
A Parallel LCS Algorithm for Biosequences Alignment

Wei Liu
Institute of Information Science and
Technology, Nanjing University of

Aeronautics and Astronautics
Nanjing 210093, China

+8613951735560

yzliuwei@126.com

 Ling Chen
Department of Computer

Science ,Yangzhou University
 Yangzhou 225009 China

+865147899311

chen@yzcn.net

Lingjun Zou
Department of Computer

Science ,Yangzhou University
 Yangzhou 225009 China

+865147993908

njzoulingjun@126.com

ABSTRACT
Searching for the longest common substring (LCS) of
biosequences is one of the most important tasks in Bioinformatics.
A fast algorithm for LCS problem named FAST_LCS is presented.
The algorithm first seeks the successors of the initial identical
character pairs according to a successor table to obtain all the
identical pairs and their levels. Then by tracing back from the
identical character pair at the largest level, the result of LCS can
be obtained. For two sequences X and Y with lengths n and m, the
memory required for FAST_LCS is max{8*(n+1)+8*(m+1),L},
here L is the number of identical character pairs and time
complexity of parallel implementation is O(|LCS(X,Y)|), here,
|LCS(X,Y)| is the length of the LCS of X,Y. Experimental result on
the gene sequences of tigr database shows that our algorithm can
get exactly correct result and is faster and more efficient than
other LCS algorithms.

Categories and Subject Descriptors
J.3 [Life and Medical Science] Biology and genetics

General Terms
Algorithms

Keywords
Bioinformatics, Parallel processing, Biosequences alignment

1. INTRODUCTION
Biological sequence [1] can be represented as a sequence
of symbols. For instance, a protein[2] is a sequence of 20
different letters (amino acids), and DNA sequences (genes) can be
represented as sequences of four letters A,C,G and T,
corresponding to the four sub-molecules forming DNA. When
biologists find a new sequence, they want to know what other
sequences it is most similar to. Sequence comparison[3-5] has
been used successfully to establish the link between cancer-

causing genes and a gene evolved in normal growth and
development. One way of detecting the similarity of two or more
sequences is to find their longest common subsequence (LCS).
The longest common subsequence problem is to find a substring
that is common to two or more given strings and is the longest
one of such strings. Presented in 1981 ， Smith-Waterman
algorithm [6] was a well known LCS algorithm which was
evolved by the Needleman-Wunsch [7] algorithm, and can
guarantee the correct result. Aho et al.[8] gave a lower bound of
O(mn) on time for the LCS problem using a decision tree model.
It is shown in [9] that the problem can be solved in O(mn) time
using O(mn) space by dynamic programming. Mayers and
Miller[10] use the skill proposed by Hirschberg [11] to reduce the
space complexity to O(m+n) on the premise of the same time
complexity. To further reduce the computation time, some
parallel algorithms[12-14] have been proposed for the LCS
problem on different computational models. On CREW-PRAM
model, Aggarwal [15] and Apostolico et al [16] independently
proposed an O(log m log n) time algorithm using mn/log m
processors. Lu et al [17] designed two parallel LCS algorithms,
one used mn/log m processors with a time complexity of O(log2
n+log m), and the other used mn/(log2 m loglog m) processors
with a running time of O(log2 m loglog m). On the CRCW-PRAM
model, Apostolico et al [16] gave an O(log n (loglog m)2) time
algorithm using mn/loglogm processors. Babu and Saxena [18]
improved these algorithms on the CRCW-PRAM model. They
designed an O(log m) algorithm with mn processors and an O(log2
n) time optimal parallel algorithm. Many parallel LCS algorithms
have also been proposed on systolic arrays. Robert et al [19]
proposed a parallel algorithm with n+5m steps using m(m+1)
processing elements. Chang et al [20] put forward an algorithm
with 4n+2m steps using mn processing elements. Luce et al [21]
designed a systolic array with m(m+1)/2 processing elements and
n+3m+q steps where q is the length of the LCS. Freschi and
Bogliolo [22] addressed the problem of computing the LCS
between run-length-encoded (RLE) strings. Their algorithm
requirs O(m+n) steps on a systolic array of M+N processing
elements, where M and N are the lengths of the original strings
and m and n are the number of runs in their RLE representation.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

In this paper, we present a fast algorithm named FAST_LCS for
LCS problem. The algorithm first seeks the successors of the
initial identical character pairs according to a successor table to
obtain all the identical pairs and their levels. Then by tracing back
from the identical character pair at the largest level, the result of
LCS can be obtained. For two sequences X and Y with lengths n

Conference’04, Month 1–2, 2004, City, State, Country.
Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00.

fezzardi
Text Box
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. INFOSCALE 2007, June 6-8, Suzhou, ChinaCopyright © 2007 ICST 978-1-59593-757-5 DOI 10.4108/infoscale.2007.954

and m, the memory required for FAST_LCS is
max{8*(n+1)+8*(m+1), L}, here L is the number of identical
character pairs and time complexity of parallel implementation is
O(|LCS(X,Y)|), here, |LCS(X,Y)| is the length of the LCS of X,Y.
Experimental result on the gene sequences of tigr database shows
that our algorithm can get exactly correct result and is faster and
more efficient than other LCS algorithms.

