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ABSTRACT
In Future Internet it is possible to change elements of con-
gestion control in order to eliminate jitter and batch loss
caused by the current control mechanisms based on packet
loss events. We investigate the fundamental problem of ad-
justing sending rates to achieve optimal utilization of highly
variable bandwidth of a network path using accurate packet
rate information. This is done by continuously controlling
the sending rate with a function of the measured packet
rate at the receiver. We propose the relative loss of packet
rate between the sender and the receiver (Relative Rate
Reduction, RRR) as a new accurate and continuous mea-
sure of congestion of a network path, replacing the errat-
ically fluctuating packet loss. We demonstrate that with
choosing various RRR based feedback functions the opti-
mum is reached with adjustable congestion level. The pro-
posed method guarantees fair bandwidth sharing of com-
petitive flows. Finally we present testbed experiments to
demonstrate the performance of the algorithm.

Categories and Subject Descriptors
C.2.2 [Computer-communication Networks]: Network
Protocols—Applications, Protocol architecture

General Terms
Algorithms, Design, Performance

Keywords
congestion control, transport protocol, TCP

1. INTRODUCTION
In recent years new challenges appeared due to several de-

velopments in the networking technology. They include the
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larger heterogeneity of both the physical infrastructure and
the applications. Network architecture spans from multi-
gigabit connections to wireless and mobile connections, or
even to sensor networks with limited bandwidth. Congestion
control, transport protocol, TCP Concerning applications,
the typical web traffic requires transferring small amount of
data quickly, while for downloading large science archives
the momentary speed of data transfer is not so important.
For media streaming applications other requirements ap-
pears, like smooth transfer with limited jitter.

To cope with these requirements a transport protocol has
to fulfill the following goals. The physical and available
bandwidths and other network resources must be used effi-
ciently, while it is essential to react and adapt to the chang-
ing conditions quickly. The intra-protocol fairness must be
guaranteed by the algorithms themselves without any ex-
plicit information or intervention from network elements.
With other kinds of protocols and flows friendly behavior
is expected, a share in the network resources have to be
provided. Wireless environments require robustness against
single or multiple packet losses no matter whether they are
lost due to fading or buffer overload.

The general traffic control in the current Internet is dom-
inated by TCP variants [1]. Since the birth of the original
concept of TCP [2] there have been significant improvements
of the algorithm. Beyond the general purpose improvements
[3, 4] there are modifications focusing on special environ-
ments like high bandwidth delay product connections [5,
6, 7] or wireless and mobile networks [8, 9]. The packet
sending strategies of these transport protocols are based on
some measured and inferred parameters of the network path.
There are special environments where one-way information
is accessible [10, 11], but usually the clocks of senders and re-
ceivers are not synchronized and time measurements should
rely on information available at one of the sides. One ap-
proach is to measure round-trip information of individual
packets (e.g. the data and the corresponding acknowledg-
ment packets). The round-trip-time (RTT) and the packet
loss are the most common quantities used in congestion con-
trol algorithms. There are other important quantities such
as the available bandwidth, which can be used to optimize
a control algorithm, but is not directly accessible. To infer
such network parameters packet spacing information of con-
secutive packets can be used, which also accessible without
the time synchronization of end hosts [12, 13, 14, 15, 16, 17,
18, 19, 20]. Rather than using the original window-based
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concept of TCP, some packet spacing information and rate
information are also employed in some protocol variants [21,
22, 23].

Although the spacing of sent and received packets and
the packet rate in general can be calculated easily from the
timestamps of packets at each side, the superiority of proto-
cols exploiting this information has not been demonstrated
yet. We show, that using this direct rate information a new
control mechanism can be developed, which can achieve op-
timal utilization of highly variable available bandwidth of a
network path. This is done by continuously controlling the
sending rate with a function of the measured packet rate at
the receiver. We introduce the relative loss of packet rate
(Relative Rate Reduction, RRR) between the end hosts as
a new measure of congestion in a network path. Choos-
ing various RRR based feedback functions the congestion
level in the network path can be adjusted directly. This
inherently achieves fair bandwidth sharing independently of
RTT, provides adjustable friendliness to other protocols and
quick adaptation to available bandwidth. Since the RRR
based feedback is not sensitive for packet losses the inves-
tigated congestion control algorithm is robust even against
high packet loss rates.

