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ABSTRACT 
Searching for the longest common substring (LCS) of 
biosequences is one of the most important tasks in Bioinformatics. 
A fast algorithm for LCS problem named FAST_LCS is presented. 
The algorithm first seeks the successors of the initial identical 
character pairs according to a successor table to obtain all the 
identical pairs and their levels. Then by tracing back from the 
identical character pair at the largest level, the result of LCS can 
be obtained. For two sequences X and Y with lengths n and m, the 
memory required for FAST_LCS is max{8*(n+1)+8*(m+1),L}, 
here L is the number of identical character pairs and time 
complexity of parallel implementation is O(|LCS(X,Y)|), here, 
|LCS(X,Y)| is the length of the LCS of X,Y. Experimental result on 
the gene sequences of tigr database shows that our algorithm can 
get exactly correct result and is faster and more efficient than 
other LCS algorithms.   

Categories and Subject Descriptors 
J.3  [Life and Medical Science]  Biology and genetics

General Terms 
Algorithms 
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1. INTRODUCTION 
Biological sequence [1] can be represented as a sequence 
of symbols. For instance, a protein[2] is a sequence of 20 
different letters (amino acids), and DNA sequences (genes) can be 
represented as sequences of four letters A,C,G and T, 
corresponding to the four sub-molecules forming DNA. When 
biologists find a new sequence, they want to know what other 
sequences it is most similar to. Sequence comparison[3-5] has 
been used successfully to establish the link between cancer-

causing genes and a gene evolved in normal growth and 
development. One way of detecting the similarity of two or more 
sequences is to find their longest common subsequence (LCS).  
The longest common subsequence problem is to find a substring 
that is common to two or more given strings and is the longest 
one of such strings. Presented in 1981 ， Smith-Waterman 
algorithm [6] was a well known LCS algorithm which was 
evolved by the Needleman-Wunsch [7] algorithm, and can 
guarantee the correct result. Aho et al.[8] gave a lower bound of 
O(mn) on time for the LCS problem using a decision tree model. 
It is shown in [9] that the problem can be solved in O(mn) time 
using O(mn) space by dynamic programming. Mayers and 
Miller[10] use the skill proposed by Hirschberg [11] to reduce the 
space complexity to O(m+n) on the premise of the same time 
complexity. To further reduce the computation time, some 
parallel algorithms[12-14] have been proposed for the LCS 
problem on different computational models. On CREW-PRAM 
model, Aggarwal [15] and Apostolico et al [16] independently 
proposed an O(log m log n) time algorithm using mn/log m 
processors. Lu et al [17] designed two parallel LCS algorithms, 
one used mn/log m processors with a time complexity of O(log2 
n+log m), and the other used mn/(log2 m loglog m) processors 
with a running time of O(log2 m loglog m). On the CRCW-PRAM 
model, Apostolico et al [16] gave an O(log n (loglog m)2) time 
algorithm using mn/loglogm processors. Babu and Saxena [18] 
improved these algorithms on the CRCW-PRAM model. They 
designed an O(log m) algorithm with mn processors and an O(log2 
n) time optimal parallel algorithm. Many parallel LCS algorithms 
have also been proposed on systolic arrays. Robert et al [19] 
proposed a parallel algorithm with n+5m steps using m(m+1) 
processing elements. Chang et al [20] put forward an algorithm 
with 4n+2m steps using mn processing elements. Luce et al [21] 
designed a systolic array with m(m+1)/2 processing elements and 
n+3m+q steps where q is the length of the LCS. Freschi and 
Bogliolo [22] addressed the problem of computing the LCS 
between run-length-encoded (RLE) strings. Their algorithm 
requirs O(m+n) steps on a systolic array of M+N processing 
elements, where M and N are the lengths of the original strings 
and m and n are the number of runs in their RLE representation.   
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In this paper, we present a fast algorithm named FAST_LCS for 
LCS problem. The algorithm first seeks the successors of the 
initial identical character pairs according to a successor table to 
obtain all the identical pairs and their levels. Then by tracing back 
from the identical character pair at the largest level, the result of 
LCS can be obtained. For two sequences X and Y with lengths n 
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and m, the memory required for FAST_LCS is 
max{8*(n+1)+8*(m+1), L}, here L is the number of identical 
character pairs and time complexity of parallel implementation is 
O(|LCS(X,Y)|), here, |LCS(X,Y)| is the length of the LCS of X,Y. 
Experimental result on the gene sequences of tigr database shows 
that our algorithm can get exactly correct result and is faster and 
more efficient than other LCS algorithms. 

