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ABSTRACT
A P2P system can be viewed as a system that provides repli-
cation services. Unlike conventional structured replication
systems (CDN, RAID), peers in an unstructured P2P sys-
tem may have heterogeneous, sometimes low, online avail-
ability. Therefore, we formulate the problem with the objec-
tive to achieve good system level file availability, and study
distributed algorithms for autonomous peers to accomplish
that. In this paper, we emphasize the need to provide a dif-
ferentiated replication service, since files are accessed with
different frequency and have different importance. We quan-
tify file preference in terms of weight and formulate the ob-
jective as to maximize a weighted sum of file availability.
A bi-weight model is studied and then applied to a decen-
tralized random replication algorithm through a statistical
rounding policy. This algorithm is easily implementable by
autonomous peers with partial information about the re-
sources of the system, and yet yields favorable results in
delivering the differentiated replication service while main-
taining the system level replication goal.

Categories and Subject Descriptors
H.3 [Information Storage and Retrieval]: Miscellaneous;
C.2.4 [Computer-Communication Networks]: Distrib-
uted Systems—Distributed applications

General Terms
Algorithms

Keywords
Peer-to-Peer, File Availability, Weight-based Replication

1. INTRODUCTION
No matter what the motivation might be, the autonomous

peers in a peer-to-peer (P2P) system collectively accomplish
a service. Our interest is in studying how the P2P sys-
tem provides a replication service, and how the autonomous
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peers might be molded to provide a better replication ser-
vice.

This question has been studied in [1], in which the au-
thors considered how to replicate files among peers so as to
minimize the bandwidth costs in accessing the files. They
obtained an intuitively satisfactory answer that the amount
of replication of each file should be proportional to the fre-
quency of access to that file. Furthermore, this proportional
replication service can be naturally implemented if each peer
simply tries to manage its storage of files as a LRU (least
recently used first) cache.

In [2], the authors considered a different system level met-
ric to optimize - the average file availability. They allowed
the peers to have different availability (proportion of time
being online), and investigated several distributed algorithms
for maximizing file availability - a random algorithm, a group-
based algorithm and a greedy algorithm favoring using high
availability peers first. Their conclusion indicates that each
distributed algorithm can be favorable depending on whether
variance of file availability is important, and whether sim-
plicity or optimality is to be emphasized. In any case, as the
amount of storage increases, the performance of the different
algorithms also converge.

In this paper, we make a natural extension to [2]. We
assume that the files may not be of equal importance, hence
the desirability for their availability may also vary accord-
ingly. We let the importance of the files be categorized by a
weight distribution, and let the objective be the maximiza-
tion of the weighted availability of the files. The weight of
a file may be determined by different factors. In particular,
it may be simply determined by the popularity (frequency
of access) as in [1]. We call this differentiated replication
service “replication with preferences” (or inter-changeably
“weight based replication”).

Collectively peers access some files more often than other
files. If each time a file access is successful, it registers some
(constant) benefit, then the total benefit over a long period
of time is the sum of the weighted file availability where the
weight is the frequency of access. In this sense, implement-
ing a weight based replication service using frequency of ac-
cess as weight treats all the files as equally important and it
is a more natural objective than trying to give each file the
same availability. More generally speaking, each successful
access of a file may register a different amount of benefit de-
pending on the file (or even the user). This can be modeled
by additional weights that depend on the files (rather than
the frequency of accessing them). The effect of putting more
weights on some files over other files is to suitably shift more
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storage resources to the files with higher weights, thus letting
the P2P replication service achieve higher overall benefits.
The weight-based models are clearly more powerful in rep-
resenting real-life situations, even though the appropriate
weights may not always be easily derivable.

In this paper, we first focus on effective algorithms to
achieve weight-based replication assuming the weights (whether
frequency of access or other file characteristics) are given.
In this case, we find that files with bigger weight do receive
more replication, but the amount of replication is not neces-
sarily proportional to the weight, as in the case of [1]. This
means we can no longer simply rely on the LRU caching
algorithm to implement P2P replicaiton as in [1]. Fortu-
nately, a simple distributed algorithm used by the peers can
still deliver this differentiated replication service.

