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ABSTRACT
This paper gives a short introduction to some of the issues
of modelling biochemical signalling pathways in the context
of systems biology.
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G.3 [Mathematics of Computing]: Probability and Statis-
tics; G.1.7 [Mathematics of Computing]: Numerical Anal-
ysis—ordinary differential equations
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1. INTRODUCTION
Recent biological advances mean that much more is now

known about the components within cells and the interac-
tions between them. As a consequence a new endeavour
within the field of biology, systems biology has emerged. In
this approach the objective is to understand the processes
by which a cell achieves its many functions. This is in con-
trast to much of the preceding work in cell biology which
has been focussed on identifying the components of the cell
and categorising the role that they play. Within systems
biology modelling plays a crucial role, allowing biologists to
develop hypotheses about how the behaviour they observe
arises. This is shown schematically in Figure 1. In a wet lab
the biologist conducts experiments on a natural system and
makes observations of biological phenomena (proliferation,
movement or death for example). In order to understand
the observations a formal model is constructed and used to
make inferences about the underlying biological system that
gave rise to the phenomenon. This leads to a hypothesis
about how the natural system works, which in turn is tested
by further experimentation.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SMCTools ’07, October 26, 2007, Nantes, France
Copyright 2007 ICST 978-963-9799-00-4.

Explanation
Interpretation

6

Natural System

Systems Analysis

?

Induction
Modelling

Formal System

Biological Phenomena-Measurement

Observation

� Deduction

Inference

Figure 1: Schematic view of systems biology

Previously the formal system in which the biological sys-
tem was modelled has most often been a mathematical rep-
resentation, predominantly a set of nonlinear ordinary dif-
ferential equations. However, in the last few years there has
been some exploration of the use of formal modelling tech-
niques, such as those used in theoretical computer science,
for constructing models of biological processes. In particu-
lar formalisms previously used for Markovian-based perfor-
mance analysis of computer systems have been applied to a
number of systems [8, 19, 2, 3, 11, 12].

2. MODELLING PATHWAYS
Systems biology can be applied to biological systems at

all scales from intra-cellular to complete organisms or pop-
ulations of organisms. In this paper we will focus on intra-
cellular systems and particularly signal transduction path-
ways. Here the entities involved are biochemical species,
most commonly proteins. In signal transduction pathways
external stimuli initiate messages that are carried through a
cell via a cascade of biochemical reactions. The message is
instigated by a molecule attaching to a receptor on the cell
membrane, and is propagated through a series of protein
accumulations. Increasing protein concentration broadcasts
the information that an event has occurred. The message
is “received” by a concentration-dependent response or reac-
tion. This is illustrated in Figure 2.

In a signal transduction network, the delay between events
is determined by the delay while signal molecule concentra-
tions accumulate or decline sufficiently to trigger the next
reaction. The accumulation of protein is a stochastic process
affected by several factors in the cell (temperature, pH, etc.).
In the mid 1970s Gillespie used Newtonian physics and ther-
modynamics to arrive at a stochastic model of biochemical
reactions based on a form often termed the propensity func-



Figure 2: Cell signalling

tion that gives the probability aµ of reaction µ occurring in
time interval (t, t + dt).

aµdt = hµcµdt

where the M reaction mechanisms which are at play are
given an arbitrary index µ (1 ≤ µ ≤ M), hµ denotes the
number of possible combinations of reactant molecules in-
volved in reaction µ, and cµ is a stochastic rate constant
[9]. This rate constant cµ is dependent on the radii of the
molecules involved in the reaction, and their average rela-
tive velocities — a property that is itself a direct function
of the temperature of the system and the individual molec-
ular masses. These quantities are basic chemical properties
which for most systems are either well known or easily mea-
surable. Thus, for a given chemical system, the propensity
functions, aµ can be easily determined.

The stochastic formulation proceeds by considering the
grand probability function Pr(X; t). This is the probability
that at time t in the volume V there will be Xi molecules
of species Si, where X ≡ (X1, X2, . . . XN ) is a vector of
molecular species populations. By considering a discrete
infinitesimal time interval (t, t + dt) in which either 0 or 1
reactions occur we see that there exist only M + 1 distinct
configurations at time t that can lead to the state X at time
t + dt.

Pr(X; t + dt)

= Pr(X; t)(1−
MX

µ=1

aµ(X)dt)

+

MX
µ=1

Pr(X− vµ; t)(

MX
µ=1

Pr(X− vµ; t)aµ(X− vµ)dt)

where vµ is a stoichiometric vector defining the result of
reaction µ on state vector X, i.e. X → X + vµ after an
occurrence of reaction µ.