2. THE IDENTICAL PARE AND ITS
SUCCESSOR TABLE
Let X＝(x1, x2, … , xn), Y = (y1, y2, … , ym) be two biosequences,
where xi , yi∈{A,C,G,T}. We can define an array CH of the four
characters so that CH(1)=”A”, CH(2)=”C”, CH(3)=”G” and
CH(4)=”T”. To find their longest common subsequence, we first
build the successor tables of the identical characters for the two
strings. The successor tables of X and Y are denoted as TX and TY
which are 4*(n+1) and 4*(m+1) two dimensional arrays. TX (i, j)
is defined as follows.

Definition1. For the sequence X＝(x1, x2, … , xn), its successor
table TX of identical character is defined as :

{ }min | (,)
(,)

k k SX i j
TX i j

∈⎧⎪= ⎨
−⎪⎩

(,)
otherwise
SX i j φ≠ (1)

Here, SX (i, j)={k| xk=CH(i), k>j}, i = 1,2,3,4, j = 0,1,…n. It can
be seen from the definition that if TX(i, j) is not “－”, it indicates
the position of the next character identical to CH(i) after the jth
position in sequence X. If TX(i, j) is equal to “－”, it means there
is no character CH(i) after the jth position .

Example 1 Let X =“T G C A T A”, Y =“A T C T G A T”.
Their successor tables TX and TY are:
 TX:

i CH(i) 0 1 2 3 4 5 6

1 A 4 4 4 4 6 6 -

2 C 3 3 3 - - - -

3 G 2 2 - - - - -

4 T 1 5 5 5 5 - -

 TY:

i CH(i) 0 1 2 3 4 5 6 7

1 A 1 6 6 6 6 6 - -

2 C 3 3 3 - - - - -

3 G 5 5 5 5 5 - - -

4 T 2 2 4 4 7 7 7 -

Definition2. For the sequences X and Y, if xi = yj, we call them an
identical character pair of X and Y, and denote it as (i, j). The set
of all the identical character pairs of X and Y is denoted as S(X, Y).

Definition3. Let (i, j) and (k, l) be two identical character pairs of
X and Y . If i<k and j<l, we call (i, j) a predecessor of (k, l), or (k, l)
a successor of (i, j), and denote them as (i, j)<(k, l).

Definition4. Let P(i, j) = {(r, s)|(i, j) < (r, s), (r, s)∈S (X,Y)} be
the set of all the successors of identical pair (i, j), if (k, l)∈P(i, j)
and there is no (k’, l’)∈P(i, j) satisfying the condition: (k’, l’) < (k,

l), we call (k, l) the direct successor of (i, j), and denoted it as (i,
j) (k, l). p

Definition5. If an identical pair (i, j)∈S (X,Y) and there is no (k, l)
∈S (X,Y) so that (k, l) < (i, j), we call (i, j) an initial identical
pair.

Definition6. For an identical pair (i, j)∈S (X,Y), its level is
defined as follows:

() () () (){ }⎪⎩

⎪
⎨
⎧

<+
=

jilklklevel
jilevel

,,1,max
1

, ()if , is an initial identical character pair
otherwise

i j (2)

From the definitions above, the following lemma can be easily
deduced:

Lemma1. Denote the length of the longest common subsequence
of X, Y as |LCS(X, Y)|, then |LCS(X, Y)|=max{level (i, j) |(i, j)∈S
(X, Y)}.
Proof: Suppose the identical character pairs corresponding to the
longest common subsequence of X, Y are (xi1, yj1), (xi2, yj2), … ,
(xir, yjr), here r＝|LCS(X, Y)|. By Definition5, we know (i1, j1)
must be an initial identical character pair. By Definition4 and
Definition6, we have: (ik, jk) (ip k+1, jk+1), for k=1,2,…,r-1, and
the level of (xik, yjk) is k. Then we can conclude that maximal level
of those identical character pairs is r, i.e. r= max{level (i, j)|(i, j)
∈S(X, Y)}. The reason is as follows: if r is not the maximal level
of the identical character pairs of X, Y, there must be an integer
r’>r and identical character pairs: (xi1’, yj1’) (xp i2’,
yj2’) ….. (xp p ir’, yjr’). It corresponds to another common
subsequence of X, Y with length r’>r. This is in contradiction with
the condition r＝|LCS(X, Y)|.

 Q.E.D.

3. FIGURES/CAPTIONS
To get all the identical pairs and their levels, we first produce the
direct successors of the initial pairs in the first time step in
parallel using the successor tables. Then the direct successors of
all those successors produced in the first step are generated in
parallel in the second time step. Repeat these operations of
generating the direct successors until no more successors could be
produced. Therefore, producing all the direct successors for the
identical character pairs is a basic operation in our algorithm.

 For an identical character pair (i, j)∈S (X, Y), the operation of
producing all its direct successors is as follows:

{ }''),(and''),(,4,3,2,1|)),(),,((),(−≠−≠=→ jkTYikTXkjkTYikTXji (3)

From (3) we can see that this operation is to couple the elements
of the ith column of TX and the jth column of TY to get the pairs.
For instance, the operation on the identical character pair (2,5) in
Example 1 is illustrated as follows:

(2)
⎢
⎢
⎢
⎢

⎣

⎡

−
→

5

3
4

5

⎪
⎪
⎩

⎪
⎪
⎨

⎧

−
→

⎥
⎥
⎥
⎥

⎦

⎤

−
−

5(
(
3(
4(

7

6

⎩
⎨
⎧

→

⎪
⎪
⎭

⎪
⎪
⎬

⎫

−
−

5(
4(

)7
)
)
)6

⎭
⎬
⎫

)7
)6

 Here (3,－) and (－,－) do not represent identical character pairs,
they only indicate the end of the process of searching for the

successors in this branch. After discarding (3,－) and (－,－), the
successors of (2,5) are just (4,6) and (5,7). It should be point out
that the successors produced in the operation are not all direct
successors of (i, j). For example, (5,7) is not the direct successor
of (2,5), since (2, 5)p (4, 6) (5, 7). p
Lemma2. For an identical character pair (i, j), the method
illustrated above can produce all its successors.

