
User-level Performance Evaluation of VoIP Using ns-2
A. Bacioccola, C. Cicconetti, G. Stea
Dipartimento di Ingegneria dell�Informazione

University of Pisa, Via Diotisalvi, 2 � 56100 Pisa, ITALY

{a.bacioccola,c.cicconetti,g.stea}@iet.unipi.it

ABSTRACT
Voice over IP (VoIP) is gaining an ever increasing popularity. As
such, it nowadays represents one of the most studied test applica-
tions in the performance evaluation of wireline and wireless net-
works. However, a sound performance analysis of VoIP commu-
nications should be carried out at the user level, by computing
perceptive metrics like the Mean Opinion Score (MOS) or the E-
Model. In this paper, we present enhancements to the popular
Network Simulator 2 (ns-2) that allow a reliable VoIP user-level
performance analysis to be carried out through simulation. We
show that computing performance measures at the IP level, which
is usually done in ns-2, often leads to inaccurate results. Our code
is publicly available at http://info.iet.unipi.it/~cng/ns2voip/.

Keywords
Simulation, ns-2, VoIP, MOS, E-Model, QoS

1. INTRODUCTION
Voice over IP (VoIP) applications are gaining an ever increasing
popularity in the Internet community, favored by the massive
deployment of wireless access technologies. For instance, more
than eighty million users have already subscribed to Skype [31],
the most popular VoIP commercial application for personal use,
roughly 10% of which are estimated to be simultaneously online
at any time. While it is not clear whether VoIP will ultimately
replace traditional telephony, its massive diffusion may act as the
main driving factor for the actual deployment of Quality of Ser-
vice (QoS), both in the Internet backbone and in the (wired or
wireless) access segments. For this reason, using VoIP as a test
case in the performance evaluation of new QoS components, such
as (to name a few) scheduling, resource reservation, admission
control, traffic policing, traffic engineering, etc., has become a
common practice. Unlike classic data applications, in which eas-
ily quantifiable, data-related performance metrics (e.g., through-
put and mean packet delay) most often represent meaningful
evaluations, the actual performance of VoIP applications depends
on user perception (a concept often referred to as Quality of Ex-
perience, QoE) [2]. For this reason, the ITU-T has established a
computational model, called the Emodel, [15, 16, 17], which de-
fines a quality factor - the so-called R score � to capture the
effect of mouth-to-ear delay and losses in packet-switched net-
works. The R score can then be mapped to the Mean Opinion
Score (MOS) [10], which in turn can be converted into subjective

quality levels (e.g. �good�, �poor�). Despite this, assessing the
VoIP performance through measures taken at the IP level � rather
than taking into account the user perception � is often the norm in
QoS literature. However, it can be shown that a sound assessment
of VoIP quality has to take into account several factors which
extend beyond the IP level. For instance, playout buffers, which
come as part of a VoIP application, play a crucial role [28]: pack-
ets that are successfully delivered within a given deadline at the
IP level can in fact be delayed or dropped at the playout buffer.
On the other hand, playout buffers dampen the jitter, so that
evaluating the jitter at the IP level (rather than after the playout
buffer) often overestimates it. Let us consider, for instance, the
works presented at the 26th IEEE International Conference on
Computer Communications (IEEE INFOCOM 2007, [14]), which
are focused on the performance analysis of VoIP traffic. Among
seven such works, only one [3] both takes playout buffers into
account and uses MOS as a metric. Others ([4], [19], and [22])
neglect playout buffers (thus possibly over-estimating the MOS),
while a third set ([30], [1], and [32]) only considers IP-level met-
rics, such as average/90th percentile of the delay, average packet
loss and packet inter-arrival time.

The Network Simulator (ns-2) [25] is the de-facto standard simu-
lation tool for the networking community, as shown by recent
surveys led on the proceedings of important networking confer-
ences [20]. Ns-2 [25] is an open-source simulator, continuously
enhanced and extended thanks to the contribution of a large com-
munity of researchers. It includes a large number of network pro-
tocols, applications, algorithms, devised for wired and wireless
networks. A new version of the simulator (known as ns-3) is cur-
rently being developed at the time of writing [26]. However, ns-2
lacks a sound and flexible simulation model of a VoIP applica-
tion, as well as routines for processing events so as to evaluate
VoIP performance according to the Emodel. The contribution of
this paper is therefore a software framework that enhances ns-2,
thus allowing a sound simulation and performance evaluation of
VoIP applications. More specifically, we developed a VoIP appli-
cation, which includes support for different codecs, Voice Activ-
ity Detection (VAD), aggregation of multiple voice frames into
the same IP packet, and support for playout buffers. All the above
components are defined in a modular way, so as to make it easy to
specialize them to add new functionalities (e.g. to add a new co-
dec or playout buffer algorithm). Furthermore, a set of routines
that allow Emodel statistics to be computed directly as an out-
come of simulation runs has been designed. Practical applications
of the above framework are evaluated, so as to provide evidence,
on one hand, that neglecting some of the simulated characteristics
of VoIP applications can actually lead to unrealistic simulation
scenarios, and, on the other hand, that assessing the performance

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists, re-
quires prior specific permission and/or a fee.
NSTools�07, October 22, 2007, Nantes, France.
Copyright 2007 ICST 978-963-9799-00-4

of VoIP without considering the full set of characteristics cap-
tured by the Emodel leads to erroneous conclusions.