2. THE IDENTICAL PARE AND ITS 
SUCCESSOR TABLE 
Let X＝(x1, x2, … , xn), Y = (y1, y2, … , ym) be two biosequences, 
where xi , yi∈{A,C,G,T}. We can define an array CH of the four 
characters so that CH(1)=”A”, CH(2)=”C”, CH(3)=”G” and 
CH(4)=”T”. To find their longest common subsequence, we first 
build the successor tables of the identical characters for the two 
strings. The successor tables of X and Y are denoted as TX and TY 
which are 4*(n+1) and 4*(m+1) two dimensional arrays. TX (i, j) 
is defined as follows. 

Definition1. For the sequence X＝(x1, x2, … , xn ), its successor 
table TX of identical character is defined as :  

{ }min | ( , )
( , )

k k SX i j
TX i j

∈⎧⎪= ⎨
−⎪⎩

( , )
otherwise
SX i j φ≠  (1)

Here, SX (i, j)={k| xk=CH(i), k>j}, i = 1,2,3,4, j = 0,1,…n. It can 
be seen from the definition that  if TX(i, j) is not “－”, it indicates 
the position of the next character identical to CH(i) after the jth 
position in sequence X.  If TX(i, j) is equal to “－”, it means there 
is no character CH(i) after the jth position .   

Example 1 Let X =“T G C A T A”, Y =“A T C T G A T”. 
Their successor tables TX and TY are: 
   TX: 

i CH(i) 0  1  2  3  4  5  6   

1 A 4  4  4  4  6  6  - 

2 C 3  3  3  -   -  -  - 

3 G 2  2  -  -   -  -  - 

4 T 1  5  5  5  5  -  - 

   TY: 

i CH(i) 0  1  2  3  4  5  6  7 

1 A 1  6  6  6  6  6  -  - 

2 C 3  3  3  -   -  -  -  - 

3 G 5  5  5  5  5  -  -  - 

4 T 2  2  4  4  7  7  7  - 

 
Definition2. For the sequences X and Y, if xi = yj, we call them an 
identical character pair of X and Y, and denote it as (i, j). The set 
of all the identical character pairs of X and Y is denoted as S(X, Y). 

Definition3.  Let (i, j) and (k, l) be two identical character pairs of 
X and Y . If i<k and j<l, we call (i, j) a predecessor of (k, l), or (k, l) 
a successor of (i, j), and denote them as (i, j)<( k, l). 

Definition4. Let P(i, j) = {(r, s)|( i, j) < (r, s), (r, s)∈S (X,Y)} be 
the set of all the successors of identical pair (i, j), if (k, l)∈P(i, j) 
and there is no (k’, l’)∈P(i, j) satisfying the condition: (k’, l’) < (k, 

l), we call (k, l) the direct successor of (i, j), and denoted it as (i, 
j) (k, l). p

Definition5. If an identical pair (i, j)∈S (X,Y) and there is no (k, l)
∈S (X,Y) so that (k, l) < ( i, j), we call ( i, j) an initial identical 
pair. 

Definition6. For an identical pair (i, j)∈S (X,Y), its level is 
defined as follows: 

( ) ( ) ( ) ( ){ }⎪⎩

⎪
⎨
⎧

<+
=

jilklklevel
jilevel

,,1,max
1

, ( )if , is  an  initial  identical  character  pair
otherwise

i j (2)

From the definitions above, the following lemma can be easily 
deduced: 

Lemma1. Denote the length of the longest common subsequence 
of X, Y as |LCS(X, Y)|, then |LCS(X, Y)|=max{level (i, j) |(i, j)∈S 
(X, Y)}. 
Proof: Suppose the identical character pairs corresponding to the 
longest common subsequence of X, Y are (xi1, yj1), (xi2, yj2), … , 
(xir, yjr), here r＝|LCS(X, Y)|. By Definition5, we know (i1, j1) 
must be an initial identical character pair. By Definition4 and 
Definition6, we have: (ik, jk) (ip k+1, jk+1), for k=1,2,…,r-1, and 
the level of (xik, yjk) is k. Then we can conclude that maximal level 
of those identical character pairs is r, i.e. r= max{level (i, j)|(i, j)
∈S(X, Y)}. The reason is as follows: if r is not the maximal level 
of the identical character pairs of X, Y, there must be an integer 
r’>r and identical character pairs: (xi1’, yj1’) (xp i2’, 
yj2’) ….. (xp p ir’, yjr’). It corresponds to another common 
subsequence of X, Y with length r’>r. This is in contradiction with 
the condition r＝|LCS(X, Y)|. 

