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Abstract

Patterns of animate and inanimate systems show remarkable similarities in their aggregation. One similarity is the
double-Pareto distribution of the aggregate-size of system components. Different models have been developed to predict
aggregates of system components. However, not many models have been developed to describe probabilistically the
aggregate-size distribution of any system regardless of the intrinsic and extrinsic drivers of the aggregation process. Here
we consider natural animate systems, from one of the greatest mammals - the African elephant (Loxodonta africana)
- to the Escherichia coli bacteria, and natural inanimate systems in river basins. Considering aggregates as islands and
their perimeter as a curve mirroring the sculpting network of the system, the probability of exceedence of the drainage
area, and the Hack’s law are shown to be the the Korčak’s law and the perimeter-area relationship for river basins. The
perimeter-area relationship, and the probability of exceedence of the aggregate-size provide a meaningful estimate of the
same fractal dimension. Systems aggregate because of the influence exerted by a physical or processes network within
the system domain. The aggregate-size distribution is accurately derived using the null-method of box-counting on the
occurrences of system components. The importance of the aggregate-size spectrum relies on its ability to reveal system
form, function, and dynamics also as a function of other coupled systems. Variations of the fractal dimension and of the
aggregate-size distribution are related to changes of systems that are meaningful to monitor because potentially critical
for these systems.
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1. Introduction

The understanding of the causes underlying the spatial
organization of species in ecosystems is one of the most
challenging and debated topics in ecology. This is also
true for the spatial organization of components of other
systems, such as inanimate natural systems. This is for
example the case of river basins. As for human-made systems,
the assemblage of these systems is mostly determined by
human design; however, the human component dynamics
makes these systems not completely deterministic. This is
for example the case of cities. Questions arise about the
level of complexity of theories and models to reproduce and

∗Corresponding author. Email: mconvertino@ufl.edu

characterize the aggregation of systems components. Here a
system component is broadly defined as the elementary unit
that forms animate (biotic) or inanimate (abiotic) aggregates
indistinctly. For example individuals of the same species form
aggregates in an ecosystems and the whole metapopulation
is defined by the whole set of aggregates. In living or
animate systems, aggregates of systems components are
observed from the microscale (for example, bacteria [1, 2]),
the meso/macroscale (for example, cancer cells [3], and
ants [4]), to the continental scale (for example, trees [5–
9], fishes [9], African elephants [10], and corals [11]). In
non-living or inanimate systems aggregates are observed as
well at different scales [12]. Concepts developed for animate
system components were generalized to inanimate system
components. For instance, as in [13, 14], and in [15], river
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basins can be considered as living systems if we consider
them as animate systems (organisms) characterizable by a
metabolism (proportional to the evapotranspiration and the
drainage area) and a body-mass (proportional to the area
of connected tributaries). Each subbasin is formed by canal
pixels and hillslope pixels that are both system components.
Analogies to organisms have also been formulated for cities
[16]. This analogy between animate and inanimate systems
allows a potentially mutual understanding of systems,
and the ability to adopt similar probabilistic methods to
characterize both systems. It is certainly difficult to claim
universal principles of organization of systems; however, the
development of methods to characterize both animate and
inanimate systems is certainly useful for monitoring these
systems and for system design.

One of the most fundamental variable characterizing
animate and inanimate systems is the aggregate-size. The
aggregate-size (named as patch-size, or cluster-size in
ecology) is defined as the area of the landscape in which
individuals of systems are aggregated together [17, 18]. In
ecological modeling the definition of aggregates for species
is generally a non-trivial task that requires the definition
of many biological variables. These local system variables
are the occurrence of species, the minimum area to support
a population, the habitat quality, and the sex-structure of
species to list just a few. The aggregates of species are
generally the input of metapopulation models for determining
species abundance by considering the stochastic dynamics
of birth-death and dispersal in and among metapopulation
aggregates. The stochastic dispersal occurs on a network
that connects species aggregates. The occurrence of system
components is certainly one of the most important variables
in both defining the aggregate-size and for the inference of
system dynamics. For example, in ecosystems the location of
species occurrences is also useful to estimate the abundance
of species [19], the relationships between species and
environmental variables for the definition of niches and
climate change effects on species [20], and the interactions
with other species [21].

The importance of the aggregate-size relies also on its
distribution within the system analyzed and the variation
of this distribution in time. The probabilistic structure,
and more precisely the distribution of the aggregate-
size of systems components is widely reported to be a
power-law. This is particularly the case for single and
multiple species considered together. However, exponential
probability distributions of the aggregate-size are observed
for some species [22–24], for perturbed and evolving
ecosystems (for example, for vegetation due to grazing [25,
26], and for ecosystems characterized by strong gradients of
some environmental variables (for example, for vegetation
in the Kalahari rainfall transect in Africa [27]). Power-
laws of the aggregate-size for inanimate systems (natural
and man-made), such as river-basins, landslides, snow-
cover in landscapes [28], and cities [29] are also observed.

Even for inanimate systems deviations from the power-
law distribution are observed: for example exponential
aggregate-size distributions are reported for cities subjected
to rapid urbanization [30]), and log-normal distributions are
observed for submarine landslides [31]. A consistent part
of the literature investigates the origin of the power-law
distribution of aggregates and the causes of deviations from
this distribution [26]. Here we confine our interest in animate
and inanimate natural systems whose distribution of the
aggregate-size is a power-law which seems to occur in the
majority of cases in which ecosystems are at stationary state
in their evolution [32], or around a stable state in the energy
landscape [26]. One of the explanations for the power-law
distribution of the aggregate-size provided by literature is
related to the typology of species movement in ecosystems.
Individuals of species, from bacteria to elephants, seem
to follow a simple Brownian [33], or a Brownian-Lévy
movement [34–36]. This typology of movement arises from
an optimal foraging strategy determined for instance by an
optimization of the species-dispersal for survival [22, 37–
39] constrained by the environment topology and constraints
(for example, the river network and basin ridges in a river
basin, or a Petri dish for in vitro bacteria populations). This
type of dispersal is generally simulated with a combination
of exponential and “heavy-tailed” dispersal kernel [39] that
results in a scale-free distribution of the aggregate patches of
the species simulated [9, 40].