The rest of the paper is organized as follows: Section 2 describes
the necessary background in VoIP applications and performance
evaluation, whereas in Section 3 we describe our software frame-
work. Section 4 reports the performance evaluation, and Section 5
concludes the paper.

2. BACKGROUND
In this section we provide the necessary background on the struc-
ture of VoIP applications and on their modeling and evaluation.

A VoIP application is composed of several building blocks, as
shown in Fig. 1. At the sender side, the first component is an en-
coder, which periodically samples the voice signal. A large vari-
ety of encoders are available, representing different trade-off
points in the balance between quality and bandwidth consump-
tion. Encoders can be either sample based or frame based. The
former, (e.g., G.711) code individual speech samples periodically
The latter, instead, (e.g. G.729) group a certain number of sam-
ples within a time window (i.e. a frame) of some milliseconds,
and then code them together. For this reason, frame based encod-
ers often achieve higher compression and smaller data rates than
sample based ones, though at a higher encoding/decoding com-
plexity. Since, for the scope of this paper, we do not need to dis-
tinguish sample-based and frame-based encoders, hereafter we
refer to both samples and frames using the phrase speech frames
for the sake of readability. The generation of speech frames can
either occur at periodic interval, or, more commonly, be modu-
lated by voice activity detection (VAD). VAD capitalizes on the
natural alternation of talkspurt and silence periods in a single
(unidirectional) stream of a bi-directional conversation. During
silence periods, either no speech frame is produced at all, or they
are produced at a reduced rate and/or using a reduced number of
bits, so as to convey some comfort noise to the listener. Comfort
noise is used by one conversation party to feel the liveliness of the
other one. A number of speech frames can be multiplexed into the
same packet payload, so as to reduce the overhead of transport,
network and MAC headers, though at the expense of increasing
the transmission delay. The VoIP payload is typically encapsu-
lated into RTP/UDP/IP packets.

At the receiver side, speech frames are de-multiplexed and in-
serted into a playout buffer. A playout buffer enforces speech
frames to be decoded at the same interval at which they were
generated by the encoder. To do so, it might re-order, delay or
even drop them if they arrive after their expected playback time.
Playout buffers can be either fixed or adaptive. The former as-
sume the network delay to be constant during a conversation, and
therefore delay the first packet of a talkspurt of a fixed amount of
time. The latter, instead, strive to dynamically adapt the playback
point to the changing network conditions, normally on a per-
talkspurt basis. The playout buffer delivers speech frames to the
decoder, which actually playbacks them. Some decoders imple-
ment packet loss concealment (PLC) techniques (see, e.g. [12]),
which allow missing speech frames to be somewhat reconstructed
by interpolating (correctly received) surrounding frames. PLC
techniques can obviously mask a limited number of losses. How-
ever, it is shown in [23] that they effectively reduce the impair-
ment from loss perceived by a listener.

As far as user behavior modeling is concerned, it is common prac-
tice in the literature to model a single stream of voice as a two-
state process. The sojourn time in the two states, silence and talk-
spurt, is usually drawn from exponential [5] or Weibull [7] distri-
butions. In a bi-directional conversation, however, the two con-
versation streams are not independent of each other. More spe-
cifically, the conversation between A and B can be in any of four
states: A speaking, mutual silence, B speaking and double talk. In
[18], the mean sojourn times and the state transition probabilities
are computed, based on analysis of multi-lingual conversations. In
[13] authors show that the sojourn times and the state probabilities
are somewhat affected by the end-to-end delay, so that at higher
delays the occurrence and length of mutual silence periods in-
creases at the expenses of the A speaking and B speaking periods.

The evaluation of VoIP conversational quality has been the sub-
ject of several works. The most widely used evaluation frame-
work for VoIP is the so-called Emodel, standardized by ITU-T
[15, 16, 17], which computes a predictive estimation of the sub-
jective quality of the packetized voice from transmission parame-
ters. The output of an E-model computation is a scalar number,
called the R factor, computed as a function of delays, packet loss,
equipment impairment factors, and user quality call expectation as
follows:

 0 ,s d e effR R I I I A� � � � � , (1)

where R0 is the basic signal-to-noise ratio (received speech level
relative to circuit and acoustic noise), Is accounts for the impair-
ments which occur with the voice signal, Id sums all impairments
due to delay and echo effects, Ie,eff is the effective equipment im-
pairment factor, taking into account the codec and its tolerance to
random packet losses. Furthermore, A is a �bonus� factor that
models the user expectation of the technology employed. For
instance, the A value is greater in satellite networks than in classi-
cal circuit-switched networks, because user expectations in satel-
lite networks are lower than those in wired networks. The typical
range for the A factor is [0, 20] and the example values proposed
by the ITU are reported in Table 1.

Network

Speaker

encoder multiplexer
demultiplexer

playout
buffer

decoder

Listener

VoIP application � speaker side

VoIP application � listener side

Figure 1. Scheme of a VoIP application

Finally, Ie,eff can be computed as:

� �, (95)e eff e e pl pl plI I I P P B� � � � � ,

where Ie is the equipment impairment factor and is used to charac-
terize the behaviors of the codec with a low bit rate, Ppl is the
packet loss probability and Bpl is the codec packet loss robustness
factor. Once an R factor is obtained, it can be directly mapped to
an estimated MOS. The value of the above parameters for the
most used codecs can be found in [17]. The above model is used,
for instance, in [23] to assess the performance of the current
Internet backbone as a VoIP infrastructure.