The relation of the measured rate information and the
congestion level is investigated in Section 2, where we also
define the Relative Rate Reduction (RRR). In Section 3 we
introduce a congestion control algorithm based on the mea-
sured RRR. Three basic feedback functions and the band-
width utilizations are investigated in Section 4. In Section 5
we evaluate the performance of the proposed method in var-
ious simulated scenarios. In Section 6 the performance of
the UDP-based implementation of our algorithm is tested
in scenarios relevant in mobile wireless environments.

2. MEASUREMENT BASED PROTOCOL
The measured rate information is related to the congestion

in the network path directly. In case of congestion the rate
of a packet train at the receiver end is lower in average than
its initial value at the sender side. The physical capacity of
a link is shared by the flows entering simultaneously. If the
total rate of flows does not exceed the physical link capacity
each flow can pass through with unchanged rate. If the total
rate of flows exceeds the link capacity then congestion sets
up and the received share of a flow is proportional to its
input rate. The macroscopic fluid equations describing the
input and output rates are

Xout =

8

<

:

Xin Xin + Xc ≤ C

C · Xin

Xin + Xc

Xin + Xc > C,
(1)

where C is the physical capacity, while Xc represents the rate
of all the other flows in case of drop-tail queuing discipline.

If congestion persists for a sufficiently long time interval
and buffers are finite, the difference between the average out-
put and input rates of a flow is lost and the loss probability
is given by

p =
Xin − Xout

Xin
. (2)

For a single link the output rate of a flow can be written in
terms of the loss probability

Xout = (1 − p) · Xin. (3)

This can be easily extended to multiple links via

Xout
i = (1 − pi) · Xin

i , (4)

where pi is the stationary packet loss probability on the i-th
link and

Xin
i+1 = Xout

i , (5)

for the i-th and i + 1-th links. The output rate of a flow for
a network path having n links is

Xout
n =

n
Y

i

(1 − pi) · Xin
1 , (6)

where Xin
1 is the input rate at the first link. Equation (3)

remains valid for the multiple link case and the total loss
probability can be expressed in terms of the link losses

p = 1 −
n
Y

i

(1 − pi). (7)

For shorter congested time intervals packets are not nec-
essarily lost with probability (2), they can queue up in the
buffers instead. The difference between the average input
and output rates for short intervals is the combined result of
real packet loss and the increased spacing of packets caused
by the sharing of the queues with the background traffic.
Equation (1) remains valid in this case as well. We can in
general introduce the Relative Rate Reduction (RRR) of a
flow

p̂ =
Xin − Xout

Xin
, (8)

which can be written in terms of the RRR-s of the links

p̂ = 1 −
n
Y

i

(1 − p̂i), (9)

where Xout
i = (1− p̂i) ·Xin

i . The actual value of RRR for a
given train of packets is a good statistical estimator of the
expected long time packet loss probability at a given packet
sending rate.

The RRR has several advantages over packet loss and
packet loss probability: Packet loss is a discrete event hap-
pening rarely. In order to get a reasonable loss probabil-
ity estimate we have to measure it for a long time. This
prevents us from detecting packet loss probability changes
quickly and accurately. On the other hand, RRR can be
measured instantaneously and it gives direct information on
the actual state of the congestion. Its measured value is
a statistical indicator of the long term packet loss proba-
bility if conditions remains unchanged. Packet loss based
congestion mechanisms set back the packet sending rate im-
mediately after the observation of packet loss. Usually the
rate is reduced below the actual available bandwidth of the
path. In absence of packet loss the sending rate tends to
grow and eventually overshoots the actual available band-
width. This causes batch losses and makes the traffic jittery
and bursty. Using RRR solves most of these problems. It
is a sensitive and smooth estimate of the congestion. Rely-
ing on RRR estimates one can take corrective action before
packet loss happens. Next we show how such a mechanism
can be designed and implemented.



