
Approximating Optimal Load Balancing Policy in
Discriminatory Processor Sharing Systems

Juha Leino
Networking Laboratory

TKK Helsinki University of Technology
P.O. Box 3000, FI-02015 TKK, Finland

Juha.Leino@netlab.tkk.fi

ABSTRACT
In this paper, we study load balancing between multiple dis-
criminatory processor sharing queues. Arriving customers
are divided between the queues according to a load balanc-
ing policy. Such models have numerous applications in many
fields, e.g., in computer and telecommunication systems. We
use a method called value extrapolation to approximate the
performance of different heuristic load balancing policies.
Policy iteration is used jointly with value extrapolation to
approximate the performance of the optimal policy. We pro-
vide numerical results suggesting that a policy obtained with
a well-chosen initial policy and one iteration round can out-
perform the heuristic policies. If the initial policy is static,
the relative values of the states can be derived using prior re-
sults concerning a single DPS queue, hence the first iteration
round can be conducted without significant computations,
thus the first policy iteration policies may prove to be useful
in practical applications.

Categories and Subject Descriptors
G.3 [Probability and Statistics]: Markov processes; G.3
[Probability and Statistics]: Queueing theory

General Terms
Performance

Keywords
Approximation, discriminatory processor sharing, Markov
decision processes, queue length, load balancing

1. INTRODUCTION
Discriminatory processor sharing (DPS) server is a gener-

alization of egalitarian processor sharing (EPS) server first
discussed by Kleinrock [3]. Customers belong to different
classes and while within a class all customers receive an
equal share of service, the classes have weights or priori-
ties that affect the capacity share they receive. DPS models

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SMCtools ’07, October 26, 2007, Nantes, France
Copyright 2007 ICST 978-963-9799-00-4.

have many important applications, for example in computer
and telecommunication systems. For a recent survey on an-
alytical results considering a single DPS queue, see [1].

In this paper, we discuss systems consisting of multiple
DPS queues. We assume that the arrival process is Pois-
sonian and the service requirements are exponentially dis-
tributed. Specifically, we are interested in load balancing
between the queues, i.e. the arriving customers of different
classes are divided between the queues. We are interested
in the performance of different load balancing policies. Our
aim is to minimize the mean queue length of the system or
equivalently the mean time in system.

A DPS queue can be used to model capacity sharing of
a telecommunication link [7]. The capacity of the link is
shared among the concurrent file transfers based on traffic
class priorities. The problem discussed in this paper cor-
responds to a scenario where multiple alternative links or
routes with different characteristics can be used and the aim
is to route the transfers in order to minimize the mean file
transfer time.

We use a recent approach called value extrapolation to
evaluate the performance of different load balancing poli-
cies. Value extrapolation is based on the theory of Markov
decision processes (MDPs) and can be used to approximate
performance metrics of any Markovian system expressible
as the mean of a function of the system state. Infinite state
space of the studied system is truncated and relative values
outside the truncated state space are extrapolated using the
values inside. The approximate mean performance can be
solved from so-called Howard equations. Value extrapola-
tion was first introduced as an approximation method [5],
but it leads to exact results when the mean queue length of
a DPS server with Poissonian arrivals is studied [6]. While
the results are not exact with DPS systems with multiple
servers, it can be expected that value extrapolation provides
accurate results because of the similarities with a single DPS
queue. We will show that this indeed is the case.

In addition to performance evaluation of fixed policies,
we also use value extrapolation jointly with policy itera-
tion to approximate performance of the optimal load bal-
ancing policy. In some scenarios, the first round of policy
iteration algorithm leads to a well-performing policy while
avoiding heavy computations [4]. If the initial policy is state-
independent, the queues are independent and prior results
concerning a single DPS queue can be used. Value extrap-
olation can be used to determine the relative values of a
DPS queue [6], hence the first round can be made without
solving the Howard equations. We provide numerical results

λ1,1

λ1,K

λ2,K

λ2,1

C2

C1

λK

λ1

Figure 1: An example system with two queues and

K customer classes.

illustrating that a policy achieved this way outperforms the
discussed heuristic policies.