Proof: By (3), we can produce all direct successors (TX(k, i),TY(k,
j)), k=1,2,3,4, of (i, j). According to (1), TX(k, i) is the minimum
of SX(i, j). Namely, it is the nearest character identical to CH(k)
after xi in string X, and TY(k, j) is the nearest character identical to
CH(k) after yi in string Y. This means that identical pairs (TX(k,
i),TY(k, j)), k=1,2,3,4, contains all the direct successors of (i, j)
after the operation of producing successors. Consequently, by the
same operation on the newly generated identical pairs, we can get
all the direct successors of the direct successors of (i, j). It can be
seen that by repeating this operation of producing successors, we
can obtain all the successors of (i, j).

 Q.E.D.
It is obvious that (TX(k, 0),TY(k, 0)), k=1,2,3,4, are all the initial
identical pairs of X and Y. By Lemma 2, we know that starting
from those initial identical pairs, all the identical pairs and their
levels can be produced. In such process of generating the
successors, prune technique can be implemented to remove the
identical pairs which can not generate the longest common
subsequence so as to reduce the searching space and accelerate
the speed of process.

Theorem 1. If two identical character pairs (i, j) and（k, l）
generated at the same time step satisfy (k, l)>(i, j) , then (k, l) can
be pruned without affecting the algorithm to get the longest
common subsequence of X and Y.

Proof: Suppose identical character pairs (i, j) and (k, l) are
produced by the identical pairs (i1 , j1) and (k1 , l1) at the same
time step. Let the longest common subsequence produced via (k1,
l1) and (k, l) be a1a2…amam+1…ar, here am corresponds to (k1, l1)
and am+1 corresponds to (k, l). Similarly, let the subsequence
produced via (i1, j1) and (i, j) be b1b2…bmbm+1…bs…bq, here bm
corresponds to (i1, j1) and bm+1 corresponds to (i, j). Since (k, l)>(i,
j), by Lemma 2, (k, l) must be produced after (i, j). Then there
must exist bs (m+1<s<q) corresponding to (k, l). Since amam+1…ar
and bsbs+1…bq are both the local longest common subsequences
obtained by the operations of producing successors on (k, l), we
have “amam+1…ar”＝ “bsbs+1…bq” which means q-s=r-m, and
q=r+(s-m). Since s>m, we have q>r. Therefore the subsequence
“amam+1…ar”, which is produced via (k, l), can not be included in
the longest common subsequence of X and Y, and (k, l) can be
pruned without affecting the algorithm to get the longest common
subsequence of X and Y.

 Q.E.D.
By Theorem 1, the pruning process can be implemented to
remove all those redundant identical pairs. At each time step, the
algorithm checks all the newly generated identical pairs at the
same level to find all such identical pairs (i, j) and (k, l) satisfying
(k, l)<(i, j) and then prune (i, j).
For instance, (4, 6) and (5, 7) in Example 1 are the successors of
the identical pair (2, 5). Since they are generated at the same time
step, and (4, 6) (5, 7), we can prune (5, 7) by Theorem 1. p

 For another identical character pair (1,1) in Example 1, the
operation is illustrated as follows:

(1)
⎢
⎢
⎢
⎢

⎣

⎡

→

5
2
3
4

1

⎪
⎪
⎩

⎪
⎪
⎨

⎧

→

⎥
⎥
⎥
⎥

⎦

⎤

5(
2(
3(
4(

2
5
3
6

⎪
⎩

⎪
⎨

⎧
→

⎪
⎪
⎭

⎪
⎪
⎬

⎫

5(
2(
3(

)2
)5
)3
)6

⎪
⎭

⎪
⎬

⎫

)2
)5
)3

Here four successors of (1, 1) are produced:(4, 6), (3, 3), (2, 5)
and (5, 2). Since (3, 3)<(4, 6), by Theorem 1, (4, 6) can be pruned.
At the next time step, successors of (3, 3), (2, 5) and (5, 2) are
produced by the operation of producing successors. Those
successors are checked and pruned as follows:

Since
(6,6)>(5,4), (5,7) > (4,6) and they are generated at the same time
step, (6, 6) and (5,7) can be pruned by Theorem 1.
Similar to Theorem 1, other prune operations are also helpful to
reduce the searching space. These prune operations are based on
the following theorem and corollary.

4. THE OPERATION OF SKIPPING
In the process of generating identical character pairs, we can skip
over the subsequences which obviously belong to the longest
common subsequence of the given sequences so as to accelerate
the process.

Theorem 2 Suppose the subsequence ＂xixi+1xi+2…xi+t＂in X is
identical to the subsequence ＂yjyj+1yj+2…yj+t＂ in Y, then the
successors of identical pair (i,j) at level l can be replaced by the
successors of identical pair (i+t,j+t) at level l+t.