In [27], the authors propose a QoS control scheme to adapt the
rate of the GSM AMR codec so as to adapt the sending rate to the
current network conditions. Adaptation is based on the MOS
measured by the VoIP decoder, which reports feedback informa-
tion to the VoIP encoder via Real-Time Control Protocol (RTCP)
messages. The proposed scheme was evaluated by means of the
ns-2.1b9a simulator. In this work, instead, we focus specifically
on the performance evaluation of the quality of VoIP calls, and
provide a publicly available software framework for the latest ns-
2 version (ns-2.31). Our contribution will thus benefit researchers,
who will be able to evaluate the performance of their proposed
solutions, such as that in [27], without the burden of writing and
testing the code to enhance the ns-2 simulator and collect MOS-
based performance measures.

Finally, a recent work [6] evaluates VoIP user satisfaction by
computing a User Satisfaction Index (USI) based on an analysis
of the call duration. While this technique allows VoIP calls to be
analyzed relying only on passive measurement, i.e. without in-
volving user surveys, it is of no use in a simulation environment,
in which calls are artificially generated.

3. DESCRIPTION OF THE FRAMEWORK
In this section we describe the simulation model of a VoIP appli-
cation and its implementation in ns-2. We model all the relevant
features of a VoIP application described in the previous section.
More specifically, we model the sender and the receiver side
separately. The sender side includes:

- a customizable codec, which generates generic speech
frames (the latter being either voice samples of voice frames,
depending on the codec);

- a multiplexer, which aggregates several speech frames into
one payload.

The receiver side, instead, includes

- a customizable playout buffer algorithm;
- a demultiplexer.

Moreover, user activity is modeled as a series of talkspurt/silence
commands given to the sender. This allows for easy integration of
one-way and two-way (coordinated) user activity models. Finally,
as far as data modeling is concerned, we model a speech frame by
storing its size, its generation timestamp, the talkspurt the frame is
associated to, and its position within the talkspurt.

The ns-2 implementation of the above model includes several
inter-operable modules, which are described separately in the
following. The big picture illustrating all the functional modules
is depicted in Fig. 2.

First of all, in order to implement speech frames, we cannot sim-
ply extend the ns-2 packet C++ class. The latter, despite their
name suggests network-layer transmission units only, are used in
ns-2 in a broader sense, which includes upper-layer units, e.g.
TCP segments, and lower-layer units, e.g. MAC frames. The ac-
tual layer to which an ns-2 packet belongs depends on the packet
type, which is thus used for encapsulation/decapsulation. How-
ever, packets are not flexible enough to represent speech frames
too, since there is not an easy way to combine them into chunks,
which is required for frame multiplexing and demultiplexing.
Therefore, we created a specific data structure, called
VoipFrame, with the following fields:

- talkspurt: sequential numerical talkspurt identifier;
- nframes: number of frames in the current talkspurt;
- frame: sequential numerical identifier of the frame within

the talkspurt where it was generated;
- timestamp: time when this frame was generated;
- size_: frame size, in bytes.

Therefore, VoIP frames are simulated by means of empty packets,
as is almost always the case in ns-2, which thus do not contain the
actual data that would have been produced by a real VoIP en-
coder. While we believe that this assumption is adequate for most
studies of the performance VoIP traffic in communication net-
works, feeding simulations with real-time speech data produced
by VoIP applications is being considered as a future work.

VoIP frames are packed into a specific container, called
VoipPayload, which is simply a list of VoipFrame objects.
A VoipPayload is conveyed by an ns-2 packet through the
AppData pointer. The latter is specifically designed to enable
end-to-end applications to be developed in ns-2. In fact, network
modules, such as agents and nodes, are supposed not to mess with
encapsulated data, which is only recovered by the destination
application through the process_data() function. This fea-
ture is optional and is seldom used in network simulation with ns-
2, which are instead usually focused on the performance evalua-
tion from the network perspective. An example of end-to-end
application that is distributed together with the official set of
modules is web caching, which implements basic HTTP functions
to simulate user caches.

Table 1. A factor values proposed by the ITU.

Communication System A factor

Wired phone 0

Cellular in building 5

Cellular in moving vehicle 10

Access to hard-to-reach geographical
zones (many satellite hops)

20

In the following we describe in detail each module depicted in
Fig. 2. First, user speaking is modeled by means of alternating
talkspurt and silence periods, which are generated by the
VoipSource module. Specifically, the base version of
VoipSource can be configured to draw the duration of the talk-
spurt and silence periods from uncorrelated exponential [5] or
Weibull [7] distributions. In particular, the latter are pre-
configured to fit the following voice application scenario: one-to-
one conversation, multiple partners conference call, lec-
turer/audience speaking. At the beginning of each talkspurt, the
VoipSource module calls the talkspurt() function of the
underlying VoipSender object, also specifying the duration of
the forthcoming talkspurt and silence periods. When a new talk-
spurt is triggered by VoipSource, the VoipSender object
starts generating a sequence of VoipFrame items, whose size
and generation rate depend on the simulated codec. The most
common codecs employed in network simulation (e.g. G.711,
GSM.AMR) are supported by the VoipSender, while others
can be easily added without requiring full knowledge of the im-
plementation details of the VoIP modules.