Aggregates of species are linked together by physical
networks (for instance, river networks) [9] or process-
networks [41] (for example, communication networks and
dispersal networks that describe the communication and
movement of individuals respectively) from which the
observed patterns arise. Process-networks can be embedded
into physical networks (for example, dispersal networks
of fishes are constrained within the river network [42])
or can exist without a visible physical network in the
system space (for instance, the communication network
among bacteria colonies or among transceivers considering
animate and inanimate systems respectively). Many detailed
processes are responsible for the formation of aggregates,
and many models were developed in literature to predict
aggregates of species. Some models tried to mimic the
fine-level details of ecological processes, such as species
interactions (for example, conspecific attractions [43]) and
feedbacks (for example, density-dependence) among species.
Other non physical-based models were built around other
“macroscopic” theories that consider the ensemble average
behavior of systems components, such as the theory
of self-organized criticality [44–47], allelomimesis [48],
preferential attachment [41], metabolic optimization [49,
50], percolation [51, 52], habitat suitability, and the neutral
theory of biodiversity [9, 42, 53–55]. Network-based model
were developed on these theories to reproduce patterns of
aggregation of complex systems. The network framework is
a simplified and valuable framework that allows to capture
average properties of systems dynamics and organization.
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An example is the theory of optimal channel networks
(OCNs) [56] that without the inclusion of geomorphological
details is capable to describe analytically the topological
properties of river networks. Aggregation phenomena of
species were successfully modeled using the framework of
OCNs, or other network-based models. While network-based
model were developed to reproduce animate and inanimate
processes, not many network-based models were developed
to probabilistically describe patterns of these processes
created using data or model predictions. At the same time
no consistent advancement occurred in the development
of analytical forms for the probability distribution of the
aggregate-size. In literature different analytical forms are
found for different types of power-law distribution of the
aggregate-size. The purpose of this study is (i) to provide
insights into a parsimonious model (box-counting [57]) for
assessing aggregates of systems just using occurrences of
systems components, (ii) to integrate theories of aggregate-
size distributions ( the Korčak’s law [58], the perimeter-
area relationship, and the theory of fractal river basins [56])
for animate and inanimate species and test the validity of
this integration on all the systems analyzed, and (iii) to
formulate a generalized analytical form for all the types
of power-law probability distributions of the aggregate-size.
We particularly focus on systems that exhibit a power-law
spectrum of the aggregate-size.

The paper is organized as follows. Section 2 describes
the assumptions, the theoretical framework, the data, and the
models used to predict the aggregates of systems components.
Section 3 reports the results of the box-counting method, of
other models, and the validation of the theory. The discussion
of the results is in Section 4 Section 5 lists the most important
conclusions, perspectives for future research, and potential
applications of our findings.

2. Materials and Methods

2.1. Korčak’s law and Aggregation
Hypothesis

Studies about the prediction of aggregates of systems and
their theoretical characterization was developed separately
among scientific disciplines; this is because aggregation
phenomena occur in a broad variety of systems of different
nature. In geography it is well known that the size of islands
follows a power-law probability distribution, P(S ≥ s) ∼
s−b, in which the exponent of the exceedence probability
distribution is related to the fractal dimension of the coast
of the islands [58]. This power-law probability is called
“Korčak’s law”. The exponent is half of the fractal dimension
of the island coastline (b = 1/2 D) [59]. Mandelbrot [59]
found that the average value of this exponent is 0.65, with
variations from 0.5 for African islands to 0.75 for Indonesian
islands; thus, b is within the range [1;1.5].

Landscape ecology is the field in which the theory
of aggregates received the highest attention due the

importance of the species aggregate-size distribution for
species conservation. [60] and [61], studied the patches of
river ecosystem properties (for instance, slope, hydrogeology,
erosion, and vegetation) in New Zealand. These are the
first studies, to the best of our knowledge, that tried
to unify theories, including the “Korčak’s law”, for the
characterization of patches in heterogeneous ecosystems.
However, the fractal exponents derived in these studies were
considered as independent estimates of features of individual
aggregates and of the whole mosaic of aggregates. Moreover,
these studies did not correlate any network of the ecosystem
analyzed to the pattern of aggregates of system components.

In geomorphology the aggregation of subbasins around
river networks was elegantly investigated by many studies,
starting from [62], to the comprehensive review of [56] in
which the theory of optimal channel networks was proposed.
In ecology, [9] analyzed the aggregation of species in river
networks and 2-D landscapes, considering the exponent of
the exceedence probability distribution of the aggregate-size
as a meaningful indicator of the collective organization of
species. That exponent was considered as a function of
geometrical and environmental constraints of the ecosystem
where aggregates form.

In this paper the following hypotheses have been tested.

1. It is possible to predict the aggregates of animate
and inanimate systems and the aggregate-size spectrum
solely from the occurrences of systems components.
In the case of inanimate systems we consider the
center of mass of each aggregate as an occurrence
of system component. The box-counting method
on the occurrences of systems components is a
reliable method for calculating the aggregate-size. The
accuracy of the box-counting in the aggregate and
aggregate-size predictions is assessed with respect to
other methods based on prediction of aggregates’ area
and perimeter.

2. The theory of fractal river networks can be generalized
in order to characterize the probabilistic structure
of the aggregate-size of other systems arranged
along river networks (for example, landslides as
inanimate systems, and fishes and trees as animate
systems), and arranged along non-visible networks of
system processes occurring in landscapes (for example
dispersal networks). In any system a meaningful
self-affine or self-similar network can be traced and
statistical properties of aggregates can be sampled
along the network such as in [63] for the subbasin
drainage area. In fact, the coalescence of system
components can be described as an aggregation
phenomena along branching trees [64, 65]. We consider
the Korčak’s law [58], that is the power-law probability
distribution for the size of islands as the generic
probability distribution for the aggregate-size of any
animate and inanimate systems components. Thus,
aggregates (such as subbasins and species aggregates)
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are considered as islands and systems networks (such
as river networks and dispersal networks) as coastlines
in analogy. Aggregates and aggregates’ boundaries are
sculpted by network processes. S, c, and L‖ are defined
as the size, perimeter, and diameter of aggregates
respectively, and l as the length of the aggregates’
sculpting network (Figure 1). We tested the analogy
between the theory of fractal river basins against the
Korčak’s law and the perimeter-area relationship by
assessing the fractal dimension of aggregate patterns
for these three conceptual models. We believe about the
existence of a unique fractal dimension estimated by
these models. This fractal dimension is a representative
indicator for the whole set of systems aggregates and of
each aggregate on average.

3. A novel analytical formulation for the double-Pareto
probability distribution (or spectrum) of the aggregate-
size of systems components is formulated. Such
distribution can fit the Pareto distributions that animate
and inanimate systems components show.

2.2. Systems Data
Animate and inanimate natural systems are considered
for a wide range of body-mass of system components,
climatological condition, and biological dynamics in order to
verify the validity of the proposed probabilistic description.
Available data of our current and past research studies
allow to consider animate and inanimate systems at different
spatial scales (Figure 2) that exhibit a power-law probability
distribution of the aggregate-size of system components.
These systems are the E. coli bacteria in nutrient-rich
substrate (courtesy of [2]), the subbasins of a portion of the
Tanaro basin (Italy) [63], the Snowy Plover in Florida in
2006 [66], the historical landslides of the Arno river basin
(Italy) [67], the African elephant in the Kruger National Park
(KNP) in 2006 (South Africa) [68], and fish and tree species
in the Mississippi-Missouri River System (MMRS) (USA)
[9, 42, 55]. As for the trees of the MMRS we consider only
big trees for which the diameter at breast height is larger or
equal than five inches [9].

Figure 2 shows the occurrences of the aforementioned
systems in order of the extension of the system domain
where they occur. The extension of these systems covers
fifteen orders of magnitude from the Petri dish of the E. coli
(6.1×10−9 km2), the Tanaro basin (5.3×102 km2), the beach
habitat along the Gulf coast of Florida (∼ 5.6×102 km2), the
Arno basin (8.23× 103km2), the KNP (19.0× 103km2), to
the MMRS (2.98× 106km2). For the African elephant, the
Snowy Plover, and the E. coli we evaluate one pattern of
occurrences as a realization of a process in which aggregation
always occurs [69, 70]. For the Snowy Plover occurrences
are available from 2002 to 2011 obtained by field survey
[66], and for the African elephant from 1985 to 2004 for
the dry season obtained by plane survey. We anticipate that
a temporal analysis of the occurrence patterns is the subject

of forthcoming papers. Here we examine the years for which
the reliability of the occurrence patterns is the highest, in
terms of data quantity and data quality. Other yearly-sampled
occurrences of both the African elephant and the Snowy
Plover show the formation of very similar aggregates. This
is the case also of the E. coli bacteria in which self-similar
patterns are observed in Petri dishes [71] for different values
of the nutrient concentration.