Proof：We need to prove that for all CH(k)，k=1,2,3,4， the
successors of identical pair (i+t,j+t) at level l+t are all successors
of identical pair (i,j) at level l. Suppose the character CH(k)
appears in the subsequence＂xixi+1xi+2…xi+t＂, and (i+s, j+s) is a
successor of (i+t,j+t) identical to CH(k), t<s . Let the characters
identical to CH(k) in ＂xi+1xi+2…xi+t＂and＂yj+1yj+2…yj+t＂are
xi+k1xi+k2…xi+kq, here 1≤k1≤…≤kq≤t. The identical pairs of
character CH(k) in ＂ xi+1xi+2…xi+t ＂ and ＂ yj+1yj+2…yj+t ＂ are
(i+k1,j+k1) (i+k2,j+k2)…(i+kq,j+kq). Since (i+s, j+s) is a successor
of (i+t,j+t) identical to CH(k) and kq≤t <s, (i+s, j+s) must be a
successor of (i+kq,j+kq), and is also a successor of (i,j). If CH(k)
does not appears in ＂xixi+1xi+2…xi+t＂, then the nest character
identical to CH(k) must appears after (i+t,j+t). Since it is a
successor of both (i,j) and (i+t,j+t), the successor of (i+t,j+t)
identical to CH(k) is also a successor of (i,j).

Q.E.D.

Example 2 Let X ＝ “ TACTTACGACT”,Y=
“GTACTTACCTAG”. X、Y have identical pairs（1,2）
identical to “T”. After this “T” ，both X、Y have identical
subsequences “ ACTTAC ” of length 6. Therefore the
successors of （ 1,2 ） can be replaced by the successors of
identical pair （1+6,2+6）=(7,8), which are (9,11)、(10,9)、
(8,12) and (11,10).
To detect such identical subsequences, we define the identical
character augment table for the set of sequences.

Definition 7 For the sequence X＝(x1, x2, … , xn), its identical
character augment table SX is a 4*(n+1) array defined as :

(,) if (,) ' '
(,)

 otherwise
TX i j j TX i j

SX i j
− ≠⎧

= ⎨ ∞⎩

−

It can be seen from the definition that if SX(i,j) is not “∞”, it
indicates the displacement of the next character identical to CH(i)
after xj. From the definition we can see that SX can be derived
directly from TX.

Example 3. For X＝“TACTTACGACT” in Example 2,
TX is：

i CH(i) 0 1 2 3 4 5 6 7 8 9 10 11

1 A 2 2 6 6 6 6 9 9 9 - - -

2 C 3 3 3 7 7 7 7 10 10 10 - -

3 G 8 8 8 8 8 8 8 8 - - - -

4 T 1 4 4 4 5 11 11 11 11 11 11 -

SX is：
i CH(i) 0 1 2 3 4 5 6 7 8 9 10 11

1 A 2 1 4 3 2 1 3 2 1 ∞ ∞ ∞

2 C 3 2 1 4 3 2 1 3 2 1 ∞ ∞

3 G 8 7 6 5 4 3 3 1 ∞ ∞ ∞ ∞

4 T 1 3 2 1 1 6 5 4 3 2 1 ∞

For Y＝“GTACTTACCTAG” in Example 2, TY is：
i CH(i) 0 1 2 3 4 5 6 7 8 9 10 11 12

1 A 3 3 3 7 7 7 7 11 11 11 11 - -

2 C 4 4 4 4 8 8 8 8 9 - - - -

3 G 1 12 12 12 12 12 12 12 12 12 12 12 -

4 T 2 2 5 5 5 6 10 10 10 10 - - -

SY is ：
i CH(i) 0 1 2 3 4 5 6 7 8 9 10 11 12

1 A 3 2 1 4 3 2 1 4 3 2 1 ∞ ∞

2 C 4 3 2 1 4 3 2 1 1 ∞ ∞ ∞ ∞

3 G 1 11 10 9 8 7 6 5 4 3 2 1 ∞

4 T 2 1 3 2 1 1 4 3 2 1 ∞ ∞ ∞

Lemma 3. If the elements in a column of identical character
augment table SX are not all equal to ∞, then their must be one
element in this column being equal to 1.

Proof: Suppose the elements in the jth column of SX are not all
equal to ∞, then xj is not the last character of X, and their exists
xj+1 after xj . Let xj+1＝CH(i), then SX(i,j)＝1。

 Q.E.D.
In fact, if the “1” of the jth column of SX is in the ith row, xj+1 is
equal to CH(i). Based on the identical character augment table,
we can define the displacement of the identical pairs as follows:

Definition 8. Let (i,j) be an identical pair of X，Y, the pairs
obtained by grouping the ith column of SX and the jth column of
SY are called the displacements of the identical pair (i,j).
The operation of getting the displacements of the identical pair (i,j)
can be defined as follows:

(,) {((,), (,)) | 1,2,3,4, (,) (,) }i j SX k i SY k j k SX k i and SY k j→ = ≠ ∞ ≠ ∞

The displacements indicate the distances from (i,j) to the identical
pairs after (i,j). If (i,j) has a displacement (r,s), then (i+r, j+s) is
also an identical pair, namely, xi+r=yj+s .

Example 4 The displacements of the identical pair (1,2) in
Example 2 are as follows:

1 1
2 2

(1,2)
7 10
3 3

⎡ ⎤
⎢ ⎥
⎢ ⎥→
⎢ ⎥
⎢ ⎥
⎣ ⎦

They are (1,1)、(2,2)、(3,3) and (7,10).