3. RELATIVE RATE REDUCTION BASED
CONGESTION CONTROL

Fair and friendly congestion control should be based on
quantities which are the same for each network flow passing
through a link. Packet loss probability and round trip time
are such quantities, therefore most of the mechanisms rely
on them. Since the RRR of a link is determined by the
total rate of incoming flows only, thus the value of RRR
is the same for each flow and we can also build a control
mechanism around it. Congestion control mechanisms are
designed to keep the network in a steady state. In absence of
congestion, packet sending rates of flows are increased, while
they are decreased when congestion is observed. This can be
done very simply and elegantly in an RRR based framework.
Suppose we would like to increase the input rates until the
level of congestion – measured by p̂ – is below some target
value pT . We can define a feedback algorithm which can
adjust the input rate as a function of the output rate by

Xin =
1

1 − pT

Xout. (10)

Here Xin is the actual sending rate of the flow and Xout is
the measured rate of the received flow. Xout is sent back to
the the sender with some back-propagation delay. In case
the actual level of congestion is p̂ the back-propagated value
of the observed rate of the received flow is 1−p̂ times smaller
than the value of the input flow a round trip time ago. So,
during one round trip time cycle the input level of the flow is
updated approximately by the following macroscopic equa-
tion

Xin(t) =
1 − p̂

1 − pT

Xin(t − TRTT ), (11)

where TRTT is the actual value of the round trip time. The
input rate is increased or decreased depending on whether
the actual congestion is below or above the target level. For
a fixed RRR the solution of (11) is exponential Xin(t) =
Xin(0)eαt, where the exponent is α = log((1 − p̂)/(1 −
pT ))/TRTT ≈ (pT−p̂)/TRTT . Increasing input rate increases
the level of congestion in the system until p̂ reaches the tar-
get level. The growth of the input rate is stopped and a
steady state is reached.

The value of pT determines the level of congestion in the
system. It should be kept as low as possible if the bandwidth
and all the other requirements of the flow are met. If the
value of pT is set below the actual congestion level of the
system, the flow shrinks exponentially, therefore it is desir-
able to adjust it properly. Setting pT to a constant low value
produces a flow which is only active when the congestion in
the system is very low. Such flows can utilize unconsumed
bandwidth in the system. In some applications it can be
desirable to set pT = 0 when the bandwidth of the flow is
already sufficiently high for the given application. In general
all these choices can be realized by making pT dependent on
the rate of the flow at the receiver side

pT = pT (Xout). (12)

With this notation the general rate control algorithm reads1

Xin =
1

1 − pT (Xout)
Xout. (13)

1In case Xin exceeds the maximal capacity of the sender
Cmax, then Xin should be set to Cmax instead of the value
(13).

Figure 1: Topology used in all the simulated scenar-
ios. The physical bandwidth for the access links is
C = 100Mbps, for the bottleneck link is C = 10Mbps,
while the link delays are set according to the appro-
priate simulated scenario.

In the next subsection we set up a packet level simulation
framework to realize the new rate control algorithm.

3.1 Packet Level Realization
We implemented a new rate control algorithm which con-

trols the rate of a standard UDP flow. In this paper we
refer this UDP protocol with the introduced rate control al-
gorithm as RRRP . The main functionality of RRR is to
adjust the packet sending rate via the value of the measured
output rate and a specific feedback function. The output
rates are measured at the receiver side and sent back to
the sender in the acknowledgment packets to utilize it in
adjusting the sending rate. The packet sending process is
independent from the acknowledgment process. The data
packets are injected with the actual sending rate even if
no acknowledgment packets arrived. The sending rate is
updated when an acknowledgment packet arrives with the
back-propagated output rate information. To have a fre-
quent update the receiver sends acknowledgment for each
data packets. Between updates the sending rate is kept con-
stant. The update is based on the specific pT (Xout) function
applied in the sender. The measured output rate is averaged
for n consecutive packets to avoid undesirable synchroniza-
tion. Besides the averaged quantities in the following we use
the same symbols for input and output rate as before

Xout := 〈Xout〉n. (14)

The effects on congestion control of using different pT (Xout)
feedback functions were investigated in packet level simula-
tions. The simulations were performed in NS-2 [24] in a
dumbbell topology shown in Figure 1.