1.1 Related Works
Other than [1] and [2], there has been a considerable

amount of research on object replication to different loca-
tions or computers. Most of the previous studies take the
same approach of formulating the problem as an optimiza-
tion problem and investigate suitable algorithms to achieve
the optimal (or near-optimal) effectively.

In [3], the author studied the file allocation problem of
replicating a single file over a set of computers. The file was
demanded by various users who had different access costs
to different computers. The author proved that the optimal
assignment of the replicas to the computers that minimized
the total cost was NP-complete. Authors in [4] studied the
problem of replicating objects optimally in content distribu-
tion networks, in which each autonomous system (AS) repli-
cated some objects and demanded objects stored in other
ASes at the same time. The optimality of this replication
was defined as the minimization of the average inter-AS hop
distance a request must transverse. They proved that this
optimization was NP-complete, and proposed some central-
ized heuristic algorithms to solve the replication problem.

The work in [5] focused on the problem of assigning file
replicas according to the files’ demand characteristics. The
authors described a decentralized and adaptive protocol to
replicate files in a way that balanced server load. Authors
in [6] considered assigning replicas in an unstructured P2P
system, focusing on minimizing the expected search size of
the search queries. Their results showed that replicating
files proportionally to the square root of a file’s demand
popularity is an optimal replication scheme. In [7], the au-
thors proposed a suit of adaptive algorithms for replicating
and replacing files as a function of evolving file popularity
to maximize the “hit probability”, i.e. the probability of
finding the file within the community such as a LAN. Their
algorithms were based on the structured p2p system, and
assumed homogeneous peer online pattern.

Besides the above, web caching can also be regarded as
a distributed replication network. In [8], the authors stud-
ied the problem of distributing a fixed set of web proxies
in the Internet. There was a setup cost involved when as-
signing a proxy to a potential site, as well as a link cost
for connecting any two potential sites. They modeled the
network topologies as trees, and proposed a centralized al-
gorithm to distribute the proxies with minimum total cost.
Authors in [9] modeled this web sever placement problem
as a K-median problem and developed several centralized
placement algorithms to solve it.

As an orthogonal evaluation to the existing replication
related studies, we put our focus on how to replicate a set
of files so as to optimize file availability. There has already
been some research dealing with this issue, such as [10, 11].
However, in our model, peers are allowed to have different
online availability, which is more general in comparison with
previous models [3, 4, 9, 10]. Our work differs from [11]
in that [11] tried to achieve a pre-determined availability
target while we are trying to optimize file availability based
on given resources. Moreover, both [10] and [11] were equal
weight replications.

1.2 Organization
In the rest of this paper, we first give the problem for-

mulation; then solve the problem in a simple bi-weight case
which is given by a closed-form solution, and discuss how the
solution can be used recursively to extend the result to the
multi-weight cases. Finally, we describe the simple distrib-
uted algorithm and use simulation to study its performance.

2. P2P REPLICATION SYSTEM
We first introduce notations and terminologies to formu-

late the problem. Table 1 summarizes the parameters used
in our model.

Table 1: System parameters
Pi Writable peer set of peer i
P The set of peers in the system, P =

�
i Pi

Fi The set of files to be replicated in peer i
F The set of files in the system, F =

�
i Fi

M Number of peers in the system: M = |P|
N Number of files in the system: N = |F|

p = [pi] Peer online availability vector
s = [si] Peer storage capacity
w = [wj ] File weight of each file j
x = [xj ] Replication redundancy of each file j

nH = [nH(i)] Number of high weight files in peer i
nL = [nL(i)] Number of low weight files in peer i

R = [ri,j ] A feasible replica placement
p[rj ] Availability vector of peers replicating file j

A = [Aj ] File availability distribution
Aw Overall weight based file availability

2.1 Peers
In our model, peers are assumed to cooperate for the same

overall replication objective. When a peer joins the system,
it is willing to offer a certain amount of storage for other
peers to place their file replicas. In return, it can also dis-
tribute its file replicas to other peers, thereby increasing
availability of its own files.