Depending on whether frame multiplexing and/or header inclu-
sion are enabled or not, the recipient of the generated VoIP
frames will be different. If multiplexing is enabled, a
VoipAggregate object is created and bound to the
VoipSender, which calls the recv() function at each frame
generation to pass the frame to the multiplexer object. The
VoipAggregate waits until a specified number of frames are
received before packing them together into a VoipPayload

object and sending them to the VoipHeader (if enabled) or to
the transport layer, i.e. the agent, in ns-2 terminology. Note that a
talkspurt may produce a number of frames that is not a multiple of
the payload size, in which case the last ns-2 packet will contain
fewer frames than the others. On the other hand, if there is no
multiplexing of frames into a single IP datagram, the
VoipSender object directly generates a VoipPayload item
for each VoIP frame, which is sent to the VoipHeader, if en-
abled. Otherwise, the VoipPayload is sent to the agent straight
away. The VoipHeader receives a VoipPayload object from
the VoipSender or the VoipAggregate, depending on
whether multiplexing is enabled. The VoipHeader adds the
RTP/UDP/IP headers to the VoipPayload and supports header
compression. After the header has been added to the
VoipPayload, the payload is sent to the agent. This explains
why VoipSender, VoipAggregate, and VoipHeader are
implemented as ns-2 applications.

The sending agent then encapsulates the VoipPayload object
into the ns-2 packet, which traverses the simulated network with-
out the VoIP fields ever being accessed, possibly experiencing
delay, loss, re-ordering.

Eventually, ns-2 packets that are not lost arrive on the receiving
agent, which passes the encapsulated data to the
VoipReceiver application. The latter retrieves all the
VoipFrame objects listed into the VoipPayload and performs
playout buffering. Three different buffering policies are imple-
mented in the current version of our VoIP package, although more
can be seamlessly added: no buffering, to be used as a reference

Figure 2. Modules for VoIP simulation in ns-2. Dashed objects are optional..

for test only, static buffering, and optimal buffering. Playout buff-
ers are described in a separate sub-section below. Both static and
optimal buffering output VoIP frames at a constant rate, which is
suitable for the R score to be computed correctly. The metrics
evaluated within the VoipReceiver follow:

- MOS, as the average of per-talkspurt MOS values, and as the
aggregate of per-conversation MOS value;

- VoIP frame delay, defined as the interval between the time
when VoIP frame was generated by the encoder and the time
when the frame is played out; this closely approximates the
mouth-to-ear delay;

- frame loss, defined as the ratio between the number of
frames that have not been played out and the number of
frames that have been generated by the encoder;

- cell outage, defined as the ratio of users that are not satisfied
with the call quality, depending on a configurable MOS
threshold.

All the above metrics except the last one are collected on a per
VoIP flow basis by VoipReceiver objects, each identified by
means of a numerical identifier set via Tcl by the users. The cell
outage, instead, is computed on a set of VoIP flows, which are
assumed to be established in the same cell or network domain.
Therefore, the user is requested to select which VoIP flows be-
long to any set, by assigning the same numerical cell identifier.

Measures are collected by the Stat module, which has been first
described in [13], whose current version, bundled with the VoIP
patch, includes several functional and performance enhancements.

3.1 Playout Buffers
As far as playout buffers are concerned, we implemented two
different algorithms: a simple static playout buffer, and a, non-
causal optimal playback algorithm. The first one simply delays
frames of a selectable but fixed amount of time before delivering
them to the decoder. The second one capitalizes on the fact that,
in a simulated environment, non-casual behavior can actually be
implemented to achieve optimal results. More specifically, the
optimal playout buffer waits for the whole set of frames of a
given talkspurt to arrive at the receiver, and then it selects the
playback delay � based on the pattern of arrivals � according to
which the best possible speech quality would have been achieved.
The purpose of including such an optimal playout buffer in the
simulation framework is twofold: on one hand, it acts as a bench-
mark for possible causal playout buffer algorithms. On the other
hand, it will be used to show that computing the MOS without
including a playout buffer yields even better results than those
obtained using such an ideal playout buffer scheme. Hereafter, we
describe its implementation in more detail.

Let us consider the example illustrated in Fig. 3, which shows the
transmission, buffering and playing phases of a talkspurt with five
VoIP frames. Let ti, ri, pi be the time when the i-th frame of a
talkspurt is generated by the encoder, received by the playout
buffer, and passed to the decoder respectively. Now,

i j i jp p t t� � � , for each i, j that are actually played. We define
the network delay of frame i as i i id r t� � , and the playout delay
D as the interval between when first frame was generated by the
encoder and when the playout buffer begins passing frames to the
decoder (see Fig. 3). Without loss of generality, we assume that

ir � � for each frame i that is lost due to the network. The play-
out buffer discards all frames that are received too late, i.e. such
that id D� , which implies that all frames with i id r� � � are
discarded, regardless of the value of D. Frames that are discarded
by the playout buffer contribute to the loss rate L, which is de-
fined as the ratio between the number of discarded frames and the
number of frames in the talkspurt. In the example of Fig. 3,
L = 1/5 in because all frames but the first one are received �on
time�.