In the next sections we investigate some pT (Xout) feed-
back functions and we discuss their most important conse-
quences. We focus on the following performance character-
istics: optimal utilization of the link capacity, intra-protocol
fairness and TCP friendliness.
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(Xout)−2. All kinds of functions are plotted with two
sets of parameters.

4. RATE DEPENDENT FEEDBACK FUNC-
TIONS

We investigated three important feedback functions. The
constant function for pedagogical reason. A linear function
which is ideal for utilization unconsumed network resources.
A ”TCP like” function, which can adapt network conditions
as effectively as TCP does. These functions are shown in
Figure 2 with different parameters.

The performance of three different feedback functions are
tested in a topology shown in Figure 1. The physical band-
widths for the access links are C = 100Mbps, for the bottle-
neck link is C = 10Mbps, the buffer length on the bottleneck
link is B = 50pkt, while the link delays are set correspond-
ing to the appropriate simulated scenario. In this section
we used the d = 10msec link delay on each links. For back-
ground traffic we used fixed size packets (P = 12000bit)
with Poisson arrival process. In this section we present sce-
narios where the background traffic is fluctuating due to its
arrival process, and also sudden changes occur during the
simulation at t = 50, 90 and 120sec.

4.1 Fixed pT (Xout)

One of the most basic feedback functions is the constant
function,

pT (Xout) = pfix, (15)

where pfix is our preset constant parameter. This parameter
determines the target congestion which the protocol would
like to reach. If the actual p̂ is smaller than the preset con-
stant, then the control algorithm increases the sending rate,
while if it is higher, then the sending rate will decrease ex-
ponentially. This feedback mechanism results a quick and
tight adaptation to the variable available bandwidth con-
ditions. These can be seen in Figure 3a and b, where the
throughput and the observed packet loss rate are plotted.
In the simulation the target RRR is set to pfix = 1% and
the initial bandwidth is set to Xin = 1.6Mbps. The RRR
controlled flow starts at t = 20sec and adapts to the avail-
able bandwidth. The input rate increases until the RRR of
the flow reaches p̂ = 1% the value of the preset pfix. The
p̂ falls down to zero at t = 50sec, since bandwidth suddenly

becomes available and the flow reaches the receiver without
rate change. From this time the input rate increases until
p̂ reaches pfix again. The same process happens again at
t = 90sec, when the background traffic switched off. At
t = 120sec a high bandwidth background traffic is switched
on and the value of p̂ jumps high. The input rate of the
flow is set to the decreased available bandwidth instanta-
neously by the control algorithm. In Figure 3b the observed
packet loss probabilities can be seen. It follows the preset
pfix during the stationary intervals, while it falls to zero if
more available bandwidth appears and jumps high when the
background traffic increases.

This feedback mechanism keeps the pfix target RRR even
when it is unnecessary, for example when the flow utilizes
the total bandwidth of the system already. To avoid this,
next we introduce a feedback function, where pT decreases
to zero proportionally with the distance of the actual Xout

and the preset Xout
Tlim limit.

4.2 Linear pT (Xout)

A simplest relation between pT and Xout can be written

pT (Xout) = pTlim ·
„

1 − Xout

XTlim

«

, (16)

where pTlim is the base value of the target RRR and XTlim

is the maximum rate where we would like to limit the speed
of the transfer. The pTlim = 0 for output rates exceeding
the limit XTlim. The parameter pTlim defines the maximum
level of congestion where the protocol is still able to work,
for higher level of congestion it stops. The limit XTlim can
be regarded as the maximum bandwidth requirement of an
application.