Each peer in this replication system is characterized by
three parameters. First, we denote the online availability
pi ∈ [0, 1] as the proportion of the time peer i stays online.
When a peer is online, all the replicas it stores are assumed
to be available and accessible by other peers in the system.
Therefore, the probability of retrieving the replicas stored
in peer i is equal to its availability pi. Second, peer i has
a set of files Fi that needs to be replicated. These files
are of different weights. The third parameter is the amount
of storage space that peer i offers for replication purposes,
denoted by si. This shared storage is made available to other



peers in the system. We do not consider the bandwidth
consumption between peers in this paper, and file replicas
are assumed to be assigned to other peers in a negligible
amount of time.

2.2 Estimation of File Availability
The availability of a file after replication is comprised of

two parts: the replicas stored in the network and the original
file in the peer who shares it, provided it is kept there. Due
to storage limitation, it happens that some files cannot be
replicated at all. Although users may be able to get access
to an unreplicated file from the peer who shares it, provided
the original copy is retained, the file in discussion is still
considered to have 0 file availability in our model. That is
to say, the contribution of the original copy is excluded. The
reason behind this is to extract the file availability achieved
by replication from the dependence on availability of the
original copy. This promises a more explicit performance
evaluation of the replication system. Moreover, peers may
not always keep the files they share.

As a consequence, a file is available when at least one of
its replicas is online. The probability of having at least one
replica/peer available out of x is

P{≥ 1 online} = 1 − (1 − p1)(1 − p2) · · · (1 − px). (1)

Since each peer in the system may have a different online
probability, and there may be a huge number of files in-
volved, it is too expensive to calculate the exact availability
for each file. Therefore, we use the average peer availability
as an approximation:

A({pi}, x) � 1 − (1 − p̄i)
x, (2)

where p̄i refers to the average peer availability of {pi}. This
approximation in fact gives a lower bound of the exact file
availability.

2.3 Replication with Preferences
In our replication system, files are assigned with differ-

ent weight values to indicate how important they are, and
how they should be replicated. Our goal is to build a sys-
tem in which highly weighted files receive relatively higher
availability and vice versa. Such strategy is referred as repli-
cation with preferences. We define the overall system level
availability as follows:

Aw =

�N
j=1 wjAj�N

j=1 wj

, (3)

where wj is the weight value of filej, and Aj is the resulted
file availability of filej after replication.

3. A WEIGHT BASED MODEL FOR P2P
REPLICATION SYSTEM

A real world P2P replication system is complicated to
model. Part of the problem comes from the complexity of
network topology, partial connectivity and network dynam-
ics. In this paper, we propose a simple weight based repli-
cation model to abstract away the above aspects. Although
the model is simple, it is capable of illustrating the difficul-
ties in resource allocation in a real world P2P replication
system, specifically, heterogeneity of peer availability and
file weight.

3.1 The Multi-Weight Replication Problem
Let us consider a replication system with a fixed popu-

lation of P peers whose availability distribution is p. Each
peer i has a set of files Fi to be replicated. The set of all files
to be replicated in the system is F = ∪iFi, with a weight
distribution w. We denote the number of peers as M = |P|
and the number of files as N = |F|.

When replicating, for a particular file j ∈ Fi, peer i first
needs to decide how much redundancy to add. This is de-
noted by the number of replicas xj(wj), which depends on
the file weight wj . Then peer i creates xj replicas, to be
assigned to xj different peers. For simplicity, it is assumed
that all files in our model have the common size Γ, and the
storage space offered by peer i is always in units of the file
size.

From the angle of an individual file, xj should be as large
as possible in order to maximize file availability. The largest
possible value is given by xj = M . However, the total stor-
age offered by peers is limited, so it is not always feasible
for each file to be replicated by all peers. This implies the
need of determining a suitable xj(wj) for each file j from
the angle of the overall replication system.

More generally, the problem is to seek a replica assign-
ment policy. We define the replication placement matrix
R = [ri,j ]M×N :

r1,1 r1,2 · · · r1,N

r2,1 r2,2 · · · r2,N

...
...

. . .
...

rM,1 rM,2 · · · rM,N ,

where ri,j indicates whether a replica of file j is assigned to
peer i:

ri,j =

�
1 : if peer i stores a replica of file j
0 : otherwise

where

i = 1, 2, . . . M

j = 1, 2, . . . N.