Therefore, the only degree of freedom of the optimal playout
buffer is the playout delay D. We define the optimal playout delay
Dopt � {di} as the value of the playout delay that maximizes the
MOS. As already pointed out, the actual formula to compute the
latter depends on the specific codec used. However, by definition,
the MOS is always obtained via a non-increasing function of D
and L. Furthermore, L is itself a non-increasing function of D.
Therefore, there exists an optimal value Dopt that achieves the
highest MOS for the talkspurt, which can be computed through a
logarithmic search in the sorted set of the network delays in a
talkspurt {di}. Such a playout buffer algorithm is adaptive, since
it sets the playback point on a per-talkspurt basis. Furthermore, it
is obviously non-causal, since it requires the delay of all speech
frames to be known before selecting the playback point. Finally,
our optimal playout buffer does not consider the phenomenon of

Figure 3. VoIP frame re-ordering due to (non-causal) playout
buffering. Solid lines represent network delays, dashed lines

playout buffer delays.

collision [24]: it can happen that, because of the optimal choice of
D, two (or more) talkspurt periods partially overlap in time.
Clearly, this situation never arises in practice, since the decoder
can reproduce one talkspurt at a time. Instead, we collect meas-
ures as if it were actually possible to playback different talkspurts
in parallel. This implies that the MOS that is obtained using the
optimal playout buffer may not be achievable with a causal play-
back algorithm, no matter how effective.

Furthermore, we have implemented a simple static buffer with a
fixed configurable length. When a frame is received the static
buffer checks if the frame can be accommodated or if it should be
dropped. An incoming frame is not added to the buffer if its play-
out time has already elapsed. The buffer implements the follow-
ing dropping policy: when the buffer is full the first frame to be
dropped is the next frame to be played out. In other words, the
buffer discards the oldest frames, keeping the more recent ones.
As regards the playout policy, the buffer delays the first frame of
a talkspurt by a fixed, though configurable, amount of time. When
the above initial playout delay is elapsed a new frame is played
out every sample interval until the talkspurt ends. Finally, the
buffer possibly reorders the received frames so that they are
played out in the order in which they were generated by the en-
coder.

3.2 Interface
We now briefly describe how to use the above described frame-
work. The source code is documented inline and can be converted
into a stand-alone manual through the Doxygen [11] tool. Addi-
tionally, sample Tcl scripts are provided in bundle with the VoIP
package at [33].

All the Voip* modules can be created both via C++ and Tcl, and
are bound together in the standard ns-2 way, i.e. by means of the
Tcl/C++ command()interface function. For instance, the follow-
ing Tcl code creates a VoipSource, a VoipSender and a
UDP agent, and connects them:

set src [new VoipSource]
set snd [new Application/VoipSender]
set agt [new Agent/UDP]
$src encoder $snd
$snd attach-agent $agt

The commands required to connect objects follow a standard
syntax and are not reported here. The interested reader can found
the whole manual at [33]. Hereafter, we show instead the configu-
ration commands.

VoipSource

$voip_source start|stop
Starts/stops the generation of talkspurts.

$voip_source model
exponential $on $off |

 one-to-one |
one-to-many |
many-to-one |
many-to-many

Enables a specified model to generate talkspurt and silence
periods. The �exponential� model requires the average talk-

spurt and silence durations to be specified, while the others
are based on Weibull distributions, as specified in [7].

VoipSender

$voip_snd codec G.711 | G.729.A |
GSM.AMR | G.723.1 | GSM.EFR

Selects the codec to be used to encoder VoIP frames.

VoipAggregate

$voip_aggr nframes $n
Configures the aggregate object so that all ns-2 packets con-
tain $n VoIP frames, possibly except the last VoIP payload
of the talkspurt.

VoipReceiver

$voip_rcv id $ID
Associates the numerical identifier $ID to the VoIP receiver
in order to distinguish a specific VoIP traffic flow among
others in the output statistics.

$voip_rsv cell-id $cell
It is used to associate the VoIP decoder to a specific cell, so
as to be able to gather cell-wide cell outage metrics.

$voip_rsv emodel $ie $bpl $a $ro $th
Configure the E-Model based on its parameters, described in
Sec. 2, i.e. equipment impairment factor ($ie), packet loss
robustness factor ($bpl), expectation factor ($a), transmis-
sion rating factor ($ro), respectively. Plus, the cell outage
threshold is defined ($th).

$voip_rcv emodel G.711 | G.729 | GSM.AMR
Configure the E-Model equipment impairment factor ($ie)
and packet loss robustness factor ($bpl), based on the codec
used by the transmitter. The above value has been obtained
according to [17].

Furthermore, only for the VoIP receiver with static playout buff-
ering policy, the following parameters can be specified.

$voip_rcv buffer-size $n
The maximum number of VoIP frames that the buffer can ac-
commodate.

$voip_rcv initial-delay $delay
The delay, introduced by the buffer, related to the first frame
of the talkspurt.

$voip_rcv playout-rate $time
The time, in ms, between the generation of two frames at the
transmitter. This value depends on the codec being used and
will be used by the buffer to playout the samples with the
same rate as they were generated by the encoder.

VoipHeader

$voip_compression $size | nocompression
Set the IP/UDP/RTP header size. If not specified, the default
value is nocompression, which results in a header size of
40 bytes (= 20 bytes/8 bytes/12 bytes, respectively for stan-
dard IP/UDP/RTP headers). Otherwise, if the

compression command is given, the compressed header
size is specified by the parameter $size.