The Chapman-Kolmogorov equation for this system is
known as the Chemical Master Equation:

∂ Pr(X; t)

∂t
=

MX
µ=1

aµ(X−vµ) Pr(X−vµ; t)− aµ(X) Pr(X; t)

The Chemical Master Equation can be solved analytically
for only a few very simple systems, and numerical solutions

are usually prohibitively difficult. Thus this CTMC is gen-
erally analysed using Gillespie’s stochastic simulation algo-
rithm or its variants [10].

However most models developed in systems biology do not
consider the stochastic nature of the reactions which under-
lie the process, but are instead based on deterministic as-
sumptions, representing the system in terms of continuously
varying concentrations of species in a system of nonlinear
ordinary differential equations (ODEs). Furthermore mod-
elling biochemical reactions using deterministic rate laws has
proven extremely successful for many years. This determin-
istic approach has at its core the law of mass action, an em-
pirical law giving a simple relation between reaction rates
and molecular component concentrations. Given knowledge
of initial molecular concentrations, the law of mass action
provides a complete picture of the component concentrations
at all future time points.

These two approaches can seem to be in opposition. Stochas-
tic simulation uses a discrete state space, stochastic model
based on the individual elements in the system, molecules.
Models can be computationally expensive to solve and many
trajectories are needed in order to get statistically significant
results. In contrast, ODE approaches use a continuous state
space, deterministic model based on the population view of
the system, distinguishing populations of molecules in terms
of concentrations. Many efficient solvers for ODEs are avail-
able and only one solution is needed due to the deterministic
nature of the model. It is known that when populations are
large, i.e. there are large number of molecules, stochastic
simulation tends to the same results as the ODE models.
So these should be viewed as alternatives, each having a
valuable role to play in appropriate circumstances.

3. SPA MODELS
Work on applying formal system description techniques

from computer science to biochemical signalling pathways
was initially stimulated by [11, 20, 19]. In particular, the
desire to incorporate the stochastic nature of biochemical
reactions has led many researchers to examine the use of
formalisms previously used for performance analysis, such
as stochastic Petri nets, stochastic process algebras and G-
networks. Following the influential work by Regev et al.
[20, 19], there has been much work in which the stochastic
π-calculus is used to model biological systems, for example
[6, 17, 18]. This work is based on a correspondence between
molecules and processes. Each molecule in a signalling path-
way is represented by a component in the process algebra
representation. The local states of the component corre-
spond to the physical changes which a molecule will undergo
in the course of biochemical reactions (e.g. phosphorylation,
ubiquitination and complex formation). Thus, if a complex
C is formed from molecules A and B, two process algebra
components A and B will interact (“communicate”) and one
will evolve into a C, the other becoming null. In order to rep-
resent a system with populations of molecules, many copies
of the process algebra components are needed. This leads
to underlying CTMC models with enormous state spaces.
Even when the symmetries in the model are exploited to
carry out aggregation the only possible solution technique is
generally simulation based on Gillespie’s algorithm [9].

Recent work on PEPA has investigated a more abstract
way of mapping biochemical signalling pathways into a pro-
cess algebra [3]. Rather than a correspondence between



molecules and components, we have proposed a correspon-
dence between species or subpathways and components (c.f.
modelling classes rather than individual objects). Now the
components in the process algebra model capture a pattern
of behaviour of a whole set of molecules, rather than the
identical behaviour of thousands of molecules having to be
represented individually. The local states of the components
now correspond to the concentrations of species which are
represented in the ODEs but discretised into a number of
“levels”. We refer to the number of levels of concentration
distinguished in a model as the granularity of the model.

Our motivations for seeking more abstraction in process
algebra models for systems biology are:

• Process algebra-based analyses such as comparing mod-
els (e.g. for equivalence or simulation) and model check-
ing are only possible is the state space is not pro-
hibitively large.

• The data that we have available to parameterise mod-
els is sometimes speculative rather than precise. This
suggests that it can be useful to use semiquantitative
models rather quantitative ones.