Theorem 3. For sequences X and Y, if the identical pair (i,j) at
level l has displacements (k,k)， k=1,2,…,w, where w is an
integer in [1,4], then the successors of identical pair (i,j) can be
replaced by the successors generated by identical pair (i+w, j+w)
at level l+w.

Proof: Since (i,j) has displacements (k,k)， k=1,2,…,w, we have
xi+k=yj+k for k=1,2,…w, namely the subsequence ＂

xixi+1xi+2…xi+w ＂ in X is identical to the subsequence ＂

yjyj+1yj+2…yj+w＂in Y. By Theorem 3, we know the successors of
identical pair (i,j) can be replaced by the successors generated by
identical pair (i+w, j+w) at level l+w.

 Q.E.D.

Example 5 In Example 2, the displacements of the identical pair
(1,2) at level 1 are (1,1)、 (2,2)、 (3,3) and (7,10). Since it
satisfies the condition of Theorem 6 and w=3, the successors of
(1,2) can be replaced by the successors generated by identical pair
(1+3,2+3)=(4,5) at level 4.
Again, the displacements of (4,5) at level 4 are

2 2
3 3

(4,5)
4 7
1 1

⎡ ⎤
⎢ ⎥
⎢ ⎥→
⎢ ⎥
⎢ ⎥
⎣ ⎦

Since it also satisfies the condition of Theorem 6 and w=3, the
successors of (4,5) can be replaced by the successors generated by
identical pair (4+3,5+3)=(7,8) at level 7. The successors of (7,8)
are

9 11 (9,11)
10 9 (10,9)

(7,8)
8 12 (8,12)
11 10 (11,10)

⎡ ⎤ ⎡
⎢ ⎥ ⎢
⎢ ⎥ ⎢→ →
⎢ ⎥ ⎢
⎢ ⎥ ⎢
⎣ ⎦ ⎣

⎤
⎥
⎥
⎥
⎥
⎦

s

s

Therefore, the we can skip from (1,2) at level 1 directly to its
successors (9,11)、(10,9)、(8,12) and (11,10) at level 8.

Theorem 4. Suppose (i,j) is an identical pair of sequences X,Y at
level l. If (i,j) has displacements (1,1) and (rk, sk), k=1,2,3, and

, then the successors of identical pair (i,j)

can be replaced by the successors generated by identical pair
(i+w-1, j+w-1) at level l+w-1.

1 3
(min(,))min k k

k
w r

≤ ≤
=

Proof: Let the character corresponding to the displacement (1,1)
be CH, namely, xi+1 =yj+1=CH. Since , the

distance between (i,j) and the first character other than CH after
(i,j) is w. Therefore, the characters in subsequences ＂

x

1 3
(min(,))min k k

k
w r

≤ ≤
=

ixi+1xi+2…xi+w-1＂ and ＂yjyj+1yj+2…yj+w-1＂ are all equal to CH.
By Theorem 3, the successors of identical pair (i,j) can be
replaced by the successors generated by identical pair (i+w-1,
j+w-1) at level l+w-1.

Example 6 Let X＝“TAAAAACGA”,

 Y=“AAAAAGAC”,

TX is ：

i CH(i) 0 1 2 3 4 5 6 7 8 9

1 A 2 2 3 4 5 6 9 9 9 -

2 C 7 7 7 7 7 7 7 - - -

3 G 8 8 8 8 8 8 8 8 - -

4 T 1 - - - - - - - - -

SX is ：
i CH(i) 0 1 2 3 4 5 6 7 8 9

1 A 2 1 1 1 1 1 3 2 1 ∞

2 C 7 6 5 4 3 2 1 ∞ ∞ ∞

3 G 8 7 6 5 4 3 2 1 ∞ ∞

4 T 1 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

TY is：
i CH(i) 0 1 2 3 4 5 6 7 8

1 A 1 2 3 4 5 7 7 - -

2 C 8 8 8 8 8 8 8 8 -

3 G 6 6 6 6 6 6 - - -

4 T - - - - - - - - -

SY is：
i CH(i) 0 1 2 3 4 5 6 7 8

1 A 1 1 1 1 1 ∞ ∞ ∞ ∞

2 C 8 7 6 5 4 3 2 1 ∞

3 G 6 5 4 3 2 1 ∞ ∞ ∞

4 T ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

The displacements of the identical pair (2,1) at level 1 are:
1 1
5 7

(2,1)
6 5

⎡ ⎤
⎢ ⎥
⎢ ⎥→
⎢ ⎥
⎢ ⎥
∞ ∞⎣ ⎦

(1,1) is one of its displacement, and the minimum of the elements
in the other displacements is w=5. By Theorem 5, the successors
of (2,1) can be replaced by the successors generated by identical
pair (2+4, 1+4) =(6,5) at level 5. The successors of (6,5) are

9 7
(9,7)

7 8
(6,5) (7,8)

8 6
(8,6)

⎡ ⎤
⎡ ⎤⎢ ⎥
⎢ ⎥⎢ ⎥→ → ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ ⎣ ⎦− −⎣ ⎦

Therefore, the we can skip from (2,1) at level 1 directly to its
successors (9,7)、(7,8) and (8,6) at level 6.