3.3 Requirements
We complete this section by describing the computational re-
quirements of the proposed framework. With regard to the VoIP
sender modules, the overhead incurred by using the proposed
framework is negligible. As a matter of fact, the only module that
requires additional storage is VoipAggregate, which is ex-
pected to keep a small number of VoIP frames, typically between
2 and 5. All the other modules only perform simple computations,
e.g. creating a VoipFrame, changing the IP packet size, drawing
random numbers, thus not impairing the capability of ns-2 to
manage large network simulations.

On the receiver side, instead, the computational overhead highly
depends on the algorithm that is employed to play out VoIP
frames at a constant rate. Specifically, with static buffering, each
VoipReceiver keeps at most a configurable number of VoIP
frames (buffer-size Tcl command), which is expected to be
in the order of tens, plus the state variables to keep updated the
average VoIP frame delay and loss of the current talkspurt. The
latter are used at the end of each talkspurt to derive the MOS
based on the R factor computed according to (1). As far as the
optimal playout algorithm is concerned, both temporal and spatial
overhead may significantly increase with respect to the static
playout buffer. In fact, for each talkspurt, the value of the playout
delay that maximizes the MOS is to be selected. This can be done
through a logarithmic search among the delay samples collected
for that talkspurt, where each step requires the computation of the
average VoIP frame delay and loss. The delay samples of all the
VoIP frames within a talkspurt have thus to be stored at the VoIP
receiver and processed to derive the optimal playout delay and
related MOS of the talkspurt. This requires �(n log2(n)) opera-
tions in the worst case, n being the number of VoIP frames in a
talkspurt. Therefore, we argue that, even with optimal playout
buffering, the overhead, both in time and space, can hardly be-
come a bottleneck, unless a very large number of VoIP applica-
tions are simulated simultaneously.

4. PERFORMANCE EVALUATION
In this section we present simulation results, which are meant as a
proof of concept of how the contributed simulation framework
can be exploited for a sound and simple performance evaluation
of VoIP applications in ns-2. We therefore purposefully set up a
very simple networking environment, which only consists of only
one VoIP flow established between two ns-2 nodes connected
through an 8 Mb/s wired link with a constant 10 ms propagation
latency. The VoIP sender employs a GSM AMR codec at
12.2 kb/s, with one-to-one VAD model, without header compres-
sion. Frame aggregation is not used, unless specified otherwise.

In order to be able to vary the delay through the network and to
introduce losses, we filter the ns-2 packets generated by the UDP
sender through an ad hoc connector object, which is able to:

- drop packets at a specified packet loss rate (PLR) based on a
uniform random variable;

- delay packets according to a configurable delay distribution;
in the following we report results obtained with exponential
and Weibull (shape = 2) random variables. We call average
network delay the mean value of the distribution.

The simulation duration is set to 100 s, with a 10 s warm-up pe-
riod during which statistics are not collected. The simulation ex-
periments have been carried out using the method of independent
replications [21], using the framework for statistics gathering in
ns-2 described in [9]. Confidence intervals are not reported in
figures whenever negligible. In this analysis, we only consider the
MOS.

We begin by comparing the performance obtained with the opti-
mal playout buffer (�Optimal� in the figures) and without playout
buffer (�None� in the figures). In Fig. 4 we show the MOS when
the average network delay increases from 1 ms to 200 ms, and
packets are never discarded at the tagger, i.e. PLR = 0. Nonethe-
less, packets may be discarded by the playout buffer, when pre-
sent, if they arrive after their playback time. Results are shown
when packets are delayed according to both an exponential and a
Weibull distribution. As can be seen, without playout buffer, the
MOS always lies above 4, i.e. �high-to-best� quality perceived by
VoIP users according to the scale in [15]. More specifically, the
MOS does not depend on the packets delay distribution em-
ployed, and it is only slightly affected by the average network
delay. However, such a result is utterly misleading since the upper
bound on the performance achievable with any playout buffer,
measured by means of our optimal non-causal playout policy, is
significantly smaller than that. This becomes more evident as the
delay introduced by the network gets higher. Furthermore, the
MOS instead heavily depends on how the network delays are
distributed. For instance, with an exponential distribution with an
average equal to 100 ms, nearly all users would be dissatisfied
according to the E-model considered.

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 0.05 0.1 0.15 0.2

M
O

S

Average network delay (s)

Exponential/Optimal
Exponential/None
Weibull/Optimal
Weibull/None

Figure 4. MOS vs. average network delay, PLR = 0.

In Fig. 5 we assume that network delays are drawn from an expo-
nential distribution, with an average equal to 1 ms, and we instead
vary the PLR (in the graph the curves with solid symbols are al-
most overlapping with those with empty symbols, thus they can-
not be distinguished easily). Two different aggregation policies
are considered here, i.e. one frame per payload (�w/o� in figures)
and three frames per payload (�w/� in figures). In this specific
scenario, aggregation seems to play a negligible role in the overall
performance. Furthermore, employing an optimal playout buffer
exhibits approximately the same performance as neglecting the
playout buffer, which is apparently in contrast with the results
obtained above when varying the average network delay. How-
ever, if the average network delay is increased, e.g. to 100 ms, as
shown in Fig. 6, the results are radically different. On one hand,
the performance evaluated without playout buffers appears to be
largely over-estimated, even with respect to a theoretical opti-
mum. Furthermore, aggregating VoIP frames (up to a certain ex-
tent, as shown below) actually increases the MOS. This counter-
intuitive result can be explained as follows. On the one hand,

aggregating frames introduces an additional delay at the sender
side. On the other hand, all VoIP frames aggregated into the same
payload will experience the very same network delay, i.e. the
least possible delay variation. This last effect entails a gain in
terms of MOS, which counterbalances the minor performance
decrease due to the (small) additional delay at the source. In fact,
playout buffers are very sensitive to frame re-ordering, which
happens less frequently when VoIP frames are aggregated.