Obviously, peer i cannot store more than its storage capacity
si:

N�
j=1

ri,j ≤ si ∀i. (4)

The number of replicas of file j stored in the system is equal
to xj(wj):

M�
i=1

ri,j = xj(wj) ∀j. (5)

A replica placement matrix R is feasible only if it satisfies
both conditions 4 and 5.

Let rj denote the jth column vector of the replica place-
ment matrix R, which then gives the subset of peers that
replicate file j. We select the online availability of peers who
replicate file j (i.e., ri,j = 1), and denote it as p[rj ]. Then
the overall weight based file availability can be computed as
in equation 3:

Aw(R) =

�N
j=1 wjAj(p[rj ], xj(wj))�N

j=1 wj

,



whereAj(p[rj ], xj(wj)) is the availability of file j. Based
on equation 2, we are able to rigorously define the resource
allocation problem as a problem to find an optimal R to
maximize the overall file availability Aw(R).

3.2 The Bi-Weight Replication Model
The replication problem described in 3.1 actually includes

two parts: storage allocation x, and replica placement R.
To further simplify the problem, we now introduce the bi-
weight replication model, which enables us to find an optimal
resource allocation scheme among files.

In the bi-weight replication model, files are classified into
two categories: high weight files(H-files) and low weight
files(L-files), assigned with the weight value wH and wL re-
spectively, where wH > wL. A file to be replicated in the
system is either an H-file or an L-file. In fact, there are var-
ious metrics to determine the weight of a file, depending on
the particular situation. For example, if we take popularity
of files as the metric, the weight of a file can be determined
by its accessing rate. To apply our model, a predetermined
threshold is needed. If a file has an accessing rate higher
than the threshold, it is assigned with wH , otherwise, it is
assigned with wL. Specifically, we can consider the empiri-
cal file access patterns like Zipf distribution, which indicates
that only a few files in a system are popular while many or
most are, actually, less popular. Therefore, each peer can
have certain percentage, e.g. 30%, of their files as H-files
according to their accessing rates, and the remaining as L-
files.

We intend to provide files in the same weight level with
the same amount of storage resource. By equation 2 and 3,
the problem can be formulated as

max :
nHwH [1 − (1 − p)xH ] + nLwL[1 − (1 − p)xL ]

nHwH + nLwL
, (6)

where

nHwH + nLwL ≤ s. (7)

Here nH and nL are the number of H-files and L-files re-
spectively, while xH and xL are the amount of redundancy
per file for each weight level. s is the total storage space
that offered by peers in the system, which gives a general
constraint to the optimization problem.

In order to enhance the overall file availability, we assume
a saturated usage of the storage resource by taking equality
in constraint 7. We further denote:

q = 1 − p ∈ (0, 1)

aH =
nHwH

nHwH + nLwL

aL =
nLwL

nHwH + nLwL

After using the constraint to reduce the variables, problem 6
becomes

max : 1 − (aHqxH + aLq
s−nH xH

nL ), (8)

which is equivalent to

min : G = aHqxH + aLq
s−nHxH

nL . (9)

Since the function G is convex, and the gradient is

∇G = ln q(aHqxH − aLnH

nL
q

s−nH xH
nL ), (10)

by letting ∇G = 0, for 0 < wL < wH as defined, we then
have

q
(nH+nL)xH−s

nL =
aLnH

aHnL
=

wL

wH
∈ (0, 1). (11)

Since q = 1 − p ∈ (0, 1), this indicates

(nH + nL)xH > s,

compared with 7, it follows that xH > xL. This is consistent
with our expectation that provides the high weight files with
more redundancy, which then naturally leads to higher file
availability.

Based on the analysis above, the closed-form solution to
problem 6 can be readily expressed as:

����
���

x∗
H = s

nH+nL
+

nL

ln
wL
wH

ln(1−p)
nH+nL

x∗
L = s

nH+nL
− nH

ln
wL
wH

ln(1−p)
nH+nL

.

(12)

This solution indicates a logarithmic relationship between
the amount of redundancy and system parameters such as
file weight and file distribution pattern.