5. FRAMEWORK OF THE ALGORITHM AND
COMPLEXITY ANALYSIS

Based on the operations of generating the successors of the
identical character pairs using successor tables, using the pruning
and skipping technologies, we present a fast parallel longest
common subsequence algorithm named FAST_LCS. The
algorithm consists of two phases: the phase of searching for all
the identical character pairs and the phase of tracing back to get
the longest common subsequences. The first phase begins with the
initial identical character pairs, then continuously searches for
successors using the successor tables. In this phase, the pruning
and skipping technologies are implemented so as to reduce the
search space and speed up the process of searching. In the
algorithm, a table called pairs is used to store the identical
character pairs obtained in the algorithm. In the table pairs, each
record takes the form of (k, i, j, level, pred, disp, state) where the
data items denote the index of the record, the identical character
pair (i,j), its level, the index of its direct predecessor, the distance
of skipping from its predecessor and its current state. Each record
in pairs has two states. For the identical pairs whose successors
have not been searched, it is in active state, otherwise it is in
inactive state. In every step of search process, the algorithm
searches for the successors of all the identical pairs in active state
in parallel. Repeat this search process until there is no identical
pair in active state in the table. In the second phase, the tracing
back starts from the identical pairs with the maximal level in the
table, and traces back according to the pred of each identical pair.
This tracing back process ends when it reaches an initial identical
pair, and the trail indicates the longest common subsequence. If
there are more than one identical pairs with the maximal level in
the table, the tracing back procedure for those identical pairs can
be carried out in parallel and several longest common
subsequences can be obtained concurrently. The framework of
algorithm FAST_LCS is as follows:

Algorithm-FAST_LCS (X,Y)
Input X and Y: Sequences with lengths of m and n
respectively;

Output LCS : The longest common subsequence of X,Y;

Begin
1. Build tables TX, TY, SX and SY;
2. Find all the initial identical character pairs: (TX(k, 0),TY(k,

0)), k=1,2,3,4;
3. Add the records of the initial identical pairs (k, TX(k,

0),TY(k, 0), 1,ф, 0, active), k=1,2,3,4 to the table pairs.

 /* For all the initial identical pairs, their level=1, pred=
ф ,disp=0, and state=active*/

4. Repeat
4.1 For all active identical pairs IP=(k, i, j, level, pred,

disp, active) in pairs parallel-do
4.1.1 If IP satisfies the conditions of skipping

then
4.1.2 w= the displacement it can skip
4.1.3 else w=1;
4.1.4 Produce all the successors of IP.
4.1.5 For each identical pair (g, h) which is a

successor of IP, a new record (k’, g, h,
level+w, k, w, active) is generated and
inserted into the table pairs.

4.1.6 Change the state of IP into inactive.
4.2 End for
4.3 Use prune operation on all the identical pairs newly

produced to remove all the redundant identical pairs
from table pairs.

5. Until there is no record in active state in table pairs.
6. Compute r= the maximal level in the table pairs.
7. For all the identical pairs (k, i, j, r, l, disp, inactive) in

pairs parallel-do
7.1 pred = l; LCS(r) = xi.

7.2 While pred ≠ф do

7.1. 1 get the pred-th record (pred, g, h, r’, l’, disp’, inactive)
from table pairs;

7.1.2 pred = l’;
7.1.3 for j=1 to disp’ do LCS(r’-j-1)=xg-j

7.3 end while
 8. End for

End.
Assume that the number of the identical character pairs of X, Y is
L. In our algorithm, because of the pruning and skipping
technologies, the operation of producing successors can be
implemented at most once on each identical character pair.
Therefore the time complexity for sequentially executing of the
algorithm FAST_LCS (X, Y) is O(L). Since the table pairs has to
store all the identical character pairs, it requires O(L) memory
space. Considering that the memory space costs of TX, SX and TY,
SY are 8*(n+1) and 8*(m+1), the storage complexity of our
algorithm is max{8*(n+1)+8*(m+1),L}. In parallel
implementation of the algorithm, since the process for each
identical pair can be assigned on one processor, all the process on
the identical pairs can be carried out in parallel. Therefore, the

time required for the parallel computation is equal to the maximal
level of the identical pairs. By Lemma 1, we know that the length
of the longest common subsequence of X, Y, |LCS (X,Y)|, is equal
to the largest level of the identical pairs. Therefore the time
complexity of parallel computing is O(|LCS(X,Y)|).

6. EXPERIMENTAL RESULTS
We test our algorithm FAST_LCS on the rice gene
sequences of tigr[29]database and compare the performance of
FAST_LCS with that of Smith－Waterman algorithm[30] and
FASTA algorithm[31-32] which are currently the most widely
used LCS algorithms. Since both our algorithm and Smith-
Waterman’s can obtain exactly correct solution, we compare the
computation speed of our algorithm FAST_LCS with that of
Smith-Waterman algorithm. Also, we compare the precision of
our algorithm with that of FASTA using the same computation
time.
Table1 compares the computation speed of FAST_LCS with that
of Smith-Waterman algorithm on groups of gene sequences pairs
with different lengths. Since a test on one pair of sequences takes
very short time, it is hard to compare the speed of the algorithms
using a single pair of sequence. Therefore we test the algorithms
on groups of sequences pairs with similar lengths. We test five
groups of sequences pairs each of which consists of 100 pairs of
sequences. The total time for each group by the two algorithms
are listed in Table1.