We now evaluate the performance of static playout buffering. As
discussed in Sec. 3.1, the latter needs be configured in terms of
buffer size and initial delay. In Fig. 7 we show the results ob-
tained by varying the latter, with the former set to a fixed value of
20 VoIP frames. Results with optimal playout buffering are re-
ported as a reference. As can be seen, the MOS curves reach a
maximum, for an optimal initial delay. In fact, increasing the
initial delay first reduces the probability that packets are dis-
carded by the playout buffer. However, after some value of the
initial delay, the playout delay becomes the limiting factor of the
VoIP performance in terms of MOS.

To conclude the analysis we show in Fig. 8 the MOS obtained
with all the playout buffer policies that we have implemented,
with an increasing number of VoIP frames aggregated into the
same payload. The static playout buffer is configured with a
buffer of 20 VoIP frames and an initial delay of 150 ms. The re-
sults presented above have shown that aggregation entails a per-
formance gain. However, the delay due to the aggregation in-
creases with the number of VoIP frames packed into the same
payload, which eventually leads to a performance degradation. In
the scenario evaluated, the best performance, in terms of MOS, is
obtained aggregating 5 VoIP frames into the same payload, with
both the optimal and the static playout buffer. Once again, note
that the results obtained without employing a playout buffer not
only largely over-estimates the call quality, but are also mislead-
ing about the qualitative system behavior. For instance, the �none�
curve in Fig. 8 is almost constant irrespective of the frame aggre-
gation, which is not true with the �optimal� and �static� policies.

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 0.05 0.1 0.15 0.2

M
O

S

Packet error rate

w/o aggregation/Optimal
w/o aggregation/None
w/ aggregation/Optimal
w/ aggregation/None

Figure 5. MOS vs. PLR, avg. network delay = 1 ms.

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 0.05 0.1 0.15 0.2

M
O

S

Packet error rate

w/o aggregation/Optimal
w/o aggregation/None
w/ aggregation/Optimal
w/ aggregation/None

Figure 6. MOS vs. PLR, avg. network delay = 100 ms.

 0

 1

 2

 3

 4

 5

 0.05 0.1 0.15 0.2 0.25 0.3

M
O

S

Initial delay (s)

w/o aggregation/Optimal
w/o aggregation/Static
w/ aggregation/Optimal
w/ aggregation/Static

Figure 7. MOS vs. initial playout delay (ms), average
network delay = 30 ms, PLR = 0.01.

5. CONCLUSIONS
In this paper we presented extensions to ns-2 that allow a sound
and efficient simulation of VoIP applications. More specifically,
we implemented a flexible and extensible VoIP application, with
support to various codecs and playout buffer algorithms, allowing
for voice activity detection and for correlated streams in a bi-
directional conversation. Each module can be easily extended to
support specific algorithms. Furthermore, we devised and imple-
mented an optimal, non causal playout buffer algorithm, to be
used as a reference for performance evaluation of VoIP applica-
tions. Finally, we implemented � within the standard framework
for statistics gathering in ns-2 described in [9] � the computation
of meaningful user metrics, such as the Emodel and the Mean
Opinion Score (MOS).

We showed through simulation that the performance of a VoIP
stream, in terms of the MOS, may heavily depend on the playout
buffer employed. In particular, if playout buffers are neglected,
which is often the case in the simulation studies found in the lit-
erature, the performance of VoIP streams is largely overesti-
mated. Furthermore, we observed that aggregating frames into a
single packet payload can increase the MOS.

Future work includes developing similar extensions to ns-2 for
other applications involving user perception, such as video con-
ference and video streaming.

6. ACKNOWLEDGMENTS
This work has been carried out in the framework of the NADIR
project financed by the Italian Ministry of University and Re-
search.

7. REFERENCES
[1] G. Athanasiou, T. Korakis, O. Ercetin, and L. Tassiulas.

Dynamic cross-layer association in 802.11-based mesh
networks. Proc. IEEE INFOCOM 2007, Anchorage, USA,
May 6�12.

[2] L. Atzori, and M. L. Lobina. Playout buffering in ip
telephony: a survey discussing problems and approaches.
IEEE Commun. Surveys Tut., vol. 8, no. 3, 3rd Qtr. 2006,
pp. 36�46.

[3] H. V. Balan, L. Eggert, S. Niccolini, and M. Brunner. An
experimental evaluation of voice quality over the Datagram
Congestion Control Protocol. Proc. IEEE INFOCOM 2007,
Anchorage, USA, May 6�12.

[4] R. Birke, M. Mellia, and M. Petracca. Understanding VoIP
from backbone measurements. Proc. IEEE INFOCOM 2007,
Anchorage, USA, May 6�12.

[5] P.T. Brady. A model for generating on-off speech patterns in
two-way conversation. Bell System Technical J., vol. 48,
Sep. 1969, pp. 2445�2472.