2. DISCRIMINATORY PROCESSOR SHAR-
ING SYSTEMS

Discriminatory processor sharing queue is a generaliza-
tion of the well-known egalitarian processor sharing queue.
All the customers in an EPS queue receive an equal share
of capacity. In a DPS queue the customers are categorized
into different classes. Within a class customers receive an
equal share of capacity, but the shares of capacities vary
between customers in different classes according to class
weights or priorities. Within a class customers have simi-
larly distributed service requirements.

We study systems consisting of multiple DPS servers with
different service capacities. Class weights are queue-specific,
i.e. the priorities of traffic classes are not identical in differ-
ent queues. A load balancing policy defines how arriving
customers are divided between the queues at each system
state. When a new customer arrives at the system, it is di-
rected to one of the queues according to the load balancing
policy. The aim is to balance the load between the servers so
that the performance of the system is optimal. Specifically,
we are interested in minimizing the mean queue length of
the system.

We study a system consisting of two queues as illustrated
in Figure 1, but most of the methods and findings are also
applicable to systems with more queues. The are K cus-
tomer classes. The state of the system is denoted with a
vector x = (x1,1, . . . , x1,K , x2,1, . . . , x2,K)T, where xs,k is
the number of class-k customers at queue s, s = 1, 2. State
space of the process is S = {x | x ≥ 0}.

The capacity allocated to a customer depends on the sys-
tem parameters and on the system state. Each queue allo-
cates capacity independently depending only on the number
of customers at that queue. Capacity allocated for a class-k
customer at queue s at state x is

φs,k(x) =
ws,k

∑

i
ws,ixs,i

Cs, (1)

where ws,k is the weight corresponding to class k at server
s and Cs is the capacity of server s.

Arrival process of each customer class is assumed Poisso-
nian and the arriving customers are divided into different
queues depending on the load balancing policy. The arrival
intensity of class-k is denoted λk. Load balancing policy α
is a function that defines the routing at each system state
α(x) = (λ1,1(x), . . . , λ1,K(x), λ2,1(x), . . . , λ2,K(x)), where

class-k arrival intensity at server s is denoted λs,k(x). Poli-
cies can be categorized to static and dynamic ones. If the
routing decisions depend on the system state x, a policy is
dynamic, otherwise static. We assume that all customers are
accepted, i.e.

∑

s
λs,k(x) = λk ∀α,x. Service requirements

of class-k customers are exponentially distributed with mean
1/µk.

Prior results concerning a single DPS queue can be used
in the analysis of more complex systems. The mean queue
length of a single DPS queue with Poissonian arrivals and
exponential service requirements can be solved from a sys-
tem of linear equations. The result was first presented in
the classical paper by Fayolle et al. [2]. A different set of
linear equations can be derived using a method called value
extrapolation [6]. For example, the mean queue length of a
DPS queue with two customer classes is

E[|X|] =

w1(C(λ1 + ρ2µ1) − λ1ρ1 + ρ1ρ2(µ2 − 2µ1))

(C − ρ1 − ρ2)(w1/µ1(C − ρ1) + w2/µ2(C − ρ2))

+
w2(C(λ2 + ρ1µ2) − λ2ρ2 + ρ2ρ1(µ1 − 2µ2))

(C − ρ1 − ρ2)(w1/µ1(C − ρ1) + w2/µ2(C − ρ2))
,

where ρk = λk/µk. The results related to a single queue can
be used when systems with multiple queues are studied. If
a static load balancing policy is used, the queues are inde-
pendent and the total queue length can be determined as a
sum of the queue lengths of the individual queues.

3. VALUE EXTRAPOLATION
In this chapter, we introduce an approximative method

called value extrapolation that can be used to analyze per-
formance of Markov processes using truncated state spaces.
The approach is based on concepts used in the theory of
Markov decision processes (see, e.g., [8]). For a more com-
plete treatment of value extrapolation, see [5, 6].

When applied to a single DPS queue with Poissonian ar-
rivals, value extrapolation yields exact results [6]. While the
results are not exact when systems consisting of multiple
DPS queues are analyzed, accurate results can be expected.
We provide numerical convergence results in chapter 5.