                                                                         Q.E.D. 

3. FIGURES/CAPTIONS 
To get all the identical pairs and their levels, we first produce the 
direct successors of the initial pairs in the first time step in 
parallel using the successor tables. Then the direct successors of 
all those successors produced in the first step are generated in 
parallel in the second time step. Repeat these operations of 
generating the direct successors until no more successors could be 
produced. Therefore, producing all the direct successors for the 
identical character pairs is a basic operation in our algorithm. 

 For an identical character pair (i, j)∈S (X, Y), the operation of 
producing all its direct successors is as follows: 

{ }''),( and''),(,4,3,2,1|)),(),,((),( −≠−≠=→ jkTYikTXkjkTYikTXji (3) 

From (3) we can see that this operation is to couple the elements 
of the ith column of TX and the jth column of TY to get the pairs. 
For instance, the operation on the identical character pair (2,5) in 
Example 1 is illustrated as follows: 
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 Here (3,－) and (－,－) do not represent identical character pairs, 
they only indicate the end of the process of searching for the 



successors in this branch. After discarding (3,－) and (－,－),  the 
successors of (2,5) are just (4,6) and (5,7). It should be point out 
that the successors produced in the operation are not all direct 
successors of (i, j). For example, (5,7) is not the direct successor 
of (2,5), since (2, 5)p (4, 6) (5, 7). p
Lemma2. For an identical character pair (i, j), the method 
illustrated above can produce all its successors. 

Proof: By (3), we can produce all direct successors (TX(k, i),TY(k, 
j)), k=1,2,3,4, of (i, j). According to (1), TX(k, i) is the minimum 
of SX(i, j). Namely, it is the nearest character identical to CH(k) 
after xi in string X, and TY(k, j) is the nearest character identical to 
CH(k) after yi in string Y. This means that identical pairs (TX(k, 
i),TY(k, j)), k=1,2,3,4, contains all the direct successors of (i, j) 
after the operation of producing successors. Consequently, by the 
same operation on the newly generated identical pairs, we can get 
all the direct successors of the direct successors of (i, j). It can be 
seen that by repeating this operation of producing successors, we 
can obtain all the successors of (i, j). 

                                                                   Q.E.D. 
It is obvious that (TX(k, 0),TY(k, 0)), k=1,2,3,4, are all the initial 
identical pairs of X and Y. By Lemma 2, we know that starting 
from those initial identical pairs, all the identical pairs and their 
levels can be produced. In such process of generating the 
successors, prune technique can be implemented to remove the 
identical pairs which can not generate the longest common 
subsequence so as to reduce the searching space and accelerate 
the speed of process.  

Theorem 1. If two identical character pairs (i, j) and（k, l）
generated at the same time step satisfy (k, l)>(i, j) , then (k, l) can 
be pruned without affecting the algorithm to get the longest 
common subsequence of X and Y.  

Proof: Suppose identical character pairs (i, j) and (k, l) are 
produced by the identical pairs (i1 , j1) and (k1 , l1) at the same 
time step. Let the longest common subsequence produced via (k1, 
l1) and (k, l) be a1a2…amam+1…ar, here am corresponds to (k1, l1) 
and am+1 corresponds to (k, l). Similarly, let the subsequence 
produced via (i1, j1) and (i, j) be b1b2…bmbm+1…bs…bq, here bm 
corresponds to (i1, j1) and bm+1 corresponds to (i, j). Since (k, l)>(i, 
j), by Lemma 2, (k, l) must be produced after (i, j). Then there 
must exist bs (m+1<s<q) corresponding to (k, l). Since amam+1…ar 
and bsbs+1…bq are both the local longest common subsequences 
obtained by the operations of producing successors on (k, l), we 
have “amam+1…ar”＝  “bsbs+1…bq” which means q-s=r-m, and 
q=r+(s-m). Since s>m, we have q>r. Therefore the subsequence 
“amam+1…ar”, which is produced via (k, l), can not be included in 
the longest common subsequence of X and Y, and (k, l) can be 
pruned without affecting the algorithm to get the longest common 
subsequence of X and Y.   