3.3 Discussion
In fact, the solution in equation 12 makes sense only when

s ≥ nH

ln
wL
wH

ln(1−p)
because both xH and xL should be nonnega-

tive. For the special situation s < nH

ln
wL
wH

ln(1−p)
, which means

either that the number of H files in the system is extremely
large or the L-files are of awfully low weight compared with
the H-files. In both cases, the L-files are considered to be
neglectable since they make trivial contributions to the sys-
tem level file availability. Therefore, it degenerates to the
equal weight replication, where x = s

nH
.

Although simplified, the bi-weight model is nontrivial. A
straightforward extension is to further classify the H-files
and/or L-files into two sub-categories, and then apply this
model to each sub-storage allocation problem. Such exten-
sion enables the application of bi-weight model to multi-
weight replication problems.

4. THE DISTRIBUTED REPLICATION AL-
GORITHM

By using the average peer availability as an approxima-
tion, the bi-weight model solves the problem of general stor-
age allocation between H-files and L-files. We then need to
find an optimal replica placement scheme R to assign the
replicas properly in the network. In fact, similar problems
were considered as combinatorial optimization problems in
previous studies. They were proved to be NP-complete, and
coupled with some heuristic solutions, as in [8, 9]. Such
heuristic solutions can be implemented by a central agent
that had all the necessary system parameters.

However, in a typical P2P system, there might be a huge
number of peers whose participations are not synchronized,
making timely collection of the system parameters from all
peers intractable. Even if it is possible to collect all the
parameters needed, it would be very time consuming for a
central agent to solve this problem and distribute solutions
to all other peers. Therefore, we focus on decentralized so-
lutions that enable self operations by autonomous peers.



In this paper, we investigate a decentralized heuristic al-
gorithm in which peers make their replication decisions inde-
pendently to derive a feasible R. These replication decisions
are made based on the partial and limited information avail-
able to each peer, e.g. availability and storage space of the
neighboring peers.

4.1 Writable peer set
P2P replication systems are constituted by connected peers.

Unlike centralized or structured replication systems like RAID,
peers in a P2P replication system may not be aware of the
presence of all other peers in the system. We characterize
the limited information available to each peer by introduc-
ing degree of connectivity for a peer. This is not the physical
connectivity, but the logical reachability of a peer in terms
of asking other peers to help it replicate a file. In this sense,
a replication system with an indexing server, which allows
each peer to know of all other peers’ existence, can be consid-
ered as a replication system with 100% connectivity, despite
the fact that peers are not directly connected to each other.

Given a degree of connectivity, a peer is called a neigh-
bor of peer i if it can potentially be reached by peer i for
replication. Due to storage limitation, it is possible that
a peer cannot always distribute one replica to each of its
neighbors. Hence, a peer i may choose a subset of its neigh-
bors for replication. We name this subset the writable peer
set Pi. And we assume that no peer is left isolated in the
system, therefore:

P = ∪iPi.

As described before, each peer requires several types of
information from other peers in the writable peer set to fa-
cilitate making replication decisions. Such information can
be encapsulated in the control protocol messages of a P2P
system (such as the ping-pong messages in Gnutella), or can
be transmitted in a separate protocol message. For each peer
i′ in the writable peer set of peer i, we define three types of
information to be conveyed from i′ to i.

1. The storage space offered by peer i′ for replication, i.e.
si′ .

2. The number of files in different weight level that peer
i′ requests to replicate, i.e. nH(i′) and nL(i′), where
nH(i′) + nL(i′) = |Fi′ | .

3. Online availability of peer i′, i.e. pi′ .

4.2 The Statistical Rounding Policy
As discussed in section 3.1, a feasible replica placement so-

lution must satisfy the storage constraint, namely, all repli-
cas must fit into the storage space offered by the peers.
To ensure this feasibility in a decentralized manner, each
peer collects the pertinent information from its writable peer
set and estimates suitable amount of storage overhead, i.e.
xH , xL, for its files. In whole file replication, the number of
replicas for any file should be an integer. However, this is
not guaranteed in the bi-weight model. In order to channel
the theoretical solution into applications, we introduce the
statistical rounding policy.