Let X(t) be a continuous time Markov process with an
infinite state space S = {x | x ≥ 0}. Cost of state x, r(x),
is a metric that specifies the cost rate at the state. We are
interested in the mean queue length r, hence cost function is
queue length r(x) =

∑

s,k
xs,k. Relative value v(x) of state

x is the expected cumulative difference in cost over infinite
time horizon, when the system starts from state x instead
of equilibrium:

v(x) = E

[
∫

∞

t=0

(r(X(t)) − r) dt

X(0) = x

]

. (2)

More important than the actual definition is that the relative
values satisfy the Howard equations

r(x) − r + qxy(α)(v(x) − v(y)) = 0 ∀x ∈ S, (3)

where qxy(α) is the transition intensity from state x to y

when policy α is used. The relative values only appear in
the differences v(x) − v(y), hence we may set one relative
value freely, e.g., v(0) = 0. The number of unknown vari-
ables is equal to the number of equations, hence r and the
relative values of states other than 0 can be solved from
the equations. The computational effort needed in solving

the equations is comparable to solving the equilibrium state
distribution using global balance equations. In practice, the
infinite state space renders the problem infeasible.

In order to avoid the difficulties caused by the infinite
state space, the state space is truncated to a finite set St =
{x | 0 ≤ x ≤ T} and the Howard equations (3) are written
only for the states in St. The process has state transitions
from St to its outside, hence relative values corresponding to
states outside St appear in the equations. Those transitions
could be omitted from the equations, but a better way to
deal with the issue is to extrapolate the values outside St

using the values inside. A simple but effective extrapolation
method is to fit a polynomial to the inside points. When
mean queue length is studied, second order polynomial leads
to most accurate results [5]. Using quadratic polynomial
fitting, the extrapolated value is

v(. . . , T + 1, . . .) = 3v(. . . , T, . . .)

−3v(. . . , T − 1, . . .) + v(. . . , T − 2, . . .).

After the extrapolation and setting v(0) = 0, we have a
closed set of linear equation from which the mean queue
length can be solved in addition to the relative values of the
states in St.

4. LOAD BALANCING POLICIES
In this chapter, we discuss different load balancing poli-

cies. Stochastic routing divides the customers without knowl-
edge of the system state. We also introduce three different
state-dependant heuristic policies and finally a method for
finding the optimal policy is presented. Performance of the
policies are compared numerically in chapter 5.

Stochastic routing (SR)
Stochastic routing is a static load balancing policy that di-
vides the arriving customers stochastically between the dif-
ferent servers using fixed probabilities. As the policy does
not utilize the state-information, it performs worse than
state-dependant policies. The probability that an arriving
class-k customer is routed to server 1 is denoted pk and,
naturally, the probability for server 2 is 1 − pk. The arrival
process at each server is Poissonian and the queues are in-
dependent, hence the mean queue length can be determined
using prior results concerning a single DPS queue.

The routing probabilities can be optimized to minimize
the mean queue length. The analytical expressions of the op-
timal probabilities are tedious to obtain, but the minimiza-
tion can be conducted numerically using standard nonlinear
optimization methods. The optimal probabilities depend on
the system load.

Shortest queue (SQ)
An arriving customer is routed to the queue with the least
customers. If several queues are of equal length, the one
with highest capacity is used.

Least expected work (LEW)
An arriving customer is routed to the queue with the least
amount of expected work proportional to the capacity, i.e.
the queue with lowest value

∑

k
xs,k/µk/Cs.

Maximal capacity (MC)
From a customers point of view, the best queue is the one
providing the highest capacity, i.e. the one with highest value
φn,k(x + es,k), where es,k is the unit vector corresponding
to server s and class k. MC policy maximizes the quality
of service experienced by the customer on the short term,
but the greedy behavior may use the resources of the system
inefficiently leading to poor long term performance.

Optimal policy (OP)
Using the theory of Markov decision processes, the optimal
load balancing policy can be determined. In each state, an
arriving customer is directed to the queue that minimizes the
expected total queue length over an infinite time horizon.
There are various methods for finding the optimal policy.
We use policy iteration as it allows us to truncate the infinite
state space using value extrapolation.