From such PEPA models we are able to generate underly-
ing mathematical models, suitable for analysis, in a number
of different ways. The usual semantics of PEPA gives rise to
a CTMC which can be solved numerically (if state space size
does not prohibit it) [13]. Here each state of the CTMC cor-
responds to a discrete level of concentration for each chem-
ical species in the pathway. For PEPA models based on
modelling species and their concentrations [4] showed how
a model with two levels of concentration could be used to
generate a set of nonlinear ODEs. Moreover, such mod-
els can also be used to derive CTMCs in which molecules
are represented individually, suitable for Gillespie simula-
tion (see Figure 3). In [14], Hillston showed how a set of
nonlinear ODEs can be derived from more general PEPA
models. These underlying mathematical models have dif-
ferent strengths offering different forms of analysis. The re-
lationship between Gillespie-style molecular simulations and
ODEs has been known for some time. Moreover recently the
relationship between the CTMCs with levels of concentra-
tions, such as arise from PEPA models, and ODEs derived
from PEPA models has also been recently established.

Even within our abstract approach to modelling there are
alternative ways of expressing the model [3]. We distinguish
these as reagent-centric and pathway-centric. In a reagent-
centric model we treat each distinct reagent or species in the
pathway as a distinct component type as described above.
The component definition then captures the possible reac-
tions that the reagent may be involved in. The local states of
the components correspond to differing levels of concentra-
tion and the process definition records the impact of each
reaction type on the concentration of the reagent—it will
either increase the concentration, moving it up a level, de-
crease it, moving the state down a level, or leave it un-
changed. In a pathway-centric model we focus instead on
the transformations which a reagent or species with non-zero
initial concentration may undergo through the course of a
pathway (phosphorylation, complex formation etc.). Each
such subpathway is then represented as a distinct compo-
nent in the model. Local states now correspond to the states
which the physical entity may find itself in through the sub-
pathway. Differing levels of concentration are represented in

ODEs
population view

CTMC with
M levels

abstract view

Stochastic
Simulation

individual view

Abstract
PEPA model

-�
�

�
�

�
�

�
�

�
�

��*

H
H

H
H

H
H

H
H

H
H

HHj

Figure 3: Alternative modelling approaches: a sin-
gle PEPA description of a system may be used to
derive alternative mathematical representations of-
fering different analysis possibilities.
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Figure 4: Small synthetic example pathway

the global state by having differing multiples of components
of a particular pathway type.

As a small example we consider the pathway shown in
Figure 4.

This is comprised of the following kinetic reactions :

A + X
k1


k2

A/X k3→B + Y

B k4→ A

Y k5→ X

We assume an initial positive concentration of reagents A
and X, all other reagents initially being absent.

Reagent-centric model. Modelled in the reagent-centric
style with the coarsest possible granularity, i.e. just two lev-
els, the pathway in Figure 4 is represented by the following
declarations:



AH
def
= (k1react, k1).AL

AL
def
= (k2react, k2).AH + (k4react, k4).AH

XH
def
= (k1react, k1).XL

XL
def
= (k2react, k2).XH + (k5react, k5).XH

A/XH
def
= (k2react, k2).A/XL + (k3react, k3).A/XL

A/XL
def
= (k1react, k1).A/XH

BH
def
= (k4react, k4).BL

BL
def
= (k3react, k3).BH

YH
def
= (k5react, k5).YL

YL
def
= (k3react, k3).YH

The complete model is the interaction of these components
constrained by cooperation to share the appropriate actions:

(((AH ��
{k1react,k2react}

XH) ��
{k1react,k2react}

A/XL)

��
{k3react,k4react}

BL) ��
{k3react,k5react}

YL

More details of this style of representation can be found in
[3].

Pathway-centric model. Modelled in the pathway-centric
style the pathway in Figure 4 is represented by the following
declarations:

A = (k1react, `1).A/X
A/X = (k2react, `2).A + (k3react, `3).B
B = (k4react, `4).A
X = (k1react, 1).X/A
X/A = (k2react, `2).X + (k3react, `3).Y
Y = (k5react, `5).X

where we have two distinct subpathways, corresponding to
A and X respectively. We also need the following system
equation to complete the model :

(A[n11 ] ‖ A/X[n12 ] ‖ B[n13 ])
{k1react}

��
{k2react,k3react}

(X[n21 ] ‖ X/A[n22 ] ‖ Y [n23 ])

where having {k1react} over the cooperation combinator
denotes that sychronisation on this action type follows a
mass action kinetics rather than the usual bounded capacity
kinetics used in PEPA (see [7] for details). The activity rates
`i are chosen to reflect the granularity of the discretisation,
which is determined by the total number of copies of each
subpathway type (i.e. n11 + n12 + n13 and n21 + n22 + n23

in this example).