                                                                        Q.E.D. 
By Theorem 1, the pruning process can be implemented to 
remove all those redundant identical pairs. At each time step, the 
algorithm checks all the newly generated identical pairs at the 
same level to find all such identical pairs (i, j) and (k, l) satisfying 
(k, l)<(i, j) and then prune (i, j). 
For instance, (4, 6) and (5, 7) in Example 1 are the successors of 
the identical pair (2, 5). Since they are generated at the same time 
step, and (4, 6) (5, 7), we can prune (5, 7) by Theorem 1. p

 For another identical character pair (1,1) in Example 1, the 
operation is illustrated as follows: 
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Here four successors of (1, 1) are produced:(4, 6), (3, 3), (2, 5) 
and (5, 2). Since (3, 3)<(4, 6), by Theorem 1, (4, 6) can be pruned. 
At the next time step, successors of (3, 3), (2, 5) and (5, 2) are 
produced by the operation of producing successors. Those 
successors are checked and pruned as follows: 

 
 
 
 
 
 
 
 

Since 
(6,6)>(5,4), (5,7) > (4,6) and they are generated at the same time 
step, (6, 6) and (5,7) can be pruned by Theorem 1.  
Similar to Theorem 1, other prune operations are also helpful to 
reduce the searching space. These prune operations are based on 
the following theorem and corollary. 

4. THE OPERATION OF SKIPPING 
In the process of generating identical character pairs, we can skip 
over the subsequences which obviously belong to the longest 
common subsequence of the given sequences so as to accelerate 
the process.   

Theorem 2  Suppose the subsequence ＂xixi+1xi+2…xi+t＂in X is 
identical to the subsequence ＂yjyj+1yj+2…yj+t＂ in Y, then the 
successors of identical pair (i,j) at level l can be replaced by the 
successors of identical pair (i+t,j+t) at level l+t.  

Proof：We need to prove that for all CH(k)，k=1,2,3,4， the 
successors of identical pair (i+t,j+t) at level l+t are all successors 
of identical pair (i,j) at level l.  Suppose the character CH(k) 
appears in the subsequence＂xixi+1xi+2…xi+t＂, and (i+s, j+s) is a 
successor of (i+t,j+t) identical to CH(k), t<s . Let the characters 
identical to CH(k) in ＂xi+1xi+2…xi+t＂and＂yj+1yj+2…yj+t＂are 
xi+k1xi+k2…xi+kq, here 1≤k1≤…≤kq≤t. The identical pairs of 
character CH(k) in ＂ xi+1xi+2…xi+t ＂ and ＂ yj+1yj+2…yj+t ＂ are 
(i+k1,j+k1) (i+k2,j+k2)…(i+kq,j+kq). Since (i+s, j+s) is a successor 
of (i+t,j+t) identical to CH(k) and  kq≤t <s, (i+s, j+s) must be a 
successor of (i+kq,j+kq), and is also a successor of (i,j).  If CH(k) 
does not appears in ＂xixi+1xi+2…xi+t＂,  then the nest character 
identical to CH(k) must appears after (i+t,j+t). Since it is a 
successor of both (i,j) and (i+t,j+t), the successor of (i+t,j+t) 
identical to CH(k) is also a successor of (i,j). 

Q.E.D. 



Example 2 Let X ＝ “ TACTTACGACT”,Y=
“GTACTTACCTAG”.  X、Y  have identical pairs（1,2） 
identical to “T”. After this “T” ，both X、Y  have identical 
subsequences “ ACTTAC ”  of length 6. Therefore the 
successors of （ 1,2 ） can be replaced by the successors of 
identical pair （1+6,2+6）=(7,8), which are (9,11)、(10,9)、 
(8,12) and (11,10).  
To detect such identical subsequences, we define the identical 
character augment table for the set of sequences.  

Definition 7 For the sequence X＝(x1, x2, … , xn ), its identical 
character augment table SX is a 4*(n+1) array defined as :  

( , )          if ( , ) ' '
( , )

                        otherwise
TX i j j TX i j

SX i j
− ≠⎧

= ⎨ ∞⎩

−
 

It can be seen from the definition that if SX(i,j) is not “∞”, it 
indicates the displacement of the  next character identical to CH(i) 
after xj. From the definition we can see that SX can be derived 
directly from TX.   