Given a fixed policy, the mean queue length and the cor-
responding relative values can be solved from the Howard
equations (3). The policy minimizing the mean queue length
r can be found using policy iteration algorithm, which itera-
tively improves an initial policy until the optimum is found.
The iteration typically converges quickly [8]. In each state,
an arriving customer is routed to the queue that corresponds
to system state with the lowest relative value. Policy itera-
tion algorithm proceeds as follows:

1. Select an initial policy α0 and set i = 0

2. Compute the relative values vi(x) using policy αi and
the Howard equations (3)

3. Specify a new policy αi+1 by selecting
αi+1(x) = arg maxλ

∑

y

qxy
∑

z
qxz

vi(y)

4. If αi+1 6= αi, set i = i + 1 and goto 2

Step 2 of the algorithm entails solving the Howard equa-
tions (3). The number of equations and unknown variables
is equal to the number of states in the state space.

State spaces of the studied systems are infinite, hence the
relative values needed at step 2 of the algorithm cannot be
solved. This can be avoided by using value extrapolation at
each iteration round, thus reducing the infinite state space
into a finite one while still getting an approximation of the
optimal mean queue length. The downside of this approach
is that the relative values are only solved in the truncated
state space. As the policy is defined using the relative values
at step 3, the approximative optimal policy is only known on
the truncated state space limiting its usefulness in practice.

First Policy Iteration (FPI)
The last studied policy is the policy obtained using only
one iteration round of the policy iteration algorithm. If the
relative values of a system can be derived using some policy,
first policy iteration approach can be used to get a policy
approximating the optimal one without the computational
burden needed in solving the Howard equations. Instead
of iterating until the optimum is found, only one iteration
round is taken using step 3 of the algorithm starting from
the initial policy. While not optimal, the results of the first
round are often very good. However, the results depend
significantly on the choice of the initial policy, see, e.g., [4].

Static policies are good choices as an initial policy, because
the prior results concerning a single DPS queue can be used.

3 4 5 6 7
Truncation point

2.5

3

3.5

4

4.5
E
@
Ú
x
D

OP

MC

LEW

SQ W�O VE

SQ

SR

Figure 2: Convergence of mean occupancy as a func-

tion of the truncation point using different policies.

Relative values of states in DPS systems with static policies
are known, because the queues are independent and relative
values of a single DPS queue can be easily determined [6].
However, the choice of the initial static policy affects the
quality of the first iteration policy, hence it should be se-
lected carefully. The exact relative values of the system are
known, hence the first iteration policy is defined in the whole
infinite state space and the policy can be applied in prac-
tice. In contrast, the policy obtained with value extrapola-
tion and complete iteration is only defined in the truncated
state space, hence it can only be used to approximate the
performance.

5. NUMERICAL RESULTS
In this section, we demonstrate our approach using numer-

ical examples. We study a system with two DPS servers and
two customer classes and provide various results illustrating
the accuracy of the methods used and the performance of
the different policies. As a specific example we study a sys-
tem with parameter values C1 = 3/2, C2 = 2/3, w1,1 = 9,
w1,2 = 1, w2,1 = 1, w2,2 = 9, λ1 = 5λ2, µ1 = 10, and µ2 = 2.
The arrival rates are varied in order to study the effect of
system load on the results. Total queue length is used as a
performance metric. In this chapter, abbreviation SR refers
to the optimal stochastic routing policy.

5.1 Convergence of Value Extrapolation
Accuracy of the results obtained using value extrapola-

tion depends on the size of the truncated space. In general,
the more states are used the more accurate results. Figure
2 illustrates the convergence with different load balancing
policies with system load 0.7. For comparison, convergence
of SQ policy is also illustrated without value extrapolation,
i.e. the mean queue length is solved in the truncated state
space and the rest of the state space is neglected. Regardless
of the policy, the mean queue length converges quickly when
value extrapolation is used. With the relatively high load
0.7, the results do not get significantly more accurate when
the truncation point is increased from 5, while without ex-
trapolation the point should be over 10 for similar accuracy.
It seems that even though the results are not exact with
systems consisting of several DPS queues, value extrapola-
tion works very well allowing heavy truncation of state space
without significant loss of accuracy. The higher the system
load, the larger truncated state space is needed for accurate
results.

0.2 0.4 0.6 0.8 1
System load

1

2

3

4

5

6

E
@
Ú
x
D

OP

MC

LEW

SQ

SR

Figure 3: Mean queue length as a function of system

load.