We denote ceil(x) as the minimal integer that larger than
x, while floor(x) the maximal integer that smaller than x.
For a nonnegative x, both ceil(x) and floor(x) are nonnega-
tive. The difference ceil(x)−x is then defined as the round-
ing threshold. Specifically, to determine the exact number

of replicas xj that can be placed in the network by an H-file
j, a random number λ ∈ (0, 1) is generated. Then xj is
decided as the following:

xj =

�
ceil(xH) : if λ > ceil(xH) − xH

floor(xH) : otherwise

The same method is also applied to L-files.
When determining the amount of replication redundancy

x, there may be the situation that two peers having com-
mon elements in their writable sets replicate simultaneously,
which would probably result in inaccurate estimation of the
system parameters, e.g. the total storage so far available in
the writable peer set. To avoid incorrect calculation of x,
we employ the locking phase strategy, which works in the
following way. Each peer in our system has a locking phase
indicator to indicate its current state: locked or released.
Once peer i begins the replication process (including esti-
mation of x), all peers in its writable peer set Pi are set to
be locked. While in the locking phase, a peer is “unaccessi-
ble” to other peers in the system except for peer i. These
locked peers will be released when peer i finishes replication.
Therefore, whenever a peer chooses the writable peer set, it
must first remove the locked neighbors.

4.3 The Distributed Random Replication Al-
gorithm

Generally, the availability of a file depends on (a) how
many replicas can be placed in the network, which is mea-
sured in terms of the replication redundancy allocated to
that file, and (b) the availability of those peers who store
the replicas of that file. The bi-weight model tries to allo-
cate the storage resource based on the weight of the files.
The random replication algorithm, on the other hand, gives
each file an equal opportunity in selecting peers. Both the
processes are implemented by peers in a decentralized way.
Hence, the entire replication algorithm includes the follow-
ing two steps.

The distributed replication algorithm

Writable peer set estimation:
1. Peer i chooses the writable peer set Pi.
2. All peers in Pi are “locked”.
3. Estimate Si =

�
i′∈Pi

si′

NH(i) =
�

i′∈Pi
nH(i′)

NL(i) =
�

i′∈Pi
nL(i′)

p̄i =
�

i′∈Pi
pi′

NH(i)+NH(i)
.

4. Estimate {xH(i), xL(i)}.
To replicate file j:

5. Generate a random λ ∈ (0, 1) and determine xj by the
statistical rounding.

6. Create xj replicas of file j.
7. IF peer i cannot find xj peers with available storage

space, skip replicating this file.
8. ELSE peer i randomly picks xj peers from Pi to store

the replicas. Update available storage space of these xj

peers.
9. Peers in Pi are released.

Storage allocation: First, each peer i calculates the
average peer availability (p̄i), the total storage space offered



Table 2: simulation setups
Expected number of files per peer File weight pattern Percentage of H-files

Uniform in [0,20] / Expected 10 wH : wL = 2 : 1 [0, 100%]
Uniform in [0,100] / Expected 50 wH : wL = 2 : 1 [0, 100%]
Uniform in [0,200] / Expected 100 wH : wL = 2 : 1 [0, 100%]
Uniform in [0,100] / Expected 50 wH : wL = 4 : 1 [0, 100%]

(Si), and the total number of files of each weight level to be
replicated, namely, {NH(i), NL(i)}, by peers in its writable
peer set. Peer i then estimates the replication redundancy
for all files j ∈ Fi by:

�����
����

xH(i) = Si
NH(i)+NL(i)

+
NL(i)

ln
wL
wH

ln(1−p̄i)
NH(i)+NL(i)

xL(i) = Si
NH(i)+NL(i)

− NH(i)

ln
wL
wH

ln(1−p̄i)
NH(i)+NL(i)

.

This replication redundancy estimates how much storage
space each file (in the writable peer set) can use on aver-
age. If all peers in the system cooperate and follow such
estimation, it is very likely that the storage space will not
be overused.