The main properties of RRRP with linear feedback func-
tion is shown in Figure 3c and d. In the simulation the
packet loss limit is set to pTlim = 1%, the maximal band-
width limit XTlim = 4Mbps, and the initial bandwidth
Xin = 1.6Mbps. As the measured output rate is getting
closer and closer to its limit the target congestion level and
the observed packet loss rate is decreasing due to the linear
relation between pT and Xout. As the output rate reaches
its XTlim limit at t = 50sec the output bandwidth is kept
Xout = XTlim even when there is more available bandwidth
in the network path. In the interval between 50sec and
120sec the output rate remains Xout = XTlim and the ob-
served packet loss rate is zero.

The advantage of this feedback function is that we could
develop a control algorithm which utilizes the network only
if the level of congestion is below a preset pTlim level and
the consumed bandwidth never exceeds XTlim. This can
be ideal for an application which would like to utilize only
unconsumed resources of the network.

The drawback of this mechanism is that it does not pro-
vide a generic adaptation scheme, which could operate at a
wide range of network conditions like TCP.

4.3 "TCP like" Feedback Function
To develop a sufficiently generic control mechanism, which

can adapt to the network conditions the way TCP does in
current networks we rely on the macroscopic properties of
TCP flows.

The average bandwidth utilized by a TCP flow

Xout
TCP =

k · P
TRTT

√
pTCP

, (17)
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Figure 3: Adaptation of RRRPs to variable background traffic. The three rows represent the results for
RRRPs with the three discussed feedback functions (top - fixed, middle - linear and bottom - ”TCP like”).
The used parameters are: for the fixed feedback pT = 1%, for the linear feedback pTlim = 1%, Xout

Tlim = 4Mbps,
and for the ”TCP like” XT = 0.3Mbps. In the left column the throughput of the RRRP flow and the available
bandwidth left by the background traffic can be seen, while the average packet loss rates can be seen in the
right column.

where P is the data packet size, pTCP is the packet loss prob-
ability, TRTT is the round trip time, while k is a constant
value between 1 and 2 [23]. We can invert this relation and
can express the loss rate as a function of the current band-

width utilization

pTCP =

„

k · P
TRTT · Xout

TCP

«2

. (18)

We can regard this expression as a fixed connection of Xout

utilized bandwidth and the p packet loss probability. One



can define a feedback function with pT (Xout) such that it
mimics the packet loss rate of the corresponding TCP with
the same received bandwidth Xout. This would result a
TCP friendly control mechanism, since the sending rate is
the same as it would for a TCP flow at the same packet loss
conditions. In general we can define the feedback function
as

pT (Xout) = min

 

„

XT

Xout

«2

, 1

!

, (19)

where XT is a tunable parameter.
The Eq.(18) connects the Xout utilized bandwidth to the

pTCP packet loss rate in a fixed manner, while (19) gives the
possibility to adjust the relation via the parameter XT . The
advantage of adjusting this parameter is discussed in detail
in the next section.

The shape of the (19) allows that flows can work at any
packet loss rate, while their expected congestion level is de-
creasing with the increasing bandwidth utilization. This ver-
sion keeps sending data packets at any network conditions
with an appropriate rate. The mechanism guarantees the
quick adaptation to the available bandwidth in the network
path, while it can also work at slow speeds. These prop-
erties are presented in Figure 3e and f, where the the XT

parameter is set to 0.3Mbps, and the initial bandwidth is
set to Xin = 1.6Mbps. The flow quickly adapts to the avail-
able bandwidth and tightly follows it, due to the applied
feedback function. The packet loss rate depends on the re-
ceived bandwidth, which can be seen in the Figure 3f. At
t = 120sec the high peak in the packet loss is the aftermath
of the sudden background traffic increase in the network as
usual.

As we show next this feedback function also leads to stable
bandwidth sharing between flows.

5. PERFORMANCE EVALUATION
A congestion control has to satisfy several different re-

quirements to achieve good overall network performance.
The general rate control algorithm defined in (13) inherently
provides exponential adaptation to available bandwidth achi-
eving high throughput. This feature have been already dis-
cussed in previous section. Next we show that the control
algorithm itself guarantees the fairness between the same
kinds of protocols, it is friendly behavior against other kind
of flows and the throughput of the flows are sufficiently
smooth to let streaming application work with small buffer-
ing. Other important properties like the CPU usage, re-
quired computation power and initial parameter settings are
not investigated here.