2.3. Box-counting
The first step of the box-counting method is the creation of
a coarse grid of boxes to overlay on the top of the system
domain analyzed. The grid is then refined at each step until
the lower cutoff of the analysis. The box-counting technique
[57] leads to a scaling relationship between the number
of boxes (N(r)) in which at least an occurrence of system
components is contained and the length of the side of the
box (r). The relationship is a power-law, N(r) ∼ r−Db ,
where Db is the Minkowski-Bouligand dimension that is
a good estimate of the fractal dimension (or Hausdorff
dimension) of the point-pattern of occurrences analyzed. The
box-counting technique is applied to all the point-patterns of
Figure 2 for at least 216 orders of magnitude of r. The box-
counting is illustrated in Figure 2 (c) for the Snowy Plover
occurrences. Variabilities of measured exponents (Db) for
different systems are expressed as standard errors found by a
Maximum Likelihood Estimation method (Section redmle)
bootstrapping over cases and deriving exponents using the
linear and the jackknife models [72]. For the river basin, the
landslides, and the E. coli colony patterns the center of mass
of each system component (i.e. a subbasin, a landslide, and a
E. coli colony respectively) is considered in the box-counting
analysis. In Figure 1 the center of masses of ideal aggregates
are shown as grey dots. For the system with occurrence
data of system components available (i.e., big trees and
fishes of the MMRS, the African elephant in the KNP, and
SP along the Gulf coast of Florida), the point-patterns of
occurrences are directly analyzed without any pre-processing.

2.4. Models of Aggregate Prediction
Aggregates of systems considered in this paper are predicted
by models based on different assumptions, hypothesis, and
at different levels of complexity. In the following we give
a brief explanation of the models. We remind the reader
to papers in which each model was implemented for more
details. The area of an aggregate is defined as the sum of
adjacent pixels considering the Von Neumann neighboring
criteria. The perimeter of an aggregate is defined by the sum
of the sides of the external pixels composing the aggregate.

For river basins, landslides, and E. coli colonies the
aggregates are extrapolated by an image analysis model. The
observed E. coli pattern (courtesy of [2]) (Figure 2, a) is
binarized by extracting pixels whose grayscale value is higher
than 30 (white pixels are logical “true”). This threshold allows
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to reproduce the observed patterns with an accuracy of 92 %.
The area and perimeter are calculated for all the aggregates
extracted using the grayscale threshold criteria. The code for
extracting and calculating the aggregates is developed by the
first author using Matlab [73].

The subbasins of the Tanaro basin in Figure 2 (b) are
derived in [63] by extracting the river network from the
digital elevation model (DEM). The network extraction is
based on the identification of the contributing areas for each
stream of the network. The extraction of the network and
other hydrogeomorphological analysis are performed using
the free software HydroloGis [74]. As for the landslides in the
Arno basin the over 27,500 recorded landslide occurrences
were identified in [67] using aerial-photo interpretation,
expert knowledge, and remote sensing techniques. Details are
explained in [67].

For the SP (Figure 3, b) a habitat suitability model
coupled with a patch delineation model is used to determine
the aggregates of species [75]. [75] defined as a shorebird
aggregate an aggregate of pixels whose habitat suitability
index is higher than a certain threshold, big enough to
support all together a meaningful population size but not
too small to support at least a breeding pair, and close
enough to support breeding and wintering activity. The habitat
suitability index is based on habitat suitability maps predicted
by a maximum entropy model [76, 77] constrained on
environmental variables. The closeness of pixels is evaluated
by a neighborhood distance that is a proxy of the average
home-range dispersal distance. The dispersal distance for
mammals is, in fact, proven to be proportional to the home-
range size [78]. Pixels whose mutual distance is lower than
the neighborhood distance are part of the same aggregate.

As for fish and tree species in the MMRS (Figure 3, c and
d respectively) [9] determined the aggregate-size spectrum
of species by implementing a neutral metacommunity model
(NMM) proposed by [42, 79], and further improved by
[55]. The predicted aggregate-size spectrum match the
spectrum calculated using data of species occurrences. The
NMM is a stochastic speciation-dispersal model based on
the individual per-capita species equivalence assumption.
The neutral hypothesis [53] holds for the same taxonomic
group. An aggregate of fish and tree species is defined
as the number of contiguous local communities (a local
community is a “direct tributary area” [9]) in which a
species occurs along the network or according to a Von
Neumann neighboring criteria in a 2D domain respectively
[9]. For fish and tree specie of the MMRS the aggregates
of each species that are assumed equivalent to each other
are considered together in determining the aggregate-size
spectrum. Thus, the aggregate-size spectrum is representing
a metacommunity pattern of species diversity rather than of
single metapopulations.

For the African elephant the size and perimeter of elephant
aggregates are computed considering the adjacent boxes of
the box-counting method (Section 2.3) at a biologically
relevant resolution of grid. We consider as aggregates the

boxes whose unitary side length is 38 km that is the square
root of the home range. For the African elephant in the
KNP the home range varies from 400 to 1500 km2 in the
wet (summer) and in the dry (winter) season respectively
[10, 80–82]. The choice of the unitary side length length for
definition of the aggregates has a very limited influence on
the aggregate-size distribution for scale-free patterns which
is also the case of the African elephant [70]. Unfortunately,
for the African elephant we do not have any information
about the observed aggregates and the only data available are
part of an ongoing project in which a stochastic network-
based metapopulation model is implemented [70] using
only occurrences and habitat capacity functions without the
requirement of calculating aggregates.

2.5. Theoretical Construct

The theoretical characterization of aggregates is based on
hypothesis about relationships among aggregate geometrical
features. Identical relationships have been formulated for
river basins by [83]. The allometric ansatz for the size S and
the perimeter C of the aggregates are:{

S = kS L
DS
‖

C = kC L
DC
‖

, (1)

where: L‖ is the main diameter of aggregates that is a
proxy of aggregates’ characteristic length and is measured
along the principal axis of inertia of aggregates (Figure 1
and Figure 2); L⊥ is the transversal diameter of aggregates;
DS = 1 +H because S ∼ L‖L⊥ and L⊥ ∼ LH

‖ , where H is
the Hurst exponent; and DC is d f according to the theory of
fractal river basins [56]. The d f exponent that characterizes
the characteristic length of the aggregate characteristic curve,
is the fractal dimension of a stream for fractal river networks.
A stream that is each rivulet going from any site of the basin
to the outlet, is a fractal set with the same fractal dimension
along its path. In general, DS, and DC are fractal dimensions
related to the morphological structure of aggregates.

