process BPEL file, the process WSDL file,
and the WSDL files for all the component Web services. The
decomposer module of the initialising agent then uses the
configuration information to decompose the process into sub-
process partitions. Each partition is defined by its own process
configuration file containing the sub-process BPEL file, a new
sub-process WSDL file, and any component WSDL files used by
the sub-process. Please note that the new WSDL file always starts
from a receive element with the createinstance attribute being set
to “yes”. This is used at the later stage for process execution.

As shown in Figure 3, during decomposition, a package file is
also created that collects all the sub-process configuration files
together as a deployment package. This package file can then be
deployed to setup the completely decentralised process execution.
In addition, this file can be used in the future to re-deploy the
whole process again if necessary without re-running the
decomposition process. When the package file is deployed, agents
are created on the host nodes. When an agent receives its process
configuration file together with other relevant files (i.e., the sub-
process BPEL file, the sub-process WSDL file, and component
WSDL files used by this sub-process), it stores the files in its
process repository. Then the configuration file can be deployed to
the BPEL engine to load the BPEL process, set up the partnerlink
endpoints, and start the engine ready for invocation. The
configuration file, the BPEL file and the WSDL files are
serialised into a string object, which is then sent as the content of
an INFORM FIPA ACL message.

Figure 3. Deployment of BPEL process
Various strategies can be taken for process decomposition. The
outcomes of decomposition of a BPEL process is logical
partitions that consist of BPEL activities representing the
component Web services invocation endpoints. This research uses
Symphony [4], one of the well-known approaches developed at
IBM’ India research laboratory, to decompose a BPEL process.
Using this approach, fixed activities of receive and reply must
remain with the initialising agent, while invoke activities are fixed
and co-located with their corresponding Web services. The
remaining activities are considered portable and free to move to
the partition which is most dependent on the activity for its
control and data requirements.

Peer Management

Process Management

BPEL Engine
Server Jetty

Peer
repository

Process
repository

Decomposer

Process
Generator

FIPA-ACL

Other Peers

Peer agent

Incoming links Outgoing links

Monitor

Config

BPEL

WSDL
Component

WSDLs

Config

BPEL

WSDL
Component

WSDLs

Decomposer

Package file

Initialising agent

Config

BPEL

WSDL
Component

WSDLs

Config

BPEL

WSDL
Component

WSDLs

Config

BPEL

WSDL
Component

WSDLs

4.2 Process Execution
Once an agent deploys a sub-process to its BPEL engine, the sub-
process is started and ready for execution. On receiving a SOAP
message on any of the sub-process’s incoming partnerlinks with
the createinstance being “yes”, the execution of the sub-process is
triggered. Execution occurs based on input variables supplied in
the incoming SOAP message. The sub-process continues through
the process activities sequentially or in parallel as pre-defined.
Variables are progressively modified as each activity is
completed. Component Web services can be invoked using the
synchronous invoke activities, and asynchronous one-way invoke.
The sub-process concludes at the end of it generally with a reply
or an invoke activity passing an output variable response back to
the caller, or onto the next sub-process.

As the Web services environment is highly dynamic, errors do
occur during the process execution. For example, the scope of
variables and process runtime conditions violate BPEL runtime
constraints, or a service provider becomes unavailable due to lack
of resources. Although some errors can be handled by specific
BPEL fault handlers with the deployed BPEL code, most errors
are too complex to be handled locally. In this system, errors that
occur in a specific sub-process can be detected locally by the
agent and more detailed error sequence information is provided
back to the initialising agent or the monitoring agent for logging
to assist in crafting a better fault-handler. Service provider
unavailable is one of the most frequently encountered exceptions
in service composition provision. This research use alternative
fall-back service providers to deal with such exceptions by
rerouting invocations to compatible replacement component Web
service implementations. To do so, an agent stores the agents that
provide alternative component Web services in its peer repository.
Once a service provider unavailable exception is detected by the
agent, it can be immediately reported back to the initialising
agent. The shared partnerlink is supplied for re-deployment of the
sub-process to a suitable alternative agent. The agents with the
incoming links are then notified of the change of the partnerlink
so that the invocation is re-attempted. Since alternative
component Web services may not have the same interface, the
agent may have an adapter BPEL process that converts the
component Web service interface into a common interface
understood by the sub-process. Figure 4 shows the agent
interactions for alternative Web service invocation.