Replica placement: Before replicating file j, peer i ap-
plies the statistical rounding policy to determine xj , the
exact number of replicas of file j, based on {xH(i), xL(i)}
from last step and the actual weight of file j. After that,
peer i randomly picks xj peers, whose storage space is not
exhausted, in its writable peer set Pi. Replicas of file j are
then produced and assigned to these peers. Peer i stops the
replication process when all its files are replicated, or when
storage space in the writable peer set runs out.

To enhance the overall weight based file availability of the
system, the high weight files are entitled with priority in the
order of replication. That is, the high weight files in the
system will be replicated before the low weight files.

5. EVALUATION OF THE SYSTEM
The performance of the replication algorithm is evaluated

by simulations. The concerned file availability is used as the
main metric, including a) the weight based system level file
availability E[Aw] which measures how the peers replicate at
the overall replication goal, and b) the actual expected file
availability E[AH ] and E[AL] which measures how the files
in the system are treated differently based on their weights.
In addition, we employ the variance V ar[AH ] and V ar[AL]
as a fairness measurement of the achieved file availability in
the same weight level.

We first discuss the simulation setups, followed by the
results.

5.1 Simulation Setup
We simulate a replication system with 100 peers that are

randomly linked. The connectivity of the network is con-
trolled by a parameter m ∈ [0, 1]. Any two peers in the
system are linked if a uniformly generated random number
in [0, 1] is greater than m. So the expected number of links
would be (1 − m)N(N − 1)/2 = 4950(1 − m). These links
are logical, and the link delays and transmission costs are
ignored in our model. In fact, the parameter (1−m) can be
viewed as the degree of connectivity of the system.

We are interested in how the algorithm perform under
different system parameters, such as the total number of
files to be replicated in the system, the weight patterns, and
the percentage of high weight files out of the general file
set. These parameters are summarized in table 2. In all
simulations, the system has a degree of connectivity of 0.5,
and the peers’ online availability is uniformly distributed
in (0, 1). The system-wide average replication redundancy,
defined as the ratio of the total storage space offered by all
peers to the total size of all files in the system regardless of
file weight, is set to be

E(X̂) =

�
i∈P si�
j∈F fj

= 2.

That means, each file, no matter with a high weight or a low
weight, is expected to have 2 replicas stored in the network
on average. However, the exact storage space offered by each
peer is not the same. Instead, it followed a uniform distrib-
ution with E(X̂) as the expected value. In fact, variations
in these parameters, i.e., the online pattern of peers, the de-
gree of connectivity and the average replication redundancy,
can also result in direct impact on file availability. This has
been studied in our previous work [2].

To minimize simulation errors due to random perturba-
tions, each simulation setup is run 200 times, and the aver-
age results are reported.

5.2 Simulation Results
We first evaluate the system performance in terms of the

overall file availability. The theoretical results generated by
the bi-weight model under the same expected parameters
are used as the benchmark for evaluation.
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Figure 1: System level weight based file availability,
wH : wL = 2 : 1, avrg. {10, 50, 100} files per peer

Figure 1 shows the results of the system level weight based
file availability, against the percentage of high weight files



out of all the files to be replicated. The expected total num-
ber of files varies from 1000 to 10000. Compared with the
optimal solution, the file availability achieved by simulations
is 2% – 10% inferior. As the number of files to be replicated
in the system increases, the achieved file availability tends
to approach the optimal, but the growth is not significant.
The reasons for such a gap between the achievable and the
optimal may come from the following: (a) The total num-
ber of files and the percentage of H-files are precise in the
analysis. However, these parameters in the simulations are
random, generated by using the exact numerical values in
the analysis as the mean. (b) Peers only have partial and
limited information of the system resource from their neigh-
bors, which may result in inconsistent estimations among
peers depending on a particular writable peer set. (c) The
statistical rounding policy also introduces certain amount of
randomness.
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Figure 2: System level weight based file availability,
wH : wL = 2 : 1, avrg. 50 files per peer

A comparison of differentiated replication and propor-
tional replication is shown in figure 2. The result reveals
that when the metric shifts to the overall file availability,
the proportional relationship between the number of repli-
cas and file weights can no longer achieve optimality.
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Figure 3: Achieved file availability of H-files and L-
files, avrg. 50 files per peer, wH : wL = 2 : 1

As a measurement of the differentiated replication service,
figure 3 shows the actual file availability of the high weight
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Figure 4: Achieved file availability of H-files and L-
files, avrg. 50 files per peer, wH : wL = 4 : 1

and low weight files respectively. It can be observed that
when the percentage of H-files is low, e.g. 10%, they can
receive an availability up to around 85% after replication.
As the percentage increases, the availability of H-files de-
creases. The explanation is that when the percentage of
H-files turns high, hence the number of such files becomes
large, the H-files turns to be ”less important” compared to
previously. When the percentage of H-files is 0% or 100%,
the replication degenerates to equal weight replication.