The ansatz is to consider that half of the perimeter (C/2)
scales with a power of one with l that is the mainstream length
in river basins (Figure 1). In general l is definable as the length
of the aggregate characteristic curve. The aforementioned
scaling relationship is verified for river basins. For river
basins it was suggested that basin boundaries and mainstream
courses are in essence mirror images of each other [61, 84–
87]. This assumption generates the second allometric law
in Equation 1 irrespectively of the constant. We assume
the relationship to hold for any aggregate along a line
drawn into the domain on which the aggregates are self-
organized (Figure 2) and within any aggregate (Figure 1). The
characteristic curve can be the mainstream of a river basin, a
rivulet of a subbasin, or any other characteristic curve drawn
within the system domain. S can be imagined as the body-
mass of a system component in a biological perspective as for
river basins in river systems [14].
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From Equation 1 by incorporating the first relationship into
the second one, the perimeter-area relationship (PAR) [88] is
derived as:

C ∼ Sh, (2)

where h = d f /(1 + H) = Dc/2 is the Hack’s exponent.
h =

DC
DS

by considering the ansats in Equation 1. In the
ecology literature Dc is classically identified as the fractal
dimension of an aggregate derived from the PAR. Equation 2
is commonly known as Hack’s law in fluvial geomorphology
[89] where C is the mainstream length and S is the size of
a basin. The interchange of the mainstream with the basin
boundary is supported by our ansatz and by the empirical
evidence of the scaling of the basin perimeter with the
mainstream length with a power of one (C ∼ l) [61, 84–87].
The Hack’s law validity is proven in any embedded subbasins
within river basins. This shows the self-affinity of river basins
and the possibility to extend this law to any system. Here we
test the validity of Equation 2 also for any aggregate of the
animate and inanimate systems considered.

The probability density function of the aggregate-size can
be universally described by the double-Pareto distribution:

p(s) =
sβ−1Θ(s)Θ(t− s)+ s−ε−1Θ(m− s)Θ(s− t)[

tβ

β
+ m−ε−t−ε

ε

] ∼

∼
{

sβ−1 for s < t
s−ε−1 f

( s
m

)
for s > t

, (3)

where, t is the truncation point (“hard truncation”) where
a change of scaling can occur, and m is the upper cutoff
corresponding to the maximum value of the aggregate-size
(Figure 3, e). f (x) is a function such that f (x) = 1 if x� 1
and f (x) = 0 if x � 1. Here f (x) = Θ(1− s/m). β and
ε are the scaling exponents of the aggregate-size spectrum.
The double-Pareto probability density function (pdf) of the
aggregate-size has been widely studied [90], for example
for landslides [91–93]. Here we propose the novel analytical
formulation in Equation 3 and we verify if such distribution is
reproduced by the box-counting method on data versus model
predictions. The probability of exceedence of the aggregate-
size is by integration of Equation 3:

P(≥ s) =

{
N
[

tβ−sβ

β
+ t−ε−m−ε

ε

]
for s < t

N s−ε−m−ε

ε
for s > t

∼

∼
{

C0− sβ C1 for s < t
s−ε F

( s
m

)
for s > t

, (4)

where, N =
[

tβ

β
+ m−ε−t−ε

ε

]−1
, C0 and C1 are constants, F

is a homogeneity function that depends on a characteristic
size of aggregates m ∼ S ∼ L1+H

‖ , and ε = DK/2 [59]. DK

is the fractal dimension of aggregates. Thus, Equation 4 is

a novel formulation of the Korčak’s law [58] that allows a
double scaling regime of the aggregate-size distribution. The
distribution is tested against the aggregate spectra predicted
by the box-counting and by the models (Section 2.3 and 2.4
respectively). The fit of the distribution is evaluated by a
Maximum Likelihood Estimation (MLE) approach (Section
2.8). The determination of DK is independent from the PAR
because it considers only the aggregate-size. In the theory of
fractal river-basins [56] a subbasin is a unit of a river basin
system subjected to geological and climatological forces.
The random variable s is the drainage area of a subbasin
in river basin ecosystems. The interaction among subbasins
happens along the drainage ridges that divide the runoff
among adjacent subbasin hillslopes.

2.6. Sampling of Aggregate Areas

For aggregates of systems, we consider the aggregate areas
that are distributed in the system along a real or an ideal
curved line and along a perfectly straight line in the system
domain. The former case is the self-affine case, and the latter
case is the self-similar case of aggregates for which H < 1
and H = 1 respectively. The theoretical characterization of
the distribution of areas was performed by [63] for subbasins
organized along a fractal mainstream, and along a perfectly
straight mainstream. Similarly, [94] considered the case of
subbasins along a fractal coastline showing indirectly the
generality of the theoretical characterization of the area of
river basin aggregates.

The subbasin area contributes to the formation of the
drainage area. The drainage area is a cumulative function that
is the sum of all subbasins’ areas upstream a point which
has hydrological and geomorphological implications [56, 95–
97]. The constraint of conservation of the total area [56, 98]
suggests that the distribution of areas sampled along a given
straight line or along a curve where multiple aggregates occur
(i.e. pb(s|L‖), and pms(s|L‖) in [63] respectively), differs from
the Korčak’s law [58] for the drainage area p(s|L‖) in the
scaling exponent. This is supported by empirical evidence for
river basins [63]. Indeed if at i sites one collects the areas Si
and must enforce the constraint ∑i Si = Smax (where Smax is
the total area), the resulting population is about a different
random variable from that leading the exceedence of the
drainage area because the analog areas Si sampled anywhere
do not add to the total area [56, 63]. Hence, this is true for any
other system.

The Hack’s exponent is in fact different for the three
distributions mentioned above: h = 1− ε = 2− τ for the
drainage area; h = ε = τms− 1 for the areas along a curve;
and h = 2− ε = τb− 1 for the areas along a straight line. τ,
τms, and τb are defined in [63] as the scaling exponents of the
probability density function of these areas that occur along
a curve (self-affine case) or a straight line (self-similar case)
(i.e., 1+d f /(1+H), and 2−1/(1+H) respectively). In order
to obtain the desired distribution of areas the correct ε needs
to be introduced in Equation 4.
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2.7. Validation of the Theoretical Construct
Because of the validity of Equation 1, Equation 2, and
in analogy with the analytical framework of river basins’
drainage area [56], we assume that the slope of the probability
of exceedence of the aggregate-size is −ε = h− 1 [56]. The
validation of the model for the aggregate-size distribution is
tested by comparing:

1. the Hack’s coefficient derived from the PAR (h) versus:
(i) hK = 1− ε = d f /1+H from the Korčak’s law for
the river basin drainage area (we consider self-affine
basins); (ii) hK = ε for the aggregates of all systems in
the self-affine case; and versus (iii) hK = 2− ε for the
exact self-similar case of aggregates (for which H = 1)
that is the case of bacteria aggregates. hK is calculated
only from the aggregate-size spectrum;

2. the Hurst coefficient H derived from the scaling
relationship L⊥ ∼ LH

‖ , versus Hc = d f /h− 1 derived
from the PAR by assuming an average value of
d f = 1.1. H is determined only by calculation of the
diameters of the aggregates.

The first validation is to test the relationship between
the aggregate-size distribution and the perimeter-area
relationship, while the second validation is to test the
relationship between the perimeter-area relationship and
the allometry relationship of aggregates considering their
diameters.