5.1 Intra-Protocol Fairness
Designing an adaptive flow control an important goal is

to fairly distribute the bandwidth between the competing
flows. The intra-protocol fairness is measured between the
same kind of protocols with the same kind of congestion
control algorithm. Usually a single bottleneck case is con-
sidered, where the bandwidth should be shared in equal por-
tions between the flows in fair situation.

In this subsection we investigate the intra-protocol fair-
ness of our RRR based control algorithms. Flows with fixed
pT feedback mechanism cannot maintain a stationary band-
width sharing, since their prescribed congestion level is not
adaptive in terms of the output rate. The linear feedback

mechanism can be adaptive only in a restricted bandwidth
and congestion level range. Only the ”TCP like” feedback
mechanism can be considered as a congestion control for a
general use, and will be discussed here.

In Figure 4 the results for four competing flows, sharing a
single bottleneck link, can be seen. The physical bandwidth
of the bottleneck link is C = 10Mbps. In the upper row of
Figure 4 a simulated scenario can be seen, where the links
have the same propagation delay d = 1msec in the topology
of Figure 1. The lower row shows the results of an other sce-
nario, where the link delays are significantly different from
each other. In this case the link delays were di = 1, 10, 50
and 100msec for the different flows. The topology was the
same. In both scenarios we used ”TCP like” feedback func-
tions with XT = 0.6Mbps and the initial bandwidth was
set to Xin = 1.6Mbps. The senders start their session at
0, 20, 40 and 60sec respectively, while they stop sending at
100, 120, 140 and 160sec. In the left side the received band-
width share is shown for all the flows. For both scenarios
the bandwidth is fairly shared among the flows even in sce-
nario with different link delays. This is because the feedback
function is not sensitive to the round trip time, unlike the
TCP congestion control algorithm, which is drastically un-
fair for flows with different RTT values. The convergence to
the fair share is very quick for all the cases. The difference
between the two scenarios can be seen only in the little bit
slower adaptation of the flows with higher link delays. This
is because their feedback have much longer back-propagation
delay than the flows with low link delays. The sum of the
throughputs of individual flows is also presented with dashed
line in Figure 4a and d, which shows that the link utilization
is very high.

In the right side of Figure 4 the packet loss rates can
be seen. The packet loss rates increase as more and more
flows share the same link, since the packet loss rates are
higher (see Eq.19) for smaller Xout values, corresponding to
the fair bandwidth share. Here we would like to note that
this phenomenon can be observed also in case of TCP flows
sharing a common link.

We can conclude that the RRR based congestion control
with the same feedback functions and parameters results fair
resource sharing in network paths. This optimal sharing
is reached very quickly, in a few round-trip-times. Each
flow receives the same amount of bandwidth, suffer the same
queuing delay at the bottleneck buffer, and also their packet
loss rates are equal. These properties remain valid even if
the propagation delay is not equal for the different flows
sharing the same bottleneck link.

5.2 TCP Friendliness
In this section we would like to present how a conven-

tional TCP version and the RRR based control method with
a ”TCP like” feedback function can share the network re-
sources and how the XT parameter determines the band-
width sharing of TCP and RRRP flows. First, we would
like to determine the stable operating point of TCP and
RRRP flows on a bottleneck link with physical capacity C
(C = 10Mbps in our examples). For sufficiently long time
the packet loss rate in the operating point and p̂ should coin-
cide, therefore in the operating point pT (Xout

RRRP ) = pTCP =
p∗. Denoting the stable bandwidth share of the TCP flow
by the X∗ = Xout

TCP , the bandwidth share of RRRP flow is
Xout

RRRP = C − X∗.
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Figure 4: Main properties of four competing RRR flows with ”TCP like” feedback function. In the upper
row a scenario with the same link delays (1msec for each) can be seen, while in the lower row the access link
delays for the competing flows are significantly different (1, 10, 50, 100msec), while the delay of the common
link is 1msec. In the left side the throughput can be seen, the fair shares are also indicated with dotted lines.
In the right side the packet loss probabilities can be seen.
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Figure 5: Loss-bandwidth function of TCP and the
”TCP like” feedback functions with several XT pa-
rameters. The intersection represents the stable
bandwidth sharing between regular TCPs and the
proposed flow. The curves are based on the macro-
scopic fluid approximation.