5. CONCLUSIONS AND FUTURE WORK
Service composition provision in the Web services environment
refers to coordinated execution of a series of Web services to
deliver new values. Adequate support is a key to achieving the full
potential of the Web services technology. However, the current
implementation of widely-accepted BPEL standard has
demonstrated deficiencies in non-functional aspects. Due to the
mismatch between the centralised management and the
decentralised Web services environment, problems such as poor
performance, impaired reliability, limited scalability, and
restricted flexibility have been inherently encountered. To address
these problems, this paper has innovatively proposed an agent-
based decentralised process management framework for service
composition provision. This approach utilises agent interaction to
support distributed deployment of a service composition and

decentralised coordination of the execution of component Web
services. Based on this framework, the mechanisms of process
deployment and process execution have been discussed.

In the future, more research work will be carried out based on the
framework proposed in this paper. In particular, advanced process
management operations will be investigated, including the
mechanisms supporting dynamic SLA negotiation and service
provider selection, process monitoring and profiling, and generic
exception handling. A proof-of-concept prototype will be
implemented, based on which a comparative performance study
with variable amount of data being transferred will be conducted
to determine efficiency improvement.

6. ACKNOWLEDGMENTS
This work is partly funded by the Australian Research Council
Discovery Project Scheme under the grant DP0663841 and
Faculty of Informatics Research Development Scheme, University
of Wollongong.

7. REFERENCES
[1] ADEPT: Agent-Based Business Process Management

project, http://www.ecs.soton.ac.uk/%7Enrj/adept/index.html
[2] Andrews, T., et al., Business process execution language for

Web services version 1.1, 2003,
ftp://www6.software.ibm.com/software/developer/library/ws-
bpel.pdf

[3] Buhler, P. A., et al., Towards adaptive workflow enactment
using multiagent systems, Information Technology and
Management Journal, 6(1), 61-87, 2005

[4] Chafle, G. B., et al., Orchestrating composite Web services
under data flow constraints, in Proc. of IEEE Int. Conf. on
Web Services, 211-218, Orlando, Florida, USA, July 2005

[5] Coon, M. D., Peer-to-peer workflow management white
paper, 2002,
http://www.proteustechnologies.com/cmm/docs/p2p_workflo
w_whitepaper.doc

[6] Fakas, G., et al., A peer to peer (p2p) architecture for
dynamic workflow management, Information and Software
Technology, 46(6), 423-431, 2004

[7] Fischer, L. ed., Workflow Handbook 2002, Lighthouse
Point, Fla.: Future Strategies, 2002

[8] Guo, L., et al., A generic multi-agent system platform for
business workflows using Web services composition, in
Proc. of 2005 IEEE/WIC/ACM Int. Conf. on Intelligent
Agent Technology, 301-308, Los Alamitos, USA, 2005

[9] Papazoglou, M. P., et al., Service-oriented computing,
Communications of the ACM, 46(10):25-28, Oct. 2003

[10] Purvis, M. A., et al., A multi-agent based workflow system
embedded with Web services, in Proc. of the 2nd Int.
Workshop on Collaboration Agent: Autonomous Agents for
Collaborative Environments, Beijing, China, Sept. 2004

[11] Yan, J., et al., SwinDeW-a p2p-based decentralized
workflow management system, IEEE Transactions on
Systems, Man and Cybernetics, Part A: Systems and
Humans, 36(5), 922-935, 2006