4. RELATING THE MODELS
In a recent paper [7] we have investigated the relation-

ship between the ODEs which can be derived from a PEPA
description and the CTMC models which are generated by
models in the pathway-centric style with increasing levels of
discretisation. We can consider a sequence of CTMCs repre-
senting the system: as we increase the level of discretisation
in the model we move to the next CTMC in the sequence.

In [7] we show that in the limit this sequence of CTMCs con-
verges to the same behaviour as the ODEs derived from the
PEPA model (with only two levels of discretisation). This is
based on an earlier result by Kurtz [15] in which the author
shows that when certain conditions are satisfied a sequence
of CTMCs converge to a set of ODEs.

4.1 Kurtz’s Theorem
Kurtz’s Theorem states that, under certain assumptions,

the solutions provided by a set of ODEs can be regarded
as the limit of a sequence of “pure jump” Markov processes.
As a special case of this general result, Kurtz shows how to
obtain the ODEs as the limit of a sequence of density depen-
dent CTMCs, which model discrete numbers of elements in
their different states [15]. The density dependent condition
means that the rates of the CTMCs may depend on a scaled
representation of states. For instance, when states represent
number of individuals and are normalized with respect to
volume or area, then the rates depend on population densi-
ties. Instead in the case of the Markov chains derived from
PEPA models we are interested in studying their behaviour
when the number of levels increases. Therefore the rates
do not contain information on area or volume but on the
number of levels N + 1.

Definition 1. A family of CTMCs is called density de-
pendent if and only if there exists a continuous function
f(x, l), x ∈ Rh, l ∈ Zh, such that the infinitesimal genera-
tors of XN are given by :

qk,k+l = Nf

„
k

N
, l

«
, l 6= 0

with qk,k+l denoting an entry of the infinitesimal generator
of XN , k a numerical state vector and l a transition vector
that contains the modifications for each state of each species
(i.e. the number of copies to add or substract) when the
transition is taken.

In [15] Kurtz shows that the ODE system
dX(t)

dt
= F (X)

defined by :

F (x) =
X

l

lf (x, l)

is the solution of the limit of XN when N tends to infinity,
in the sense that :

lim
N→∞

XN (0)

N
= X(0) =⇒

∀δ > 0 lim
N→∞

P
„

sup
s≤t

˛̨̨̨
XN (s)

N
−X(s)

˛̨̨̨
> δ

«
= 0

The limit expresses that the probability for XN to take a
trajectory different from X tends to 0 when N tends to
infinity. The result is based on the assumption that the fol-
lowing conditions are met :

There exists an open set E ⊂ Rh such that X(t) ∈ E and

∃M, ∀x, y ∈ E |F (x)− F (y)| < M |x− y| (1)

sup
x∈E

X
l

|l|f(x, l) < ∞ (2)

lim
d→∞

sup
x∈E

X
|l|>d

|l|f(x, l) = 0 (3)

These conditions can be understood as follows:



(1) This says that the function F is Lipschitz continuous,
imposing a certain degree of smoothness on the func-
tion;

(2) This imposes that for each transition the rate of change
is bounded;

(3) This ensures that there is a bound for the whole state
space which means that the impact of transitions re-
mains bounded.

It is important to note that Kurtz’s result does not tell
us about the relationship between the Markov chain with N
levels and the system of ODEs. However, it does tell us that
in the limit, as N tends to infinity, the agreement between
the Markov chain and the system of ODEs is complete, in
the sense that the behaviour of the two with respect to the
state variables will be identical. We can regard this as saying
that for density dependent Markov chains the stochasticity
is such that when there are large numbers of entities the
variability balances in such a way that the process tends to
a deterministic limit.

In the context of PEPA models of biochemical signalling
pathways we show that Kurtz’s theorem holds by proving
that the CTMCs generated from PEPA models are density
dependent. Furthermore, we show how the deterministic dis-
tribution obtained as the limit of the sequence of CTMCs is
related to the solution of the system of ODEs derived syn-
tactically from the corresponding PEPA model. Full details
can be found in [7].

