

End-to-end Delay Bounds in FIFO-multiplexing Tandems
Luciano Lenzini Enzo Mingozzi Giovanni Stea

Dipartimento di Ingegneria dell’Informazione, University of Pisa, Italy
Via Diotisalvi, 2 56122 Pisa, Italy - Ph. +39 050 2217599

{l.lenzini, e.mingozzi, g.stea}@iet.unipi.it

ABSTRACT
In this paper we address the problem of finding good end-to-end
delay bounds for single leaky-bucket shaped flows subject to FIFO
multiplexing in tandems of rate-latency nodes. More specifically,
we focus on a methodology, called the Least Upper Delay Bound
(LUDB) method, which is based on Network Calculus. The latter
has already been used for computing delay bounds in tandems in
which the path of the various flows are subject to particular restric-
tions. In this paper we generalize it to tandems traversed by flows
following arbitrary paths. We show that such methodology yields
better bounds than those obtained through both per-node analysis
and comparable methods proposed in the literature.

Categories and Subject Descriptors
C.4 [Computer systems organization] Performance of systems –
design studies, performance attributes.

General Terms
Algorithms, Performance, Design
Keywords
Network Calculus, FIFO-multiplexing, Delay Bound.

1. INTRODUCTION
The “holy grail” of the future Internet is to support the provisioning
of reliable real-time services on a wide scale. In order to achieve
this goal, per-aggregate resource management is nowadays re-
garded as a mandatory choice. Two noticeable examples of archi-
tectures employing per-aggregate resource management are Differ-
entiated Services (DiffServ [2]), and Multi-Protocol Label Switch-
ing (MPLS, [4]), both standardized by the IETF. In the former,
flows traversing a domain are aggregated in a small number of
classes or Behavior Aggregates (BA), whose forwarding treatment
is standardized, and QoS is provisioned on a per-aggregate basis at
each node. In the latter, flows are aggregated into Forwarding
Equivalence Classes (FECs) and forwarding and routing are per-
formed on a per-FEC basis. Real-time services, however, require
firm QoS guarantees, such as a bound on the end-to-end delay
experienced by the packets of a flow. While it is well known how
to compute the worst-case delay for a flow under per-flow resource
management (see, for example, [3], Chapter 2), a general method-
ology for computing worst-case delays in networks employing per-

aggregate resource management has not been devised yet. It goes
without saying that knowledge of a worst-case delay would be
beneficial for a large variety of purposes, e.g.: devising effective
admission control procedures; computing the maximum network
utilization (or the amount of overprovisioning required) under pre-
specified delay constraints; defining aggregation schemes which
are suitable for real-time traffic, etc. In short, it would lay a sound
theoretical foundation for real-time traffic engineering practices.
In some recent works [12], [13], a methodology was proposed for
computing delay bounds, i.e. upper bounds on the worst-case delay,
for single flows in FIFO-multiplexing tandems, under reasonable
assumptions on the nodes and flows behavior. The methodology is
based on Network Calculus ([3], [8]-[11]), a theory for determinis-
tic network performance analysis, and it allows one to relate the
delay bound of a single flow traversing the tandem to the amount
of resources provisioned for the aggregate and to the traffic at the
ingress nodes. Such methodology is based on a known Network
Calculus theorem that allows one to infer per-flow service curves
from per-aggregate service curves at a single node. It basically
consists in i) applying that theorem iteratively so as to obtain a set
of end-to-end service curves for a flow, and ii) computing the least
upper delay bound, i.e. the minimum among all the bounds which
can be obtained from each end-to-end service curve. For that rea-
son, henceforth we call it the LUDB methodology. In [13], the
LUDB methodology has been applied to a sink-tree network (also
called an accumulation or multipoint-to-point network, [5]-[7]), i.e.
a network partitioned into a set of logical trees, rooted at egress
nodes, so that a) bandwidth and buffer are provisioned per-tree at
each node, and b) all traffic directed towards an egress node is
routed through the related tree. It was proven in [13] that the delay
bound thus computed is the actual worst-case delay. In [12], it is
applied to a tandem network, in which the tagged flow is aggre-
gated with a different interfering flow at each node. A closed-form
delay bound has been computed, whose tightness however has not
been assessed.
In this paper we generalize the LUDB methodology: more specifi-
cally, we first show that, in order for it to be applied directly, re-
strictions on how the path of the various flows are interleaved must
be imposed: in fact, it can only be directly applied to nested tan-
dems, i.e. tandems in which the path traversed by a flow a is either
entirely included into the path of another flow b or has a null inter-
section with it. Analyzing generic, non-nested tandems, instead,
requires applying the LUDB methodology iteratively in order to
compute partial, i.e. per sub-tandem, delay bounds, which are then
summed up to compute the end-to-end delay bound. We then pre-
sent an algorithm for partitioning a tandem into nested sub-
tandems, and show how to apply the LUDB methodology to the
sub-tandems, taking care so as to use the best possible arrival
curves at each iteration.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Valuetools'07, October 23-25, 2007, Nantes, France.
Copyright 2007 ICST 978-963-9799-00-4