In Figure 5 we show a graphical solution for the operating
point. The curves decreasing from left to right are represent-
ing the TCP curves (Eq.(18)) and the curves decreasing from
right to left are the ”TCP like” feedback functions (Eq.(19))
plotted in reverse direction from the physical bandwidth
C = 10Mbps. In this way the intersection (X∗, p∗) of two
specific curves represents the stable bandwidth share of TCP
and the corresponding packet loss probability.

Next, we study three scenarios how the stable bandwidth
share sets up between real RRRP and TCP flows. The topol-
ogy of the simulated scenarios is shown in Figure 1, with
bottleneck physical bandwidth C = 10Mbps, and with the
same link delays for all the links d = 10ms. The maximum
buffer length is B = 50pkts, and the initial bandwidth is set
to Xin = 1.6Mbps. In Figure 6 results are shown for three
scenarios with different XT parameters. The parameters of
the TCP, such as packet loss and RTT, are determined by
the network conditions without our intervention. In all sce-
narios the TCP flow starts at t = 20sec and the RRRP flow
starts at t = 50sec. Due to page limitation, we plot the
throughput of both flows and the total bandwidth utiliza-
tion together with the observed packet loss rates in the left
column of Figure 6. The numerical values of throughput
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Figure 6: Left column: Bandwidth sharing for conventional TCP-Reno and a RRR controlled UDP flow
(with solid lines, left axis) and the packet loss probabilities (with symbols, right axis). The RRR controlled
flow has ”TCP like” feedback function with different XT parameters. The parameters used are the following:
in the top row XT = 0.3Mbps, in the middle row XT = 0.6Mbps and in the bottom row XT = 0.9Mbps. In the
right column the typical buffer lengths are shown.

can be read on the left axis in Mbps, while the packet loss
percentage can be seen in the right axis. The total buffer
length and the number of buffered packets for both flows
are shown in the right column. The top row shows results
for XT = 0.3Mbps (fixed during the simulation). A stable
bandwidth sharing between the flows can be seen. The pre-
set XT value determines the portions of received bandwidths
of the flows. In this case the TCP flow receives more band-
width than the RRRP flow. The packet loss rate is a little
bit higher for the TCP flow, since its packet sending is more

bursty which leads to batch packet losses is the case when
the length of the queue is close to the maximum buffer size.
The queue length shows sawtooth pattern, since the TCP
utilizes most of the bandwidth. In the middle row the XT

is set to 0.6Mbps. The flows share the bandwidth equally in
this case. The buffer utilization is equal for the flows, but it
is clear that the number of queued packets for the RRRP is
much smoother, than that of TCP. In the bottom row the
XT is set to 0.9Mbps. In this case the RRRP flow receives
more bandwidth. The packet loss rate is significantly higher
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Figure 7: Throughput of different high-speed TCP
variants and RRRP in an up-switch scenario. The
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Figure 8: Throughput of different high-speed TCP
variants and RRRP in a down-switch scenario.
The down-switch in the physical bandwidth from
C = 100Mbps to C = 10Mbps happens at t = 60sec.

for the TCP flow, as packets sent in bursts by the TCP of-
ten suffer batch packet losses due to the almost saturated
buffer.

We can conclude that with different parameter settings
our congestion control algorithm with ”TCP like” feedback
function has adjustable friendliness to conventional TCP
flows. It is also clearly seen that for all the cases the number
of buffered packets for the RRRP is much smoother, than
that is for TCP. This is due to the smoothness of the rate
based sending process. The total bandwidth utilization is
very close to the physical capacity of the links for all the
three scenarios, which demonstrates that RRRP exploits ef-
ficiently the residual capacity left by the sawtooth pattern
of TCP.