Example 3. For X＝“TACTTACGACT” in Example 2,   
TX is： 

i CH(i) 0 1 2 3 4 5 6 7 8 9 10 11

1 A 2 2 6 6 6 6 9 9 9 - - -

2 C 3 3 3 7 7 7 7 10 10 10 - -

3 G 8 8 8 8 8 8 8 8 - - - -

4 T 1 4 4 4 5 11 11 11 11 11 11 -

SX is： 
i CH(i) 0 1 2 3 4 5 6 7 8 9 10 11

1 A 2 1 4 3 2 1 3 2 1 ∞ ∞ ∞

2 C 3 2 1 4 3 2 1 3 2 1 ∞ ∞

3 G 8 7 6 5 4 3 3 1 ∞ ∞ ∞ ∞

4 T 1 3 2 1 1 6 5 4 3 2 1 ∞

For Y＝“GTACTTACCTAG” in Example 2, TY is： 
i CH(i) 0 1 2 3 4 5 6 7 8 9 10 11 12

1 A 3 3 3 7 7 7 7 11 11 11 11 - - 

2 C 4 4 4 4 8 8 8 8 9 - - - - 

3 G 1 12 12 12 12 12 12 12 12 12 12 12 - 

4 T 2 2 5 5 5 6 10 10 10 10 - - - 

SY is ： 
i CH(i) 0 1 2 3 4 5 6 7 8 9 10 11 12

1 A 3 2 1 4 3 2 1 4 3 2 1 ∞ ∞

2 C 4 3 2 1 4 3 2 1 1 ∞ ∞ ∞ ∞

3 G 1 11 10 9 8 7 6 5 4 3 2 1 ∞

4 T 2 1 3 2 1 1 4 3 2 1 ∞ ∞ ∞

 
Lemma 3.  If the elements in a column of identical character 
augment table SX are not all equal to ∞, then their must be one 
element in this column being equal to 1.  

Proof:  Suppose the elements in the jth column of SX are not all 
equal to ∞, then xj is not the last character of X, and their exists 
xj+1 after xj . Let xj+1＝CH(i), then SX(i,j)＝1。 

                                                                                 Q.E.D.  
In fact, if the “1” of the jth column of SX is in the ith row, xj+1 is 
equal to CH(i). Based on the identical character augment table, 
we can define the displacement of the identical pairs as follows:   

Definition 8. Let (i,j) be an identical pair of X，Y,  the pairs 
obtained by grouping the ith column of SX and the jth column of 
SY are called the displacements of the identical pair (i,j).  
The operation of getting the displacements of the identical pair (i,j) 
can be defined as follows:     

( , ) {( ( , ), ( , )) | 1,2,3,4, ( , ) ( , ) }i j SX k i SY k j k SX k i and SY k j→ = ≠ ∞ ≠ ∞  

The displacements indicate the distances from (i,j) to the identical 
pairs after (i,j). If (i,j) has a displacement (r,s), then (i+r, j+s) is 
also an identical pair, namely, xi+r=yj+s . 

Example 4 The displacements of the identical pair (1,2) in 
Example 2 are as follows:  

1 1
2 2

(1,2)
7 10
3 3

⎡ ⎤
⎢ ⎥
⎢ ⎥→
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

They are (1,1)、(2,2)、(3,3) and (7,10).  

Theorem 3. For sequences X and Y, if the identical pair (i,j) at 
level l has displacements (k,k)，  k=1,2,…,w,  where w is an 
integer in [1,4], then the successors of identical pair (i,j) can be 
replaced by the successors generated by identical pair (i+w, j+w) 
at level l+w. 

Proof: Since (i,j) has displacements (k,k)， k=1,2,…,w, we have 
xi+k=yj+k  for k=1,2,…w, namely the subsequence ＂

xixi+1xi+2…xi+w ＂ in X is identical to the subsequence ＂

yjyj+1yj+2…yj+w＂in Y. By Theorem 3, we know the successors of 
identical pair (i,j) can be replaced by the successors generated by 
identical pair (i+w, j+w) at level l+w. 

                                                                                  Q.E.D. 