5.2 Comparison of Policies
The performance of the policies introduced in Section 4 is

illustrated in Figure 3 as a function of the system load. The
results are computed using truncation point 6. As seen in
Figure 2, the results should approximate the infinite state
space very accurately.

With low loads, there are no significant differences in the
mean queue lengths. As the load increases, the differences
of the policies became more obvious. The optimal policy
always outperforms the other policies and the optimal static
policy always performs worse than the heuristic policies. Re-
gardless of the load, shortest queue policy outperforms the
other heuristic policies, while the differences are small.

5.3 First policy iteration
It is known that the initial policy may affect the conver-

gence of policy iteration algorithm significantly. Figure 4
illustrates the effect of the starting policy with system load
0.5. Four initial policies are used. “Divided” routes class 1
to server 1 and class 2 to server 2. “Capacity” stochastically
routes the customers in proportions relative to the server
capacities. SR is the optimal stochastic routing policy. The
best of the heuristic policies, SQ, is used as a point of com-
parison. Regardless of the starting policy, the iteration ends
up close to optimum in three rounds. It can also be seen that
with a suitable initial policy even the first iteration round
ends very close to the optimum. Another important observa-
tion is that the first round policy starting from a sufficiently
good static policy outperforms the heuristic policies. When
starting from a static policy, the first iteration round can
be conducted without any significant computational effort
as the relative values are known, hence the observation has
notable practical value.

6. CONCLUSIONS
In this paper, we studied load balancing between mul-

tiple discriminatory processor sharing queues. Such models
have numerous applications in many fields, e.g., in computer
and telecommunication systems. We used a recent concept
called value extrapolation to obtain accurate results using
heavily truncated state spaces. Value extrapolation was
used jointly with policy iteration to approximate the opti-
mal performance of such systems. The optimal performance
was compared to several heuristic policies and to policies
obtained with one iteration round starting from static poli-
cies. Numerical experimentations illustrated that the policy
obtained with one round of policy iteration with a good ini-

1 2 3
Iteration

1.25

1.5

1.75

2

2.25

2.5

2.75

3
E
@
Ú
x
D

SQ

SR

Capacity

Divided

Figure 4: Convergence of policy iteration depends

on the initial policy. Policy iteration is carried using

truncation point 6. Three static policies are com-

pared to SQ policy as the initial policy.

tial static policy outperforms the heuristic policies used. As
the relative values of DPS systems with static policies can
be easily determined, such policies can be defined without
heavy computations making them useful for practical appli-
cations.

7. ACKNOWLEDGMENTS
This work was financially supported by the Academy of

Finland grant n:o 210275. Juha Leino is partly supported
by Nokia Foundation.

8. REFERENCES
[1] E. Altman, K. Avrachenkov, and U. Ayesta. A survey

on discriminatory processor sharing. Queueing Systems,
53(1–2):53–63, 2006.

[2] G. Fayolle, I. Mitrani, and R. Iasnogorodski. Sharing a
processor among many job classes. Journal of the

ACM, 27(3):519–532, 1980.

[3] L. Kleinrock. Time-shared systems: A theoretical
treatment. Journal of the ACM, 14(2):242–261, 1967.

[4] G. M. Koole. The deviation matrix of the M/M/1 and
M/M/1/N queue, with applications to controlled
queueing models. In Proceedings of the 37th IEEE

CDC, pages 56–59, Tampa, 1998.

[5] J. Leino and J. Virtamo. An approximative method for
calculating performance measures of Markov processes.
In Proceedings of Valuetools’06, Pisa, Italy, 2006.

[6] J. Leino and J. Virtamo. Determining the moments of
queue-length distribution of discriminatory
processor-sharing systems with phase-type service
requirements. In Proceedings of NGI 2007, pages
205–208, Trondheim, Norway, 2007.

[7] L. Massoulié and J. Roberts. Bandwidth sharing and
admission control for elastic traffic. Telecommunication

Systems, 15(1):185–201, 2000.

[8] H. Tijms. Stochastic Models: An Algorithmic Approach.
John Wiley & Sons, Chichester, England, 1994.