2.8. Maximum Likelihood Estimation of the
aggregate-size Spectrum
The Maximum Likelihood Estimation (MLE) method here
employed was developed in [99] for the selection of the
best-fit probability distribution function on data. In this
study, power-law (Pareto), the proposed truncated power-
law (truncated Pareto-Lévy) (Equation 4), and exponential
distributions are tested for the random variable aggregate-
size S. These distributions are tested on the the aggregate-
size calculated by the box-counting and the models explained
in Section 2.4. The appropriate MLE equation for each
distribution is used to derive an exponent with an initial smin
parameter set to the minimum value found in the data and
model predictions. A best fit dataset is generated with the
estimated parameter and a Kolmogorov-Smirnov (KS) test is
used to determine the goodness of fit (the KS-D statistic). The
KS test is the accepted test for measuring differences between
continuous data sets (unbinned data distributions) that are a
function of a single variable.

This difference measure, the KS-D statistic, is defined
as the maximum value of the absolute difference between
two cumulative distribution functions. We consider the KS-
D statistics in a [0, 1] range. The KS-D statistic between two
different cumulative distribution functions PN1(s) and PN2(s)
is defined by KS − D = max−∞<s<∞ | PN1(s)− PN2(s) |.
To determine the best fit value for the smin parameter the

calculation is repeated with increasing values for smin taken
from the dataset with the value that resulted in the best
(lowest) KS-D statistic being retained as the best fit value
[99, 100]. When fitting a Pareto distribution the method is
repeated to derive a best fit value for the smax parameter, so for
the Pareto distribution both the smin and smax parameters are
fitted in the same way. This method is applied for any scaling
regime of the data. The slopes of the exceedence probability
are derived using the linear and the jackknife models [72].
The MLE method is used to verify that the proposed Pareto-
Lévy distribution (or commonly called “double-Pareto”) has
the best fit for the observed and predicted aggregate-size
spectra.

3. Results

The Korčak’s law for the animate and inanimate systems
considered is shown in Figure 3 from plot (a) to plot (f) in
order of their average aggregate-size that is proportional to
the average body-mass of system components. The aggregate-
size is calculated by models at different level of complexity,
and by image analysis methods as described in Section 2.4.
The aggregate-size spectrum is tested against the predictions
of the box-counting method. In the plots of Figure 3 the box-
counting relationship is reported with grey squares fitted by
a linear regression. The spectra from the box-counting are
adjusted by dividing by two the scaling exponent in order
to be compared to the Korčak’s law spectra that provide
the distributions of the aggregate-size with an exponent that
is half of the fractal dimension. The proposed Pareto-Lévy
distribution (Equation 4) has the best fit for the observed
and predicted aggregate-size spectra with respect to the
other distributions considered by the MLE method (Section
2.8). The KS-D statistic is always higher than 0.87 for this
distribution for all the systems considered.

The E. coli bacteria and the Snowy Plover are the systems
that exhibit a pure power-law (Pareto distribution) of the
aggregate-size for two and three orders of magnitude of
the aggregate-size respectively. Fishes and big trees of the
MMRS exhibit a truncated power-law distribution of the
aggregate-size with finite-size effects (“soft truncation”).
The soft truncation is a well-known feature of power-law
distributions due to finite-size effects (see [56]). Landslides
and the African elephant are the only systems that show a
truncated double-Pareto distribution with “hard truncation”.
The hard truncation separate the two scaling regimes of the
aggregate-size distribution (Equation 4). On the contrary of
[91] and [92] we are able to reproduce the double-Pareto
distribution also for the exceedence probability distribution of
landslides. The transition value, from one scaling regime to an
other with different exponents of the power-law distribution,
is a characteristic value that can be related to the system
domain or to biological constraints [26, 101–104]. Double-
Pareto size spectra were reported for example for forest fires
for which the two scaling regimes were attributed to the two-
layer structure of the forest which allows the formation of
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different kind of fires [105]. However, man-made constraints
can exist and influence the spatial distributions of system
components, such as fences of the KNP for the elephants [10],
and the Petri dish domain for the E. coli [71]. The influence
of strong geometrical constraints on species organization
is a very important topic to investigate with process-based
models; however, it is outside the scope of this paper.

In the following we try to discuss some possible origins
of the double-Pareto distribution of the aggregate-size for
elephants and landslides in the light of our previous comment
and because our knowledge of these systems. For elephants
the social life of male elephants (bulls) and female elephants
are very different [106, 107]. The females spend their entire
lives in tightly knit family groups. These groups are led by
the eldest female, or matriarch. Adult males, on the other
hand, live mostly a solitary life [106]. The spatial distribution
of male elephants is more homogeneous than for females
and this leads to the one power-law regime of the aggregate-
size for male elephants aggregates (black spectrum in Figure
3, e). However, some eldest females are also observed to
be solitary especially at the very end of their life. Hence,
the aggregate-size distribution of female elephants shows a
double power-law regime (orange spectrum in Figure 3, e).
Thus, the different power-law structure of the aggregate-size
for female and male elephants may be explained by their
different social life. This in turn affects the dispersal network
and the aggregate-size distribution. For the elephants the
variation of ε and β is estimated ±0.005 for a variation of
±10km of the box length of the box-counting that is used to
calculate the aggregates.

For landslides the origin of the double-Pareto distribution
has been a matter of debate among geomorphologists. On
average small landslides tend to occur much closer to the river
network in sites with small hillslope-to-channel distance.
On the contrary, large landslides that tend to involve big
portions of the hillslopes and their center of mass is further
from the network. The fact that the center of mass of
most of landslides is always observed futher up on the
hillslopes may simply occur due to geomorphological reasons
as evidenced in [108]. The constraint would be dictated
by the dimension of the valley that is expressed by the
subbasin ridge to channel distance. The double scaling of
the landslide-size is also attributed to different triggering
mechanisms for example seismic-induced landslides are big
and slow phenomena, while storm-induced landslides are
small and rapid phenomena. It is also probable that the
double-Pareto distribution of the landslide-size is observable
because at smaller scales the cohesion forces become
prevalent, thus hindering the development of more frequent
mass movements; while at larger scales the main resisting
mechanical forces are of frictional type only [108]. The
double scaling has also been attributed to undersampling of
small landslide events that are difficult to be recorded. The
existence of the undersampling effect of small landslides
is certain to exist. Nonetheless, independently of any
undersampling it was shown that under a given scale the

frequency distribution of the landslide-size has a roll-over
effect that changes the sign of the first derivative of the
Pareto distribution [108]. We believe that despite all these
suppositions about the origin of the double-Pareto distribution
of the landslide-size, the effect of the river network is
certainly driving the distribution of landslides.

The collapse test [109] that verifies the ansatz (Equation
1) is shown in Figure 4 (a). The product P(≥ s) sε has
a different constant for each system considered. Thus, we
decided to rescale everything to the same constant for
better visualization. Two theoretical predictions are validated,
namely: the perimeter-area relationship (Equation 2); and, the
probability distribution of the aggregate-size (Equation 4) that
is shown to follow a double power-law structure (Figure 3.
The collapse test verifies our assumption that the perimeter-
size relationship is a more broadly defined Hack’s law, and
that the power-law distribution of drainage areas is a special
case of the Korčak’s law for river basins. Values of H from
the PAR match the values from direct observations. It is safe
to assume, in this context, that d f ≈ 1. In all cases of the
systems analyzed the theoretical prediction is verified quite
well. Overall, the theoretical framework seems consistently
verified. We plot the normalized scaling perimeter-area
relationship (PAR), C/Cmax ∼ (S/Smax)

h (Figure 4 (b)),
because of the large range of perimeters, from a few
centimeters of the E. coli bacteria aggregates to the large
perimeters of big-tree aggregates of the MMRS.