Example 5 In Example 2, the displacements of the identical pair 
(1,2) at level 1 are (1,1)、 (2,2)、 (3,3) and (7,10). Since it 
satisfies the condition of Theorem 6 and w=3, the successors of 
(1,2) can be replaced by the successors generated by identical pair 
(1+3,2+3)=(4,5) at level 4.  
Again, the displacements of (4,5) at level 4 are 

2 2
3 3

(4,5)
4 7
1 1

⎡ ⎤
⎢ ⎥
⎢ ⎥→
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

Since it also satisfies the condition of Theorem 6 and w=3, the 
successors of (4,5) can be replaced by the successors generated by 
identical pair (4+3,5+3)=(7,8) at level 7. The successors of (7,8) 
are 



9 11 (9,11)
10 9 (10,9)

(7,8)
8 12 (8,12)
11 10 (11,10)

⎡ ⎤ ⎡
⎢ ⎥ ⎢
⎢ ⎥ ⎢→ →
⎢ ⎥ ⎢
⎢ ⎥ ⎢
⎣ ⎦ ⎣

⎤
⎥
⎥
⎥
⎥
⎦

s

s

 

Therefore, the we can skip from (1,2) at level 1 directly to its 
successors (9,11)、(10,9)、(8,12) and (11,10) at level 8.    

Theorem 4.  Suppose (i,j) is an identical pair of sequences X,Y at 
level l. If (i,j) has displacements (1,1) and (rk, sk),  k=1,2,3, and 

, then the successors of identical pair (i,j) 

can be replaced by the successors generated by identical pair 
(i+w-1, j+w-1) at level l+w-1. 

1 3
(min( , ))min k k

k
w r

≤ ≤
=

Proof:  Let the character corresponding to the displacement (1,1) 
be CH, namely, xi+1 =yj+1=CH. Since , the 

distance between (i,j) and the first character other than CH after 
(i,j) is w. Therefore, the characters in subsequences ＂

x

1 3
(min( , ))min k k

k
w r

≤ ≤
=

ixi+1xi+2…xi+w-1＂ and ＂yjyj+1yj+2…yj+w-1＂ are all equal to CH. 
By Theorem 3, the successors of identical pair (i,j) can be 
replaced by the successors generated by identical pair (i+w-1, 
j+w-1) at level l+w-1. 

Example 6   Let X＝“TAAAAACGA”,  

                   Y=“AAAAAGAC”,  

TX is ： 

i CH(i) 0 1 2 3 4 5 6 7 8 9

1 A 2 2 3 4 5 6 9 9 9 -

2 C 7 7 7 7 7 7 7 - - -

3 G 8 8 8 8 8 8 8 8 - -

4 T 1 - - - - - - - - -

SX is ： 
i CH(i) 0 1 2 3 4 5 6 7 8 9

1 A 2 1 1 1 1 1 3 2 1 ∞

2 C 7 6 5 4 3 2 1 ∞ ∞ ∞

3 G 8 7 6 5 4 3 2 1 ∞ ∞

4 T 1 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

TY is： 
i CH(i) 0 1 2 3 4 5 6 7 8

1 A 1 2 3 4 5 7 7 - -

2 C 8 8 8 8 8 8 8 8 -

3 G 6  6 6 6 6 6 - - -

4 T - - - - - - - - -

SY is： 
i CH(i) 0 1 2 3 4 5 6 7 8

1 A 1 1 1 1 1 ∞ ∞ ∞ ∞

2 C 8 7 6 5 4 3 2 1 ∞

3 G 6  5 4 3 2 1 ∞ ∞ ∞

4 T ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

The displacements of the identical pair (2,1) at level 1 are: 
1 1
5 7

(2,1)
6 5

⎡ ⎤
⎢ ⎥
⎢ ⎥→
⎢ ⎥
⎢ ⎥
∞ ∞⎣ ⎦

 

(1,1) is one of its displacement, and the minimum of the elements 
in the other displacements is w=5. By Theorem 5, the successors 
of (2,1) can be replaced by the successors generated by identical 
pair (2+4, 1+4) =(6,5) at level 5. The successors of (6,5) are 

9 7
(9,7)

7 8
(6,5) (7,8)

8 6
(8,6)

⎡ ⎤
⎡ ⎤⎢ ⎥
⎢ ⎥⎢ ⎥→ → ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ ⎣ ⎦− −⎣ ⎦

 

Therefore, the we can skip from (2,1) at level 1 directly to its 
successors (9,7)、(7,8) and (8,6) at level 6. 