However, the H-files always get higher availability than
the L-files, regardless of their percentage. This meets the
goal of the differentiated replication service. Moreover, when
the difference of weights grows, e.g. from wH : wL = 2 : 1
to wH : wL = 4 : 1, the availability of H-files and L-files
diverges further. The comparison of figure 3 and 4 provides
an illustration of this.
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Figure 5: Variance of achieved file availability of H-
files and L-files, avrg. 50 files per peer, wH : wL = 2 : 1

To gain a more comprehensive understanding of our model,
we evaluate the variance of the achieved file availability and
the portion of files that is successfully replicated. It can
be observed from figure 5 and figure 6 that the V ar[A] of
H-files is significant lower than that of L files. However,
when the percentage of H-files exceeds a certain threshold,
i.e. ≥ 70% in our simulation, V ar[AL] turns down. This is
because when the H-files become the majority in file popu-
lation, some L-files are left unreplicated due to the storage
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Figure 6: Portion of H-files and L-files that be suc-
cessfully replicated, avrg. 50 files per peer, wH : wL =
2 : 1

limitation. (They are considered to have 0 availability in the
computation of achieved objective). Most often, the H-files
can be 100% replicated while near 100% of the L-files are
replicated, especially when the H-files are rare in the system.
The above results reveal that weight based replication tends
to guarantee the service quality in favor of the high weight
files while trying to maintain that of the low weigh files at
a reasonable level.

6. DISCUSSION AND FUTURE WORK
The simulation results indicate that our replication algo-

rithm delivers a respectable replication service with prefer-
ences while maintaining a good system level file availability.
Yet there are still many interesting topics for future work.

For example, as alluded to in the introduction, we assume
the file weights are given. A crude system is to let the peers
set the file weights themselves. This assumes the peers are
honest and shares an established framework for setting file
weights. In real life systems, such a crude system would
not be dependable as the peers would have selfish reasons
to not be truthful. Instead, it is necessary to include an
incentive system to make the peers set the weights truthfully.
One possible consideration is to tie a peer’s contribution
(storage and online time) to the weights it gives to files.
Obviously, there are many interesting mechanisms one can
design, together with the system service model.

Another extension is related to network dynamics. In this
paper, we assume a static replication system: a fixed set of
peers join the system and each of them replicates a fixed set
of files. In a real world system, peers continuously join and
leave; they may remove old files and introduce new files; the
preference of a file may change over time. These dynamics
bring many interesting possibilities. For example, if some
peers leave permanently, the availability of the files it stored
will be affected. How do we redistribute these file replicas
in order to maintain the file availability in this scenario?

These problems are all worthy of future study.

7. CONCLUSION
In this paper, we considered the design of weight-based

replication services in unstructured peer-to-peer systems.
We represent file preferences by weights, and formulate the

resource allocation problem as an optimization problem that
maximizes the overall weight based file availability.

Since the problem is computation-intensive, we investigate
a bi-weight model, in which the optimal solution reveals a
logarithmic relationship between the amount of replication
and system parameters like file weight and file distribution
patterns. Though simple, the bi-weight model can be ex-
tended to multi weight cases by recursion. We then ap-
ply the solution to a distributed random replication algo-
rithm by introducing a statistical rounding policy. The al-
gorithm is implemented by autonomous peers who cooperate
with the neighbors, based on partial and limited information
about system resources. The performance of this algorithm
under different system parameters is evaluated by simula-
tion. Our results show that, by employing the analytical
results for the optimal solution, the distributed algorithm
yields favorable performance in delivering the differentiated
replication service while achieving a good system level file
availability.
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