The rest of the paper is organized as follows: Section 2 reports the
necessary Network Calculus background. In Section 3 we give a
formal problem statement. We describe the LUDB methodology
for nested tandems in Section 4, and generalize it to non-nested
tandems in Section 5. In Section 6 we present a case study showing
the effectiveness of the proposed approach. The related work is
reviewed in Section 7. Finally, we report conclusions in Section 8.

2. NETWORK CALCULUS BACKGROUND
Network Calculus is a theory for deterministic network analysis
[3],[8]-[11]. The concept of service curve is introduced in Network
Calculus as a general means to model a network element in terms
of input and output flow relationships, i.e., how the element trans-
forms an arriving stream of packets into a departing stream. To this
aim, data flows are described by means of the cumulative function
()R t , defined as the number of bits seen on the flow in time inter-

val []0,t . Function ()R t is wide-sense increasing, i.e.
() ()R s R t≤ if and only if s t≤ . Specifically, let ()A t and ()D t

be the Cumulative Arrival and Cumulative Departure functions
characterizing the same data flow before entering a network ele-
ment, and after having departed, respectively. Then, the network
element can be modeled by the service curve ()tβ if
 () () (){ }

0
inf

s t
D t A t s sβ

≤ ≤
≥ − + (1)

for any 0t ≥ . The flow is said to be guaranteed the (minimum)
service curve β . The infimum on the right side of (1), as a func-
tion of t , is called the min-plus convolution of A and β , and is
denoted by ()()A tβ⊗ . Min-plus convolution has several impor-
tant properties, including being commutative and associative. Fur-
thermore, convolution of concave curves is equal to their mini-
mum. Several network elements, such as delay elements, links, and
regulators, can be modeled by corresponding service curves. For
example, network elements which have a transit delay bounded by
ϕ can be described by the following service curve:

 ()
0

t
t

tϕ
ϕ

δ
ϕ

+∞ ≥⎧
= ⎨ <⎩

More interestingly, it has been shown that many packet schedulers
can be modeled by a family of simple service curves called the
rate-latency service curves, defined as follows:
 () [],R t R tθβ θ += ⋅ −
for some 0θ ≥ (the latency) and 0R ≥ (the rate). Notation []x +
denotes { }max 0, x . A fundamental result of Network Calculus is
that the service curve of a feed-forward sequence of network ele-
ments traversed by a data flow is obtained by convolving the ser-
vice curves of each of the network elements.
Guaranteeing performance bounds to traffic flows requires that the
arrivals be somewhat constrained. In Network Calculus this feature
is modeled by introducing the concept of arrival curve. A wide-
sense increasing function α is said to be an arrival curve (or,
equivalently, an envelope) for a flow characterized by a cumulative
arrival function A if it is:
 () () ()A t A tτ α τ− ≤ − , for all tτ ≤ .
As an example, a flow regulated by a leaky-bucket shaper, with
sustainable rate ρ and burst size σ , is constrained by the affine
arrival curve
 () () { }, 01 tt tσ ργ σ ρ >= + ⋅ ⋅ .

Function { }1 expr is equal to 1 if expr is true, and 0 otherwise.

By combining together arrival and service curve characterizations
of data traffic and network elements, respectively, it is possible to
derive relevant performance bounds. Specifically, end-to-end delay
bounds can be derived. In fact, assume that an element (or network
of elements) is characterized by a service curve β and that a flow
traversing that node is constrained by the arrival curve α . Then, if
the node serves the bits of this flow in FIFO order, the delay is
bounded by the horizontal deviation
 () () (){ }

0
, sup inf 0 :

t
h d t d tα β α β

≥
⎡ ⎤≥ − ≤⎣ ⎦ (2)

Intuitively, h is the amount of time the curve α must be shifted
forward in time so that it lies below β . From (2) it follows that

() ()1 2 1 2, ,h hβ β α β α β≤ ⇒ ≥ . Notation 1 2β β≤ means that
() ()1 2t t tβ β∀ ≤ .