Table 1 Comparison of computation speed of fast-lcs with
that of smith-waterman algorithm

Time of FAST_LCS

(S)

Time of S-W
algorithm

(S) Name of Sequences Length
l

Number
of pairs

Total
time

Average

 time
Total
time

Average
time

gi|21466196～gi|21466195

…

gi|21466168～gi|21466167

gi|21466166～gi|30250556

gi|30230255～gi|30230254

gi|30229613～gi|30229612

…

gi|30229449～gi|30229448

0≤l≤
50 100 0.43 0.0043 1.09 0.0109

gi|30229047～gi|30229046

…

gi|30229001～gi|30229000

gi|30228999～gi|30228998

…

gi|30228849～gi|30228848

50≤l
≤100

100 5.57 0.0557 11.55 0.1155

gi|30229447～gi|30229446

…

gi|30229249～gi|30229248

10 ≤ l
≤150

100 29.21 0.2921 65.95 0.6595

gi|30228846～gi|30228845

…

gi|30228648～gi|30228647

15 ≤ l
≤200

100 93.78 0.9378 172.21
3 1.7213

gi|30229247～gi|30229246

…

gi|30229049～gi|30229048

20 ≤ l
≤250

100 230.51 2.3051 425.16 4.2516

0

0.5

1

1.5

2

2.5

0 50 100 150 200 250

The Length of input sequence

Ti
m

e(
S)

FAST_LCS S-W Algorithm

Fig.1 Comparison of the computation time of FAST_LCS

with that of Smith－Waterman algorithm

Fig.1 shows the comparison of the computation time of our
algorithm with that of Smith－Waterman algorithm. From the
table and the figure, we see that our algorithm is obviously faster
than Smith － Waterman algorithm for sequences sets of all
different lengths. The difference of the computation time between
the two algorithms grows faster when the length of sequences
become greater than 150. This means our algorithm is much faster
and more efficient than Smith-Waterman’s for LCS problem of
long sequences.
We also compare the precision of our algorithm with that of
FASTA on the premise of the same computing time. Here
precision is defined as:

Length of the common subsequence computed by the algorithm
Precision

Length of the longest common subsequence in correct match
=

From Fig.2, we can see that our algorithm can obtain exactly
correct result no matter how long the sequence could be, while the
precision of FASTA declines when the length of the sequences is
increased. Therefore the precision of our algorithm is much higher
than that of FASTA algorithm.

92

94

96

98

100

102

50 100 150 200 250

The length of input sequence

P
re

ci
si

on
(
%
)

FAST_LCS FASTA Algorithm

Fig.2 Comparison of the precision of FAST_LCS
with that of FASTA using the same computation time

7. CONCLUSION
On the premise of guaranteeing precision of the results of LCS,
we present a parallel longest common subsequence algorithm
named FAST_LCS based on the identical character pair to
improve the speed of LCS problem. Our algorithm first seeks the
successors of the initial identical character pairs according to a
successor table to obtain all the identical pairs and their levels.
Then by tracing back from the identical character pair at the
largest level, the result of LCS can be obtained. For two
sequences X and Y with lengths n and m, the memory required for
FAST_LCS is max{8*(n+1)+8*(m+1),L}, here L is the number of
identical character pairs and time complexity of parallel
implementation is O(|LCS(X,Y)|), here, |LCS(X,Y)| is the length of
the LCS of X,Y. Experimental result on the gene sequences of tigr
database shows that our algorithm can get exactly correct result
and is faster and more efficient than other LCS algorithms.

8. ACKNOWLEDGMENTS
This research was supported in part by the Chinese National
Natural Science Foundation under grant No. 60673060, Chinese
National Foundation for Science and Technology Development
under contract 2003BA614A-14, and Natural Science Foundation
of Jiangsu Province under contract BK2005047.

9. REFERENCES
[1] Bailin Hao，Shuyu Zhang.The manual of

Bioinformatics .Shanghai science and technology publishing
company，2000：171－172P.

[2] Translated by Yanda Li, Zhirong Sun et.al. Bioinformatics—
The practice guide for the analysis of gene and protein,
Tsinghua university publishing company,2000：138.

[3] Edmiston E W, Core N G, Saltz J H, et al. Parallel
processing of biological sequence comparison algorithms.
International Journal of Parallel Programming, 1988, 17(3):
259-275.

[4] Lander E. Protein sequence comparison on a data parallel
computer. Proceedings of the 1988 International Conference
on Parallel Processing, 1988. 257-263.

[5] Galper A R, Brutlag D L. Parallel similarity search and
alignment with the dynamic programming method. Technical
Report, Stanford University, 1990.

[6] Smith T.F.,Waterman M.S. Identification of common
molecular subsequence. Journal of Molecular
Biology,1990,215:403-410.

[7] Needleman, S.B. and Wunsch, C.D., A general method
applicable to the search for similarities in the amino acid
sequence of two proteins, J. Mol. Biol., 48(3):443-453, 1970.

[8] A. Aho, D. Hirschberg, and J. Ullman, Bounds on the
Complexity of the Longest Common Subsequence Problem,
J. Assoc. Comput. Mach., vol. 23, no. 1, pp. 1-12, Jan. 1976.

[9] O. Gotoh, An improved algorithm for matching biological
sequences, J. Molec. Biol. 162 (1982) 705-708.

[10] E. W. Mayers, W. Miller, Optimal Alignment in Linear
Space, Comput. Appl. Biosci. 4(1) (1998) 11-17.