The first test (Section 2.7) of the the Hack’s coefficient
derived from the PAR (herein h) versus hK from the Korčak’s
law is verified. Table 1 reports the numerical values. Thus,
we relate the aggregate-size spectrum with the perimeter-area
relationship of the aggregates, while previous studies. For
instance [110] and [60]) did not find any linkage between
the scaling exponents of the two relationships. The second
test (Hc = H) appears to be less stringent than the first. It
is verified only for the range of variability of the Hack’s
exponent 0.5 ≤ h ≤ 1, that is the range commonly observed
for river basins [89]. For h < 0.5 and h > 1 the Hack’s
exponent seems well approximated by Hc = 1− | d f /h−
1 |. For h > 1 the edge effect of aggregates is very high,
that means that the species are confined in very irregular
aggregates. It was demonstrated that the larger the edge-effect
determined by the complexity of the aggregate perimeter,
the lower the probability of survival for the individual of
the species within the aggregate. This is the also the case
observed for big landslides, for fishes (supposedly because
of the dendritic structure of the river network that create very
irregular aggregates), and for E. coli colonies. For h < 0.5 the
compactness of habitat aggregates is very high. For example
this is the case observed for the solitary male elephants in
the KNP. For 2 ≤ ε+ 1 ≤ 3 that is the case of big landslides
and elephants aggregates a finite mean and infinite variance
of the aggregate-size is observed. The general case observed
for all the other systems satisfies ε + 1 < 2 for which the
mean and the variance of the aggregate distribution is infinite.
This may lead to the conclusion that the aggregate-size may
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theoretically increase without an upper limit. However, it is
somehow arguable to speculate about mean and variance of
aggregate-size to this extent because theoretical studies are
required to verify these conclusions.

For the systems analyzed, the Korčak’s exponent exhibits
a wider range of values than reported in literature [110].
We find that the values of the scaling exponent, ε + 1,
is consistent with the range provided by [48]. For large
elephants herds and big landslides (that is for s & 7.0× 103,
and s & 1.0× 103 which corresponds to the hard truncation
points in Figure 3 (e) and (f) respectively) we find a fractal
dimension bigger than three. We attribute this singularity to
the disproportionate increase of the aggregate length when
the unit of measurement (e.g. the box-length of the box-
counting method) is decreased. Very elongated aggregates for
both elephants and landslides are observed. In general, small
aggregates tend to be self-similar, while big aggregates tend
to be self-affine. The self-affinity (elongation) of aggregates
can also be enhanced by geomorphic elements of ecosystems,
such as the presence of river networks. This is the case for
example of subbasins and fish aggregates. River networks
plays a determinant role also in shaping the distribution
of riparian trees [111], and the distribution of elephants
[112]. Both trees and elephants are in fact, water-dependent
species and the closeness to water is a fundamental driver
of their organization. We find different “fractal domains”
[113] (or scaling regimes) separated by “hard” truncation
points of the aggregate-size spectrum. These regimes possibly
identify different dynamics of species organization resulting
in different aggregate patterns as suggested by [101]. With
the hard truncation the “heavy-tailedness” of the aggregate-
size spectrum is less strong than for distributions with finite-
size effects. Generally there is a lack of a characteristic
aggregate-size in presence of a power-law distribution of
the aggregate-size. However, every population of species
(or system components) is finite because it is constrained
by landscape heterogeneities, anthropic constraints, and/or
biological factors. We believe that these factors control
together the minimum and the maximum aggregate-size; thus,
the distribution of the aggregates [114]. On the theoretical
viewpoint the distribution is scale-free. However, due to the
finite size of the population of aggregates we believe it
is possible to assign a characteristic scale. We think this
is particularly true in the case of “hard” truncated power-
law distributions, that are in between heavy-tail and log-
normal distributions. We underline the importance of a
further understanding of the distribution of aggregates for the
understanding of system self-organization.

4. Discussion

The study shows that the box-counting provides reliable
estimates of the fractal dimension of aggregates using only
occurrences of systems components. The box-counting does
not capture finite-size effects but it captures hard-truncation
points of the aggregate-size spectrum. This is important

because different scaling regimes, that are possibly associated
with different system dynamics, can be captured by using
the box-counting method. Because of the validity of the
box-counting that assumes scale-invariance of aggregates, we
demonstrate that power-law distributions of the aggregate-
size imply fractal patterns as found by other studies [103].
However, the contrary does not hold; scale-invariant patterns
are not necessarily realizations of systems with power-law
aggregate-size distributions. We demonstrate that the box-
counting, the perimeter-area relationship, and the Korčak’s
law provide close estimates of the same fractal dimension.
Models of higher complexity provide the smallest estimate
of the fractal dimension based on the Korčak’s law (DK)
just using aggregate sizes, while the box-counting provides
the largest estimate (Db). The fractal dimension calculated
using the PAR (Dc) is in between DK and Db. Hence, the
perimeter-area relationship is possibly the best estimate of the
fractal dimension because it considers perimeters and areas
of aggregates. Hence, the fractal estimation from the PAR is
based on a richer information than other fractal dimensions of
the aforementioned methods.

We verify that aggregates can be considered as islands and
their perimeter as a curve mirroring the sculpting network in
the landscape. We show that the probability of exceedence of
the drainage area, and the Hack’s law are the the Korčak’s
law and the perimeter-area relationship (PAR) for river basins
respectively. We formulate a probabilistic characterization
for animate and inanimate systems extending the fractal
theory of river basins to aggregates of any animate and
inanimate system. At the system scale aggregates of system
components, from bacteria to elephants, are the byproduct
of dispersal networks of single individuals, such as for river
basins and landslides that are the byproduct of river networks.
The Korčak’s law, that is the aggregate-size spectrum is
verified also for the cumulative drainage area and for the areas
of merging subbasins in river basins sampled along a self-
similar or a self-affine mainstream. In analogy, mainstreams
are for subbasins like Brownian-Lévy paths of species that
disperse in ecosystems. The ansatz (Equation 1) is verified by
comparing the Hack’s exponent, h, from the perimeter-area
relationship and its estimate derived from the Korčak’s law.
The Hurst exponent, H, from the PAR, is tested against the
exponent derived from the allometric relationships between
aggregate’s diameters. This test is not verified for h > 1
supposedly because the edge-effect is very high, and for h <
0.5 because the compactness of aggregates is very high. Both
situations are not observed in river basins.

A novel analytical formulation is provided for the
probability distribution of the aggregate-size. The analytical
formulation is a generalized Korčak’s law that describes the
double-Pareto and Pareto distributions with finite-size and
truncation effects. Double “fractal regimes” evidenced by the
double-Pareto distribution are possibly signatures of different
system dynamics such as it is observed for landslides and
elephants. The finite-size effects and the hard truncation
in the aggregate-size spectrum are caused by geometrical
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constraints of the ecosystem (for instance, the maximum
extent of the ecosystem that determines an upper limit to the
growth of aggregates) or biological constraints. The power-
law distribution of the aggregate-size can be a manifestation
of the self-organization of species along a network, such
as the case of river basins. For the same double-Pareto
distribution of the aggregate-size a virtually infinite number
of spatial arrangements of aggregates can be generated, likely
with different fractal dimensions. Thus, future research is
anticipated toward the understanding of the linkage between
aggregate-size spectrum and the spatial distribution of
aggregates that has relevant consequences for metapopulation
dynamics of species, hydrogeomorphological dynamics, and
epidemic spreading to name just few examples.