A well-known result related to a tandem of N rate-latency nodes
,i iRθβ , 1 i N≤ ≤ , traversed by a ,σ ργ constrained flow follows

from (2), i.e., the end-to-end delay bound is given by

 { }1

1

N i
ii

i N

d
R

σθ
=

≤ ≤

= +
∧∑ (3)

provided that iRρ ≤ for any i . Notation ∧ denotes the minimum
operation.
Furthermore, the output arrival curve after a node, i.e. the arrival
curve that envelopes the flow at the exit of that node, can be com-
puted as the min plus deconvolution of the flow’s arrival curve and
of the node’s service curve, denoted as ()()tα β .

2.1 FIFO multiplexing
Regarding FIFO multiplexing, a fundamental result, first derived in
[10], is reported in [3], Chapter 6. Assume that two flows are FIFO
multiplexed into the same network element, characterized by ser-
vice curve β . Assume that 2α is an arrival curve for flow 2. Then,
the service received by flow 1 can be determined by computing its
equivalent service curve ()1 ,eq tβ τ , as follows.
Theorem 2.1 (FIFO Minimum Service Curves [3]).
Consider a lossless node serving two flows, 1 and 2, in FIFO or-
der. Assume that packet arrivals are instantaneous. Assume that
the node guarantees a minimum service curve β to the aggregate
of the two flows. Assume that flow 2 has 2α as an arrival curve.
Define the family of functions:

 () () () { }1 2, 1eq
tt t t τβ τ β α τ +

>= ⎡ − − ⎤ ⋅⎣ ⎦

For any 0τ ≥ such that ()1 ,eq tβ τ is wide-sense increasing, then
flow 1 is guaranteed the (equivalent) service curve ()1 ,eq tβ τ .
Theorem 2.1 describes an infinity of equivalent service curves,
each instance of which (obtained by selecting a specific value for
the τ parameter), is a service curve for flow 1, provided it is wide-
sense increasing. For ease of notation, we write ()(), ,E tβ α τ to
denote the equivalent service curve obtained from applying
Theorem 2.1 to a service curve ()tβ , by subtracting from it arrival
curve ()tα τ− . Hereafter, we omit repeating that curves are func-
tions of time (and, possibly, of other parameters such as τ) when-
ever doing so does not generate ambiguity.
In order to manipulate service curves under FIFO multiplexing we
need some advanced results related to the composition of equivalent
service curves. In some recent works ([13], [23]) a class of curves,
namely pseudoaffine (or quasi-concave) curves, has been proved to
effectively describe the service received by single flows in FIFO

multiplexing rate-latency nodes. We report some properties here, first
shown in [13]1, that allow one to handle those curves efficiently. We
call a pseudoaffine curve one which can be described as:

 ,
1

x xD
x n

σ ρπ δ γ
≤ ≤

⎡ ⎤= ⊗ ⎢ ⎥⎣ ⎦⊗ (4)

i.e., as a multiple affine curve shifted to the right. Note that, since
affine curves are concave, (4) is equivalent to:

 ,
1

x xD
x n

σ ρπ δ γ
≤ ≤

⎡ ⎤= ⊗ ⎢ ⎥⎣ ⎦∧

We denote as offset the non negative term D , and as leaky-bucket
stages the affine curves between square brackets. We denote with

*
πρ (long-term rate) the smallest sustainable rate among the leaky-

bucket stages belonging to the pseudoaffine curve π , i.e.
()*

1,...,
min xx nπρ ρ
=

= . We denote with Π the family of pseudoaffine
curves. A rate-latency service curve is in fact pseudoaffine, since it
can be expressed as , 0,R Rθ θβ δ γ= ⊗ . A three-stage pseudoaffine
curve is shown in Figure 1.