5. FRAMEWORK OF THE ALGORITHM AND  
COMPLEXITY ANALYSIS 

Based on the operations of generating the successors of the 
identical character pairs using successor tables, using the pruning 
and skipping technologies, we present a fast parallel longest 
common subsequence algorithm named FAST_LCS. The 
algorithm consists of two phases: the phase of searching for all 
the identical character pairs and the phase of tracing back to get 
the longest common subsequences. The first phase begins with the 
initial identical character pairs, then continuously searches for 
successors using the successor tables. In this phase, the pruning 
and skipping technologies are implemented so as to reduce the 
search space and speed up the process of searching. In the 
algorithm, a table called pairs is used to store the identical 
character pairs obtained in the algorithm. In the table pairs, each 
record takes the form of (k, i, j, level, pred, disp, state) where the 
data items denote the index of the record, the identical character 
pair (i,j), its level, the index of its direct predecessor, the distance 
of skipping from its predecessor and its current state. Each record 
in pairs has two states. For the identical pairs whose successors 
have not been searched, it is in active state, otherwise it is in 
inactive state. In every step of search process, the algorithm 
searches for the successors of all the identical pairs in active state 
in parallel. Repeat this search process until there is no identical 
pair in active state in the table. In the second phase, the tracing 
back starts from the identical pairs with the maximal level in the 
table, and traces back according to the pred of each identical pair. 
This tracing back process ends when it reaches an initial identical 
pair, and the trail indicates the longest common subsequence. If 
there are more than one identical pairs with the maximal level in 
the table, the tracing back procedure for those identical pairs can 
be carried out in parallel and several longest common 
subsequences can be obtained concurrently. The framework of 
algorithm FAST_LCS is as follows: 

Algorithm-FAST_LCS (X,Y)  
Input X and Y: Sequences with lengths of m and n                
respectively;  

Output   LCS : The longest common subsequence of X,Y; 



Begin 
1. Build tables TX, TY, SX and SY; 
2. Find all the initial identical character pairs: (TX(k, 0),TY(k, 

0)), k=1,2,3,4; 
3. Add the records of the initial identical pairs (k, TX(k, 

0),TY(k, 0), 1,ф, 0, active), k=1,2,3,4 to the table pairs.  

   /* For all the initial identical pairs, their level=1, pred=
ф ,disp=0, and state=active*/ 

4. Repeat  
4.1  For all active identical pairs IP=(k, i, j, level, pred, 

disp, active) in pairs parallel-do 
4.1.1 If IP satisfies the conditions of skipping 

then  
4.1.2    w= the displacement it can skip   
4.1.3 else w=1;  
4.1.4 Produce all the successors of IP.  
4.1.5 For each identical pair (g, h) which is a 

successor of IP, a new record (k’, g, h, 
level+w, k, w, active) is generated and 
inserted into the table pairs.  

4.1.6 Change the state of IP into inactive. 
4.2 End for 
4.3 Use prune operation on all the identical pairs newly 

produced to remove all the redundant identical pairs 
from table pairs. 

5. Until there is no record in active state in table pairs. 
6. Compute r= the maximal level in the table pairs.  
7. For all the identical pairs (k, i, j, r, l, disp, inactive) in 

pairs parallel-do  
7.1 pred = l; LCS(r) = xi.  

7.2 While pred ≠ф do  

7.1. 1  get the pred-th record (pred, g, h, r’, l’, disp’, inactive) 
from table pairs;  

7.1.2   pred = l’; 
7.1.3   for j=1 to disp’ do LCS(r’-j-1)=xg-j                               

7.3 end while  
  8. End for 

End.     
Assume that the number of the identical character pairs of X, Y is 
L. In our algorithm, because of the pruning and skipping 
technologies, the operation of producing successors can be 
implemented at most once on each identical character pair. 
Therefore the time complexity for sequentially executing of the 
algorithm FAST_LCS (X, Y) is O(L).  Since the table pairs has to 
store all the identical character pairs, it requires O(L) memory 
space. Considering that the memory space costs of TX, SX and TY, 
SY are 8*(n+1) and 8*(m+1), the storage complexity of our 
algorithm is max{8*(n+1)+8*(m+1),L}. In parallel 
implementation of the algorithm, since the process for each 
identical pair can be assigned on one processor, all the process on 
the identical pairs can be carried out in parallel. Therefore, the 

time required for the parallel computation is equal to the maximal 
level of the identical pairs. By Lemma 1, we know that the length 
of the longest common subsequence of X, Y, |LCS (X,Y)|, is equal 
to the largest level of the identical pairs. Therefore the time 
complexity of parallel computing is O(|LCS(X,Y)|). 