5. Conclusions

The characterization of systems patterns is crucial as a
first step to possibly understand the fundamental drivers of
systems processes, and to develop indicators that are capable
to predict fluctuations of these patterns. Here we focus
on aggregation features of natural animate and inanimate
systems and in particular on those that are characterized by
a power-law distribution of the aggregate-size. The power-
law is manifesting a resilient configuration of the system [26].
Aggregation phenomena are also observed in human systems
(for example, cities) and analogies have been drawn between
natural and human systems by recent studies [16]. We
propose the box-counting as a parsimonious null-method for
accurately estimating the aggregate-size distribution without
the knowledge of any detailed information, rather than system
component occurrences, about the systems analyzed. For
example we did not use any biological information of the
species investigated. The box-counting can be tested against
other more “biologically-complex” models which provide
other complexity measures, such as area, perimeter, and
diameters of aggregates. This validation, at least for the
cases analyzed, confirms that the occurrences of system
components or just the occurrences of aggregates, if available,
are enough for the box-counting to predict the aggregate-size
distribution reliably.

The introduced analytical formulation of the aggregate-
size distribution can model different Pareto distributions, such
as double-Pareto, and Pareto with soft and hard truncations
by properly adjusting the distribution parameters. The box-
counting does not reproduce the tail of the aggregate-size
distribution in presence of finite-size effects. This range of
the distribution is very narrow and few system components
experience such level of aggregation. However, these systems
components are the largest in size; hence, these system
components may be vital for the whole systems (for instance
when they are the hub of system function).

Our results show that position, and topological features
of any aggregate are determined by global system processes
governed by a physical network, a process network or both.
The fractal dimension of each aggregate is an estimate of

the fractal dimension of the whole pattern of aggregates
because aggregates are tightly linked. We believe that the
development of detailed process-based models which result
in power-law distributions of the aggregate-size is certainly
necessary to verify these conclusions and to test how and
which conditions change the aggregate-size distribution from
power-law to another type of distribution. However, that is
not sufficient if computational and theoretical methodologies
for characterizing aggregation patterns, such as the ones here
provided, are not available. The aggregate-size spectrum is
in fact an important indicator of system form and function.
For this motivation methods that capture such organization
(for example just by assessing the fractal dimension) and its
variation due to endogenous and exogenous changes [26, 103]
are desired.

This is also useful for designing animate and inanimate
man-made systems with a desired degree of aggregation of
system components, multiple levels of aggregation in the
same system space dictated by different power-law regimes of
the aggregate-size distribution, or time varying aggregation.
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ÒlŐvy walks evolve through interaction between movement
and environmental complexityÓ. Science 335: 918.

[37] Getz WM, Saltz D (2008) Movement Ecology Special Fea-
ture: A framework for generating and analyzing movement
paths on ecological landscapes. Proceedings of the National
Academy of Science 105: 19066-19071.

[38] Reynolds AM (2010) Bridging the gulf between correlated
random walks and Lévy walks: autocorrelation as a source of
Lévy walk movement patterns. Journal of The Royal Society
Interface .

[39] Muneepeerakul R, Azaele S, Levin S, Rinaldo A, Rodriguez-
Iturbe I (2011) Evolution of dispersal in explicitly spatial
metacommunities. Journal of Theoretical Biology 269: 256

- 265.
[40] Boyer D, Ramos-Fernández G, Miramontes O, Mateos JL,

Cocho G, et al. (2006) Scale-free foraging by primates
emerges from their interaction with a complex environment.
Proceedings Biological sciences / The Royal Society 273:
1743–1750.

[41] D’Souza RM, Borgs C, Chayes JT, Berger N, Kleinberg
RD (2007) Emergence of tempered preferential attachment
from optimization. Proceedings of the National Academy of
Sciences 104: 6112–6117.

[42] Muneepeerakul R, Bertuzzo E, Lynch HJ, Fagan WF, Rinaldo
A, et al. (2008) Neutral metacommunity models predict fish
diversity patterns in Mississippi-Missouri basin. Nature 453:
220-222.

[43] Fletcher RJ (2009) Does attraction to conspecifics explain the
patch-size effect? An experimental test. Oikos .

[44] Bak P, Tang C, Wiesenfeld K (1987) Self-organized
criticality: An explanation of the 1/f noise. Phys Rev Lett
59: 381–384.

[45] Bak P, Tang C, Wiesenfeld K (1988) Self-organized
criticality. Phys Rev A 38: 364–374.

[46] Pastor-Satorras R, Vespignani A (2001) Reaction-diffusion
system with self-organized critical behavior. European
Physical Journal B 19: 583-587.

[47] Sornette D (2006) Critical Phenomena in Natural Sciences.
(Springer – Synergetics).

[48] Juanico DE, Monterola C, Saloma C (2005) Cluster formation
by allelomimesis in real-world complex adaptive systems.
Phys Rev E 71: 041905.

[49] West G, Brown J, Enquist B (1999) The fourth dimension of
life: Fractal geometry and allometric scaling of organisms.
Science 284: 1677-1679.

[50] Enquist BJ, West GB, Brown JH (2009) Extensions and
evaluations of a general quantitative theory of forest structure
and dynamics. Proceedings of the National Academy of
Science 106: 7046-7051.

[51] He F, Hubbell S (2003) Percolation theory for the distribution
and abundance of species. Phys Rev Lett 91: 198103.

[52] Gardner R, Urban D (2007) Neutral models for testing
landscape hypotheses. Landscape Ecology 22: 15-29.

[53] Hubbell S (2001) The Unified Neutral Theory of Biodiversity
and Biogeography. Princeton University Press.

[54] Manor A, Shnerb N (2008) Origin of pareto-like spatial
distributions in ecosystems. Phys Rev Lett 101: 268104.

[55] Konar M, Muneepeerakul R, Azaele S, Bertuzzo E, Rinaldo
A, et al. (2010) Potential Impacts of Precipitation Change
on Large-Scale Patterns of Tree Diversity. Water Resources
Research : I833+.

[56] Rodriguez-Iturbe I, Rinaldo A (1997) Fractal River Basins:
Chance and Self-Organization. Cambridge University Press.

[57] Liebovitch LS, Toth T (1989) A fast algorithm to determine
fractal dimensions by box counting. Physics Letters A 141:
386-390.

[58] Korcak J (1940) Deux types fondamentaux de distribution
staffstique. Bull Inst Int Star 30: 295-307.

[59] Mandelbrot B (1982) The Fractal Geometry of Nature. W.H.
Freeman.

[60] Nikora V, Pearson C, Shankar U (1999) Scaling properties
in landscape patterns: New Zealand Experience. Landscape
Ecology 1999: 17-33.