[6] K.-T. Chen, C.-Y. Huang, P. Huang, and C.-L. Lei.
Quantifying Skype User Satisfaction. Proc. ACM
SIGCOMM 2006, Pisa, Italy, Sep. 11�15, 2006, pp. 399�
410.

[7] C.-N. Chuah, and R. H. Katz. Characterizing packet audio
streams from Internet multimedia applications. Proc. IEEE

ICC 2002, New York, USA, Apr. 28�May 2, 2002,
pp. 1199�2203.

[8] C. Cicconetti, M. L. Garcia-Osma, X. Masip, J. Sá Silva,
G. Santoro, G. Stea, and H. Tarasiuk. Simulation model for
end-to-end QoS across heterogeneous networks. Proc. IPS-
MoMe 2005, Warsaw, Poland, Mar. 14�15, 2005.

[9] C. Cicconetti, E. Mingozzi, and G. Stea. An integrated
framework for enabling effective data collection and
statistical analysis with ns2. Proc. WNS2 2006, 10
Oct. 2006, Pisa, Italy.

[10] R. G. Cole, and J. H. Rosenbluth. Voice over IP
performance monitoring. ACM CCR, vol. 31, no. 2, 2001,
pp. 9�24.

[11] http://www.doxygen.org/

[12] E. Gündüzhan, and K. Momtahan. A linear prediction based
packet loss concealment algorithm for PCM coded speech,
IEEE Trans. Speech Audio Process., vol. 9, no. 8,
Nov. 2001.

[13] F. Hammer, P. Reichl, and A. Raake. The well tempered
conversation: interactivity, delay and perceptual VoIP
quality. Proc. ICC 2005, Seoul, Korea, May 16�20, 2005,
pp.244�249.

[14] http://www.ieee-INFOCOM.org/2007/

[15] ITU-T Recommendation G.107. The Emodel, a
computational model for use in transmission planning.
Dec. 1998.

[16] ITU-T Recommendation G.108. Application of the Emodel:
A planning guide. Sep. 1998.

[17] ITU-T Recommendation G.113. Transmission impairments
due to speech processing. Feb. 2001.

[18] ITU-T recommendation P.59, Telephone Transmission
Quality Objective Measuring Apparatus � Artificial
Conversational Speech, Mar. 1993.

[19] A. Kashyap, S. Ganguly, S. R. Das, and S. Banerjee. VoIP
on wireless meshes: Models, algorithms and evaluation.
Proc. IEEE INFOCOM 2007, Anchorage, USA, May 6�12.

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 2 4 6 8 10 12 14 16

M
O

S

Number of VoIP frames/payload

Optimal
Static
None

Figure 8. MOS vs. aggregation level, average network
delay = 30 ms, PLR = 0.01

[20] S. Kurkowski, T. Camp, and M. Colagrosso. MANET
simulation studies: The incredibles. Proc. ACM MC2R,
vol. 9, no. 4, Oct. 2005, pp. 50�61.

[21] A. M. Law, and W. D. Kelton. Simulation modeling and
analysis. Third edition, McGraw-Hill, 2000.

[22] Y. Li, M. Chiang, A. R. Calderbank, and S. N. Diggavi.
Optimal rate-reliability-delay tradeoff in networks with
composite links. Proc. IEEE INFOCOM 2007, Anchorage,
USA, May 6�12.

[23] A.P. Markopoulou, F. A. Tobagi, and M. J. Karam.
Assessment of VoIP quality over Internet backbones. Proc.
IEEE INFOCOM 2002, New York, USA, June 23�27, pp.
150�159.

[24] S. B. Moon, J. Kurose, and D. Towsley. Packet audio
playout delay adjustment: Performance bounds and
algorithms. Multimedia Systems, vol. 6, no. 1, 1998, pp. 17�
28.

[25] http://nsnam.isi.edu/nsnam/

[26] http://www.nsnam.org/

[27] Z. Qiao, L. Sun, N. Heilemann, and E. Ifeachor. A new

method for VoIP quality of service control use combined
adaptive sender rate and priority marking. IEEE ICC 2004,
Paris, France, June 20�24, pp. 1473�1477.

[28] R. Ramjee, J. F. Kurose, D. F. Towsley, and H. Schulzrinne.
Adaptive playout mechanisms for packetized audio
applications in wide-area networks. Proc. IEEE INFOCOM
1994, Toronto, Canada, pp. 680�688.

[29] A. Rix, J. Beerends, M. Holler, and A. Hekstra. Perceptual
Evaluation of speech quality (PESQ) � a new method for
speech quality assessment of telephone networks and
codecs. Proc. IEEE ICASSP 2001, May 7�11, 2001, pp. 73�
76.

[30] S. Shin, and H. Schulzrinne. Experimental measurement of
the capacity for VoIP traffic in IEEE 802.11 WLANs. Proc.
IEEE INFOCOM 2007, Anchorage, USA, May 6�12.

[31] Skype, http://www.skype.com, continuously updated.

[32] H. Wu, K. Tan, Y. Zhang, and Q. Zhang. Proactive scan:
Fast handoff with smart triggers for 802.11 wireless LAN.
Proc. IEEE INFOCOM 2007, Anchorage, USA, May 6�12.

[33] http://info.iet.unipi.it/~cng/ns2voip/.