6. TESTBED EXPERIMENTS
We implemented a UDP-based prototype of our conges-

tion control algorithm in C++ on standard Linux operat-
ing system to validate its performance in real heterogeneous
hardware environment. Our prototype is not a complete

protocol but it is suitable to investigate the control algo-
rithms and perform real world tests including real reliable
file transfer. A future goal is to implement the missing parts
of a full protocol stack: flow control, socket API, etc. We
also plan to create a Linux kernel module version of the
RRRP. Since our rate control does not rely on packet loss
events it is robust against even very high packet loss rates
(≫ 1%). To cope with the high packet loss rates we imple-
mented a new retransmission algorithm. It runs completely
separately from the rate control and they can be developed
independently. To support high loss resistance we use ac-
knowledgments with much more loss information than cu-
mulative acknowledgments have. Typically our acknowledg-
ment contains a full-report on which packet has arrived at
the receiver side and which has not. This is much in flavor
of the TCP SACK option [25] and the UDT NAK [21]. In
principle we could handle very high loss rates by allowing
full-report acknowledgments. In practice we have to limit
the network overhead of the acknowledgment flow so we use
acknowledgment packets with less information.

Our testbed consists of standard PCs with gigabit NICs
and switches. All the network properties are emulated with
a kernel-module. The emulator is capable to include drop-
tail queuing, service rate adjustment, propagation delay and
packet loss settings as well as mobile handover emulation.
The experiments performed in wired scenarios validated the
performance already shown in simulated scenarios of Sec-
tion 4 and 5. Here we present only our testbed experiments
relevant in mobile environments.

One of the most challenging environments for a trans-
port protocol is a wireless network. In [26] the authors in-
vestigate the impact of the evolving wireless technologies
on the performance of different high-speed transport pro-
tocols (HighSpeed TCP[6], Scalable TCP[5], BIC TCP[27])
and the NewReno TCP[3]. They set up some emulated sce-
nario which represents some of the challenges in wireless and
mobile environments. In wireless networks the inter-system
handovers are characteristic events. We distinguish the up-
and down-switch handovers. Up-switch means to change
from a ”low-speed” to a ”high-speed” technology (e.g. from
HSPA to LTE) during the transmission, while the down-
switch is vica versa. In the testbed the ”low-speed” technol-
ogy was emulated with a 10Mbps link and the ”high-speed”
one with a 100Mbps link, in accordance with the real pa-
rameters. We repeated the experiments of [26] with our
”TCP like” congestion control algorithm to compare its per-
formance to different high-speed transport protocols. Each
protocol was tested separately and they are plotted in the
same figure for demonstration only.

In Figure 7 the throughputs of the protocols are shown for
an up-switch scenario. The switch happened at t = 10sec,
when the physical capacity of the route suddenly changed
from C1 = 10Mbps to C2 = 100Mbps. Protocols start to
grow up right after the change. As we can see RRRP has
the fastest (exponential) adaptation rate, while TCP ver-
sions are hampered by their slow additive increase mecha-
nisms. In Figure 8 a down-switch scenario can be seen. The
switch happened at t = 60sec, when the physical capacity
dropped. In this case all the protocols adapt immediately
to the lower bandwidth successfully. The bandwidth usage
of the RRRP is stable, while the throughputs of the TCP
versions fluctuate.



7. CONCLUSION
In this paper we introduced a new way of congestion con-

trol based on the relative rate reduction replacing the er-
ratically changing packet loss. We studied three different
feedback functions. One of them was suitable to harness
available bandwidth without congesting the network path.
We demonstrated that the other ”TCP like” version is fair
and TCP friendly, while it has superior adaptation proper-
ties. It utilizes optimally the bandwidth of a network path
in presence of both elastic and inelastic background traffic.
It adapts to the sudden bandwidth changes much faster than
high-speed TCP variants. We validated the main concepts
of the RRRP in real testbed experiments. We hope that
with a robust acknowledgment scheme and with time de-
pendent feedback pT (Xout, t) RRRP could become a main-
stream protocol for Future Internet applications.
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