EAI European Alliance
for Innovation 12

EAI Endorsed Transactions on Complex Systems
January-June 2013 | Volume 1 | Issue 2 | e2



Power-law of Aggregate-size Spectra

[61] Shankar U, Pearson CP, Nikora VI, Ibbitt RP (2002)
Heterogeneity in catchment properties: a case study of Grey
and Buller catchments, New Zealand. Hydrology and Earth
System Sciences 6: 167-184.

[62] Howard AD (1990) Theoretical Model of Optimal Drainage
Networks. Water Resources Research 26: 2107-2117.

[63] Convertino M, Rigon R, Maritan A, Rodriguez-Iturbe I,
Rinaldo A (2007) Probabilistic structure of the distance
between tributaries of given size in river networks. Water
Resour Res 43: W11418.

[64] Gabrielov A, Newman WI, Turcotte DL (1999) Exactly
soluble hierarchical clustering model: Inverse cascades, self-
similarity, and scaling. Phys Rev E 60: 5293–5300.

[65] Da Costa F, Grinfeld M, Wattis J (2002) A hierarchical cluster
system based on horton-strahler rules for river networks.
Studies in Applied Mathematics 109.

[66] Convertino M, Kiker G, Chu-Agor M, Muñoz-Carpena R,
Martinez C, et al. (2010) Integrated Modeling to Mitigate
Climate Change Risk due to Sea-Level Rise of Imperiled
Shorebirds on Florida Coastal Military Installations. In:
Linkov I, Bridges T, editors, Climate Change: Global Change
and Local Adaptation, NATO book.

[67] Catani F, Casagli N, Ermini L, Righini G, Menduni G (2005)
Landslide hazard and risk mapping at catchment scale in the
arno river basin. Landslides 2: 329 - 342.

[68] SANParks (2011) Kruger Data Repository. Technical report,
South African National Park Data Repository. http://
dataknp.sanparks.org/sanparks/.

[69] Convertino M, Kiker G, Muñoz-Carpena R, Chu-Agor M,
Fisher R, et al. (2011) Scale and Resolution Invariance of
Suitable Geographic Range for Shorebird Metapopulations.
Ecological Complexity .

[70] Convertino M, Kiker G (2012) Network-based Metapopu-
lation Dynamics of the Loxodonta africana in the Kruger
National Park. in preparation .

[71] Budrene EO, Berg HC (1995) Dynamics of formation of
symmetrical patterns by chemotactic bacteria. Nature 376:
49-53.

[72] Warton DI, Wright IJ, Falster DS, Westoby M (2006)
Bivariate line-fitting methods for allometry. Biological
Reviews 81: 259–291.

[73] MathWorks (2012) Matlab .
[74] Ghesla E, Rigon R (2006) JGrass 2.0 : a Tutorial for the

Management of Digital Terrain Models. Technical report,
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Table Captions

Table 1. Fractal dimensions, scaling exponents, and
validation. The systems are listed in order of their average
aggregate-size which is proportional on average to the
body-mass of system components. The box-counting for
subbasins, landslides, and E. coli is performed considering
the center of mass of the aggregates as point-occurrence
patterns. Db, DK , Dc are the fractal dimensions from the
box-counting, the Korčak’s law (Eq. 4), and the PAR (Eq. 2).
A double scaling is observed for elephants and landslides.
H is derived from the ansatz (L⊥ ∼ LH

‖ ), h from the PAR.
Hc and hK are compared to H and h for validation of the
theory. hK is derived from the Korčak’s law and it is: (i) 1− ε

from the Korčak’s law for the river basin drainage area (we
consider self-affine basins); (ii) ε for the aggregates of all the
species in the self-affine case (H < 1); and (iii) 2− ε for the
self-similar case of aggregates (H = 1) that is the case of the
E. coli. Hc is derived from the PAR and it is: (i) d f /h− 1
for 0.5 < h < 1.0; and, (ii) 1− | d f /h− 1 | for h < 0.5 and
h > 1. 〈L‖〉 is the average aggregate diameter which is a
characteristic length of the whole mosaic of aggregates,
Smax and Cmax the maximum values for the aggregate area
and perimeter. Variation of scaling exponents is estimated
±0.04. Variabilities of measured exponents are standard
errors found by a Maximum Likelihood Estimation method
(Section redmle) bootstrapping over cases and deriving
scaling exponents by the linear and the jackknife models
[72].

Figure Captions

Figure 1. Schematic representation of the theoretical
construct. An ideal self-similar or self-affine curve is drawn
in the system domain where aggregates are self-organized.
The curve can be the path followed by species (for instance,
a dispersal network similar to a Brownian walk [33, 34])
or a physical network (such as a river network). Other
curves of the same type can be traced within each aggregate.
The curve can be imagined as the mainstream of a river.
Aggregates are characterized by allometric relationships such
as for river basins. S is the aggregate area, l is the length
of the curve, L‖ and LH

‖ are the aggregate diameters. The
same quantities are evidenced in Figure 2 for river basins.
Along the curve it is possible to sample the aggregate areas
sequentially (S1,S2, ...), or to sample the sum of aggregate
areas (S1,S1 +S2, ...). This leads to two different probability
distributions. The center of masses are represented as grey
dots.

Figure 2. Animate and inanimate systems considered in
the study. From (a) to (f) the species are shown in order of
the extension of the system domain where they occur. (a) E.
coli bacteria colonies (courtesy of [2]). (b) Tanaro subbasins
identified by their drainage divides in red [63]. (c) Snowy
Plover nest occurrences in 2006 along the Florida Gulf coast,
and closeup of the box-counting applied to the upper part of
the St. Joseph Peninsula State Park [66]. (d) historical Arno
landslides from the Synthetic Aperture Radar (SAR) images
of the European Remote Sensing spacecraft (the center of
mass of landslides is reported) [67]. (e) elephant occurrences
in 2005 in the Kruger National Park [68] (plane survey).
(f) 100-th most common species of fishes, and of big trees
associated to each direct tributary area (DTA, ∼ 3900 km2) in
the Mississippi-Missouri River Basin [9, 42, 55].

Figure 3. Probability of exceedence of the aggregate-
size from model predictions and the box-counting. The
value of the reported scaling exponents ε and β is half of
the fractal dimension (DK/2, Equation 4). The probability
of exceedence of the aggregate-size is the Korčak’s law
(Equation 4) derived from model predictions. The plots
from (a) to (f) are in order of the average aggregate-size of
the systems that is proportional to the average body-mass
of system components. The aggregate-size unit is reported
along on the x-axis. For fishes and big trees of the MMRS the
aggregate-size is expressed in “local-community” units (LC),
where a LC unit is the direct tributary area whose average
extension is 3900 km2. The binned box-counting relationship
is reported with grey squared dots. The fractal dimension
corresponding to the box-counting method is reported in
Table 1. The KS-D statistic of the double-Pareto distribution
on the aggregate-size from the box-counting is 0.87, 0.90,
0.96, 0.97, 0.93, 0.92 with respect to the other distributions
(Section 2.8) for the systems considered from (a) to (f).
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Figure 4. Collapse test and perimeter-area relationship.
(a) Intersystems collapse test of the scaling ansatz (Equation
1). P(≥ s) sε is rescaled to the same constant for all the
species. (b) normalized perimeter-area relationship (PAR)
(Equation 2). The normalized PAR, C/Cmax ∼ (S/Smax)

h,
provides a direct estimation of the Hack’s exponent h.
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