D

1σ

2σ

3σ

1ρ

2ρ

3ρ

t

(t)

Figure 1 - Example of a three-stage pseudoaffine curve

A pseudoaffine curve π is said to be non-redundant if and only if
there exists no leaky-bucket stage j such that:

 '
,

1
x xD

x n
x j

σ ρπ δ γ π
≤ ≤
≠

⎡ ⎤
⎢ ⎥= ⊗ =⎢ ⎥
⎢ ⎥⎣ ⎦
⊗

i.e., no leaky-bucket stage can be removed without altering the ser-
vice curve. In case a pseudoaffine curve is redundant, it is always
possible to find a non-redundant equivalent description. We now list
some properties related to pseudoaffine curves. The first two proper-
ties are related to how pseudoaffine curves are transformed by com-
mon operations, like convolution and application of Theorem 2.1.
Property 2.2 (closeness with respect to convolution):
The convolution of two pseudoaffine curves is a pseudoaffine curve,
whose offset is the sum of the offsets of the operands, and whose
leaky-bucket stages are the leaky-bucket stages of both operands.
Therefore, Π is closed with respect to the convolution operator ⊗ .
Property 2.3 (equivalent service curve):
Let π ∈Π and ,σ ρα γ= . If *

πρ ρ≥ , then:
()0, , ,Eτ π α τ∀ ≥ ∈Π and it is wide sense increasing. Further-

1 Actually, Property 2.5 was not shown in [13], being actually a new –

though minor – result. We mention it here for the sake of readability. Its
proof is straightforward, thus it is omitted.

more, it is ()
* *

, ,E ππ α τρ ρ ρ= − .
Note that Property 2.3 cannot be generalized to the case of a more
general arrival curve α . For example, if α is a piecewise linear
(or multiple affine) curve (for instance,

1 1 2 2, ,σ ρ σ ρα γ γ= ⊗ , with
*

2 1πρ ρ ρ> ≥), (), ,E π α τ is not wide sense increasing for some
0τ ≥ .

We now show how to compute the delay bound and output arrival
curve for a leaky-bucket shaped flow which is guaranteed a pseu-
doaffine service curve.
Property 2.4 (delay bound):
Let π be a pseudoaffine curve, with offset D and n leaky-bucket
stages ,x xσ ργ , 1 x n≤ ≤ , and let ,σ ρα γ= . If *

πρ ρ≥ , then:
() ()1,h α π π σ−= , where ()1π − i denotes the pseudo-inverse of
()π i , defined in [3]. Moreover:

 () ()1

1
, x

x n
x

h D σ σα π π σ
ρ

+

−

≤ ≤

⎡ ⎤−= = + ∨⎢ ⎥
⎣ ⎦

Property 2.5 (deconvolution):
Let π be a pseudoaffine curve, with offset D and n leaky-bucket
stages ,x xσ ργ , 1 x n≤ ≤ , and let ,σ ρα γ= . If *

πρ ρ≥ , then:
 ,D Dσ ρ ρα π α δ γ + ⋅= =
The following property (see [13]) has an important practical impli-
cation, as it allows one to constrain the set of service curves ob-
tained by applying Theorem 2.1 to a pseudoaffine service curve:
Property 2.6 (isotonicity):
Let 1 2,π π ∈Π with 1 2π π≤ , and let 1 2α α≥ . Then
() ()1 1 2 2, , , ,E Eπ α τ π α τ≤ . Moreover, if ()1 2 10 ,hτ τ α π≤ ≤ ≤ ,
() ()1 1 1 2, , , ,E Eπ α τ π α τ≤ .

Define (){ }, , , 0E π α τ τΜ = ≥ and () (){ }' , , , ,E hπ α τ τ α πΜ = ≥ .
Property 2.6 states that ' '/ , :μ ϖ ϖ μ∀ ∈Μ Μ ∃ ∈Μ ≥ , which is
to say that service curves belonging to '/Μ Μ are not relevant for
computing performance bounds (e.g. delay and output arrival
curves). Accordingly, when Theorem 2.1 is applied to a pseudoaf-
fine service curve so as to compute (), ,E π α τ , the resulting set of
curves can be reduced by imposing the constraint (),hτ α π≥ . By
doing this we obtain a set of curves that can easily be expressed in
a parametric way, as the following corollary shows ([13]).
Corollary 2.7:
Let π be a pseudoaffine service curve, with offset D and n leaky-
bucket stages ,x xσ ργ , 1 x n≤ ≤ , and let ,σ ρα γ= , with *

πρ ρ≥ .
Then, () (){ } (){ }, , , , , , 0,E h E s sπ α τ τ π αα π≥ ≡ ≥ , with:

 ()
1 1

1 ,

, ,
i i x

x xi n i ni i x
D s x n s

E s
σ σ σ σ σ σ

ρ ρ ρ
ρ ρ ρ

π α δ γ+ +

≤ ≤ ≤ ≤

⎧ ⎫⎡ ⎤− ⎡ ⎤− −⎪ ⎪+ ∨ + ≤ ≤ + ∨ − −⎢ ⎥ ⎨ ⎬⎢ ⎥
⎣ ⎦ ⎣ ⎦⎪ ⎪⎩ ⎭

⎡ ⎤
⎢ ⎥= ⊗ ⎢ ⎥
⎢ ⎥⎣ ⎦
⊗ ,

or, equivalently,

 () () (){ } (), , ,
1

, ,
x x xh s s h D

x n
E s α π ρ α π σ σ ρ ρπ α δ γ+ + − − − −

≤ ≤

⎡ ⎤= ⊗ ⎢ ⎥⎣ ⎦⊗ (5)

3. SYSTEM MODEL
We analyze a tandem of N nodes, connected by links. The tandem is
traversed by flows, i.e. distinguishable streams of traffic. We are
interested in computing a tight end-to-end delay bound for a specific
flow, i.e. the tagged flow tf , which traverses the whole tandem from
node 1 to N . Furthermore, we are interested in computing a tight
output arrival curve for that flow at the end of the tandem.
At each node, FIFO multiplexing is in place, meaning that all flows
traversing the node are buffered in a single queue First-Come-First-

Served. Furthermore, the aggregate of the flows traversing a node
is guaranteed a minimum service, in the form of a rate-latency
service curve, with rate kR and latency kθ , 1 k N≤ ≤ . In the
above framework, a flow can be identified by the couple (),i j ,
1 i j N≤ ≤ ≤ , where i and j are the first and last node of the
tandem at which the flow is multiplexed with the aggregate. We
model a flow as a stream of fluid, i.e. we assume that it is feasible
to inject and service an arbitrarily small amount of traffic at a node,
and we leave packetization issues for further study. We assume that
flows are constrained by a ,σ ρ leaky-bucket arrival curve at their
ingress node. Leaky-bucket curves are additive, i.e. the aggregate
of two leaky-bucket shaped flows is a leaky-bucket shaped flow
whose arrival curve is the sum of the two. Hence, without any loss
of generality, we assume that at most one flow exists along a path
() (), 1,i j N≠ and we identify it using the path (),i j as a sub-
script. As far as the tagged flow, which traverses path ()1, N , is
concerned, we will see later on in this paper that we might or might
not need to distinguish it from the other flows traversing the same
path, depending on which bound we want to compute. More spe-
cifically, we will show that, in order to compute the end-to-end
delay bound, all flows traversing path ()1, N can be considered as
if they were one flow. On the other hand, in order to compute out-
put arrival curves, the tagged flow has to be considered separately
from the rest of the flows traversing path ()1, N . The latter, how-
ever, can be considered as one flow, which we denote as rf .
Henceforth, we denote with ()1, N the aggregate of the flows,
therein including the tagged flow, which traverse all the tandem,
and we use subscripts tf and rf whenever we need to detail fur-
ther.
Based on how the paths of its flows are interleaved, we classify
tandems as being either nested or non nested. In a nested tandem,
flows are either nested into one another, or they have null intersec-
tion. This means that no two flows (),i j , (),h k exist for which
i h j k< ≤ < . Said in other words, let us consider two flows (),i j ,
(),h k , with () (), ,i j h k≠ and i h≤ . Then either j h< , or k j≤ .
In the first case, the two flows span a disjoint set of nodes. In the
second case, we say that (),h k is nested within (),i j . For exam-
ple, Figure 2 represents a nested tandem of three nodes. Flows
()2,2 and ()3,3 are nested within flow ()2,3 . Furthermore, flows
()1,1 , ()2,2 , ()3,3 and ()2,3 are nested within ()1,3 , that is the
tagged flow. Given a flow (),i j , we denote its level of nesting
(),l i j as the number of flows (),h k into which it is nested. For

instance, with reference to Figure 2, it is () ()1,1 2,3 2l l= = , and
() ()2,2 3,3 3l l= = . The level of nesting of the tagged flow is

therefore equal to one. The level of nesting of the tandem is the
maximum level of nesting of one of its flows, which can be easily
recognized to be the maximum number of flows crossing a single
node. Note that a tandem of N nodes has a level of nesting no
greater than N , and that the maximum number of flows insisting on
an N -node nested tandem is 2 1N − .