[11] D. S. Hirschberg, A Linear Space Algorithm for Computing
Maximal Common Subsequences, Commun. ACM 18 (6)
(1975) 341-343

[12] Y. Pan, K. Li, Linear Array with a Reconfigurable Pipelined
Bus System – Concepts and Applications, Journal of
Information Science 106 (1998) 237-258.

[13] Jean Frédéric Myoupo, David Seme, “Time-Efficient Parallel
Algorithms for the Longest Common Subsequence and
Related Problems.” Journal of Parallel and Distributed
Computing 57(2): 212-223 (1999).

[14] L. Bergroth, H. Hakonen, and T. Raita, “A survey of longest
common subsequence algorithms,” Seventh International
Symposium on String Processing Information Retrieval, pp.
39–48, 2000.

[15] A. Aggarwal and J. Park, Notes on Searching in
Multidimensional Monotone Arrays, Proc. 29th Ann. IEEE
Symp. Foundations of Comput. Sci. 1988, pp. 497-512.

[16] A. Apostolico, M. Atallah, L. Larmore , and S. Mcfaddin,
Efficient Parallel Algorithms for String Editing and Related
Problems, SIAM J. Computing, vol. 19, pp. 968-988, Oct.
1990.

[17] M. Lu, H. Lin, Parallel Algorithms for the Longest Common
Subsequence Problem, IEEE Transaction on Parallel and
Distributed System, vol 5. No. 8, August 1994.

[18] K. Nandan Babu, Wipro Systems, and Sanjeev Saxena,
Parallel Algorithms for the Longest Common Subsequence
Problem , 4th International Conference on High
Performance Computing, December 18-21, 1997 - Bangalore,
India.

[19] Y. Robert, M. Tchuente, A Systolic Array for the Longest
Common Subsequence Problem, Inform. Process. Lett.21
(1985) 191 – 198.

[20] J. H. Chang, O.H. Ibarra, M.A. Pallis, Parallel Parsing on a
one-way array of finite-state machines, IEEE Trans.
Computers C-36 (1987) 64-75.

[21] Guillaume Luce, Jean Frédéric Myoupo: Systolic-based
parallel architecture for the longest common subsequences
problem. Integration, 25(1): 53-70 (1998).

[22] V. Freschi and A. Bogliolo, “Longest common subsequence
between run-length-encoded strings: a new algorithm with
improved parallelism, “Information Processing Letters,
Volume 90 , Issue 4 (May 2004), pp. 167-173 .

[23] Lipman DJ, Altschul SF, Kececioglu JD: A tool for multiple
sequence alignment. Proc.Natl. Acad. Sci. USA 86, 4412-
4415 (1989).

[24] Carrillo H, Lipman DJ: The multiple sequence alignment
problem in biology. SIAM J. Appl. Math. 48, 1073-1082
(1988).

[25] Stoye J, Moulton V, Dress AW: DCA: an efficient
implementation of the divide-andconquer approach to
simultaneous multiple sequence alignment. Comput. Appl.
Biosci.13(6), 625-6 (1997).

[26] Reinert K, Stoye J, Will T: An iterative method for faster
sum-of-pair multiple sequence alignment. Bioinformatics
16(9),808-814 (2000).

[27] Thompson, JD, Higgins, DG and Gibson, TJ (1994)
CLUSTAL W: improving the sensitivity of progressive
multiple sequence alignment through sequence weighting,
position specific gap penalties and weight matrix choice.
Nucleic Acids Research,1994, vol.22,No.22.4673-4680.

[28] Feng D-F, Doolittle RF: Progressive sequence alignment as a
prerequisite to correct phylogenetic trees. J. Mol. Evol.
25,351-360 (1987)

[29] http://www.tigr.org/tdb/benchmark
[30] Altschul, S.F., Gish, W., Miller, W., Myers, E.W., and

Lipman, D.J., Basic local alignment search tool, J. Mol. Biol.,
215:403-410, 1990.

[31] http://alpha10.bioch.virginia.edu/fasta_www/cgi/
[32] http://www.ebi.ac.uk/services/

http://joinus.comeng.chungnam.ac.kr/%7Edolphin/db/indices/a-tree/s/Seme:David.html
http://maarc.usc.edu/%7Ehipc/hipc97/papers/014.ps
http://maarc.usc.edu/%7Ehipc/hipc97/papers/014.ps
http://www.informatik.uni-trier.de/~ley/db/journals/integration/integration25.html#LuceM98
http://www.tigr.org/tdb/benchmark
http://alpha10.bioch.virginia.edu/fasta_www/cgi/
http://www.ebi.ac.uk/services/

	1. INTRODUCTION
	2. THE IDENTICAL PARE AND ITS SUCCESSOR TABLE
	A
	C
	G
	T
	A
	C
	G
	T
	3. FIGURES/CAPTIONS
	4. THE OPERATION OF SKIPPING
	A
	C
	G
	T
	A
	C
	G
	T
	A
	C
	G
	T
	A
	C
	G
	T
	A
	C
	G
	T
	A
	C
	G
	T
	A
	C
	G
	T
	A
	C
	G
	T
	5. FRAMEWORK OF THE ALGORITHM AND
	COMPLEXITY ANALYSIS
	6. EXPERIMENTAL RESULTS
	7. CONCLUSION
	8. ACKNOWLEDGMENTS
	9. REFERENCES