4.2 Related work
Whilst a significant body of work is developing on mod-

elling biochemical systems with stochastic process algebras
and related formalisms (e.g. [11, 20, 19, 6, 17, 18]) in most
cases the modelling is carried out at a more detailed and
less abstract level than the work on PEPA. Consequently,
most analysis of such systems is carried out using Gillespie’s
stochastic simulation and similar approaches [10, 18]. To the
best of our knowledge no other authors have considered the
relationship between ODE and CTMC models in the con-
text of stochastic process algebras. The original relationship
between the two was established by Kurtz in 1970 [15], and
considered in the context of chemical reactions in 1972 [16].
The mapping from process algebra models to ODEs has re-
cently been considered by Cardelli [5] and Bortolussi and
Policriti [1], but not the relationship with a CTMC.

5. ACKNOWLEDGMENTS
Jane Hillston is an EPSRC Advanced Research Fellow

supported by grant EP/c543696/01. This work was devel-
oped in collaboration with Nil Geisweiller, Stephen Gilmore
and Marco Stenico.

6. REFERENCES
[1] L. Bortolussi and A. Policriti. Stochastic concurrent

constraint programming and differential equations. In
Proceedings of Fifth Workshop on Quantitative
Aspects of Programming Languages. Braga, Portugal,
March 2007.

[2] M. Calder, A. Duguid, S. Gilmore, and J. Hillston.
Stronger computational modelling of signalling
pathways using both continuous and discrete-state

methods. In Computational Methods in Systems
Biology, pages 63–77, Trento, Italy, October 2006.

[3] M. Calder, S. Gilmore, and J. Hillston. Modelling the
influence of RKIP on the ERK signaling pathway
using the stochastic process algebra PEPA.
BioConcur, 2004.

[4] M. Calder, S. Gilmore, and J. Hillston. Automatically
deriving ODEs from process algebra models of
signalling pathways. In Computational Methods in
Systems Biology, pages 204–215, 2005.

[5] L. Cardelli. From processes to ODEs by chemistry,
unpublished manuscript, 2006

[6] D. Chiarugi, M. Curti, P. Degano, and R. Marangoni.
VICE: A VIrtual CEll. In Computational Methods in
Systems Biology, Paris, France, apr 2004. Springer.

[7] N. Geisweiller, J. Hillston, and M. Stenico. Relating
continuous and discrete PEPA models of signalling
pathways. In press.

[8] E. Gelenbe. Steady-state solution of probabilistic gene
regulatory networks. Submitted for publication, 2007.

[9] D. Gillespie. Exact stochastic simulation of coupled
chemical reactions. Journal of Physical Chemistry,
81(25):2340 – 2361, 1977.

[10] D. Gillespie and L. Petzold. Numerical simulation for
biochemical kinetics. 2006.

[11] P. Goss and J. Peccoud. Quantitative modeling of
stochastic systems in molecular biology by using
stochastic Petri nets. Proceedings of National Academy
of Science, USA, 95(12):7650–6755, jun 1998.

[12] J. Heath, M. Kwiatkowska, G. Norman, D. Parker,
and O. Tymchyshyn. Probabilistic model checking of
complex biological pathways. In Computational
Methods in Systems Biology, pages 32–47, Trento,
Italy, October 2006.

[13] J. Hillston. A Compositional Approach to Performance
Modelling. Cambridge University Press, 1996.

[14] J. Hillston. Fluid flow approximation of PEPA models.
In Proc. of 2nd Intl Conference on Quantitative
Evaluation of Systems (QEST), pages 33–42, Torino,
Italy, September 2005. IEEE Computer Society Press.

[15] T. Kurtz. Solutions of ordinary differential equations
as limits of pure jump Markov processes. J. Appl.
Prob., vol. 7:pages 49–58, 1970.

[16] T. Kurtz. The relationship between stochastic and
deterministic models for chemical reactions. Journal of
Chemical Physics vol. 57(7): pages 2976–2978, 1972.

[17] C. Kuttler and J. Niehren. Gene regulation in the pi
calculus: simulating cooperativity at the lambda
switch. Transactions on Computational Systems
Biology, LNCS 4230:24–55, 2006.

[18] P. Lecca, C. Priami, C. Laudanna, and G. Constantin.
A Biospi model of lymphocyte-endothelial interactions
in inflamed brain venules. In Pacific Symposium of
Biocomputing, pages 521–532, 2004.

[19] C. Priami, A. Regev, W. Silverman, and E. Shapiro.
Application of a stochastic name passing process
calculus to representation and simulation of molecular
processes. Information Processing Letters, 80:25–31,
2001.

[20] A. Regev. Computational systems biology: a calculus
for biomolecular knowledge, 2002.