6. EXPERIMENTAL RESULTS 
We test our algorithm FAST_LCS on the rice gene 
sequences of tigr[29]database and compare the performance of 
FAST_LCS with that of Smith－Waterman algorithm[30] and 
FASTA algorithm[31-32] which are currently the most widely 
used LCS algorithms. Since both our algorithm and Smith-
Waterman’s can obtain exactly correct solution, we compare the 
computation speed of our algorithm FAST_LCS with that of 
Smith-Waterman algorithm. Also, we compare the precision of 
our algorithm with that of FASTA using the same computation 
time.  
Table1 compares the computation speed of FAST_LCS with that 
of Smith-Waterman algorithm on groups of gene sequences pairs 
with different lengths. Since a test on one pair of sequences takes 
very short time, it is hard to compare the speed of the algorithms 
using a single pair of sequence. Therefore we test the algorithms 
on groups of sequences pairs with similar lengths.  We test five 
groups of sequences pairs each of which consists of 100 pairs of 
sequences. The total time for each group by the two algorithms 
are listed in Table1. 

Table 1 Comparison of computation speed of fast-lcs with 
that of smith-waterman algorithm  

Time of FAST_LCS  

(S) 

Time of S-W 
algorithm 

(S) Name of Sequences Length 
l 

Number 
of  pairs 

Total 
time 

Average 

 time 
Total 
time 

Average  
time 

gi|21466196～gi|21466195 

… 

gi|21466168～gi|21466167 

gi|21466166～gi|30250556 

gi|30230255～gi|30230254 

gi|30229613～gi|30229612 

… 

gi|30229449～gi|30229448 

0≤l≤
50 100 0.43 0.0043 1.09 0.0109 

gi|30229047～gi|30229046 

… 

gi|30229001～gi|30229000 

gi|30228999～gi|30228998 

… 

gi|30228849～gi|30228848 

50≤l
≤100 

100 5.57 0.0557 11.55 0.1155 

gi|30229447～gi|30229446 

… 

gi|30229249～gi|30229248 

10 ≤ l
≤150 

100 29.21 0.2921 65.95 0.6595 

gi|30228846～gi|30228845 

… 

gi|30228648～gi|30228647 

15 ≤ l
≤200 

100 93.78 0.9378 172.21
3 1.7213 

gi|30229247～gi|30229246 

… 

gi|30229049～gi|30229048 

20 ≤ l
≤250 

100 230.51 2.3051 425.16 4.2516 
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Fig.1 Comparison of the computation time of FAST_LCS  

with that of Smith－Waterman algorithm 

 
Fig.1 shows the comparison of the computation time of our 
algorithm with that of Smith－Waterman algorithm. From the 
table and the figure, we see that our algorithm is obviously faster 
than Smith － Waterman algorithm for sequences sets of all 
different lengths. The difference of the computation time between 
the two algorithms grows faster when the length of sequences 
become greater than 150. This means our algorithm is much faster 
and more efficient than Smith-Waterman’s for LCS problem of 
long sequences. 
We also compare the precision of our algorithm with that of 
FASTA on the premise of the same computing time. Here 
precision is defined as: 

Length of the common subsequence computed by the algorithm
Precision

Length of the longest common subsequence in correct match
=  

From Fig.2, we can see that our algorithm can obtain exactly 
correct result no matter how long the sequence could be, while the 
precision of FASTA declines when the length of the sequences is 
increased. Therefore the precision of our algorithm is much higher 
than that of FASTA algorithm. 
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Fig.2 Comparison of the precision of FAST_LCS  
with that of FASTA using the same computation time 

 

7. CONCLUSION 
On the premise of guaranteeing precision of the results of LCS, 
we present a parallel longest common subsequence algorithm 
named FAST_LCS based on the identical character pair to 
improve the speed of LCS problem. Our algorithm first seeks the 
successors of the initial identical character pairs according to a 
successor table to obtain all the identical pairs and their levels. 
Then by tracing back from the identical character pair at the 
largest level, the result of LCS can be obtained. For two 
sequences X and Y with lengths n and m, the memory required for 
FAST_LCS is max{8*(n+1)+8*(m+1),L}, here L is the number of 
identical character pairs and time complexity of parallel 
implementation is O(|LCS(X,Y)|), here, |LCS(X,Y)| is the length of 
the LCS of X,Y. Experimental result on the gene sequences of tigr 
database shows that our algorithm can get exactly correct result 
and is faster and more efficient than other LCS algorithms. 
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