()1,3

()1,1 ()2,2

()2,3

()3,3

1 2 3

Figure 2 – an example of nested tandem

A particular case of n -level nested tandem is the one in which
() (), 1 , ! , : ,x x n i j l i j x∀ ≤ ≤ ∃ = , i.e. we have only one flow at each

level of nesting. We call such a tandem a fully nested tandem. For
instance, a sink-tree tandem, i.e. a tandem in which there are ex-
actly N flows, whose path is (),i N , 1 i N≤ ≤ (see Figure 3,
above), is a fully nested tandem (whose level of nesting is N). On
the other hand, a tandem is non-nested if it does not verify the
above definition, as the one shown in Figure 3, below. In that case,
we say that flow ()1,2 intersects flow ()2,3 .

()1,3

()1,2

()2,3

()3,3

1 2 3

()1,3

()2,3

()3,3

1 2 3

Figure 3 – a fully nested tandem (above) and a non nested tandem (below)

Finally, as far as rate provisioning is concerned, we assume that a
node’s rate is no less than the sum of the sustainable rates of the
flows traversing it, i.e. for every node 1 h N≤ ≤ ,
 ()

()
,

, :

h
i j

i j i h j
Rρ

≤ ≤

≤∑ (6)

Note that this allows a node’s rate to be utilized up to 100%, and it
is therefore a necessary condition for stability. Moreover, we as-
sume that the buffer of a node is large enough as to guarantee that
traffic is never dropped.
We have devised a methodology, called the Least Upper Delay
Bound (LUDB) methodology, that allows one to compute end-to-
end delay bounds and output arrival curves for a flow traversing a
nested tandem. However, the latter can also be extended for analyz-
ing non-nested tandems. For this reason, we first focus on nested
tandems in Section 4, and extend our analysis to non-nested tan-
dems later on in Section 5.

4. LEAST UPPER DELAY BOUND
METHODOLOGY
In this paragraph, we present the LUDB methodology. At a first
level of approximation, the latter consists in computing all the
service curves for the tagged flow: we start from the aggregate
service curves at each node, and we apply Corollary 2.7 iteratively
in order to remove one flow (),i j ≡ ()1, N from the tandem. With
every iteration, a new free parameter (),i js is introduced. Therefore,
we compute in fact a multi-dimensional infinity of service curves.
From each of these we can compute a delay bound for the tagged
flow, hence the minimum among all the delay bounds is the least
upper delay bound.
Let us consider a nested tandem of N nodes, whose level of nest-
ing is 2n ≥ (otherwise the problem is trivial). The algorithm for
computing the delay bound for the tagged flow can be described as
follows.
As a first step, we build the nesting tree of the tandem, which is in
fact a simplified representation of the tandem. Let us define two sets:
 () () () (){ }, , : and , , 1h kS i j h i j k l i j l h k= ≤ ≤ ≤ = + ,

i.e. the set of flows which are nested right into (),h k , and:
 () () (){ }, ,: and , , or h k h kC l h l k i j S l i l j= ≤ ≤ ∀ ∈ < > ,

i.e. the set of nodes in path (),h k that are not in the path of any
flow in (),h kS . Note that, if (),h kS = ∅ , then () { }, , 1,...,h kC h h k= + .
For the sake of clarity, hereafter the nodes in the nesting tree are
called t-nodes, in order to distinguish them to the nodes in the path
of the tagged flow. In the nesting tree, there are two kind of t-
nodes: non-leaf t-nodes represent a flow, and leaf t-nodes represent
a set of nodes in the path. More specifically:
1. Each non-leaf t-node contains a flow (),h k . The root t-node

contains ()1, N .
2. Each t-node whose content is (),h k has all flows

() (),, h ki j S∈ as direct descendants. Furthermore, if
(),h kC ≠ ∅ , (),h k has one more direct descendant represent-

ing (),h kC (which is a leaf t-node).
The level of nesting of a flow is the level of the corresponding t-
node in the nesting tree. Accordingly, we henceforth write that
() (), ,i j h k→ iff. () (),, h ki j S∈ , (),h kS being the set of non-leaf
direct descendants of (),h k , and that () ()*, ,i j h k→ to denote
that (),i j is a (possibly non-direct) descendant of (),h k . Figure 4
shows a tandem and the related nesting tree. Leaf t-nodes are
shown as circles, while non-leaf nodes are ellipses. For instance, it
is () ()5,6 4,6→ and () ()*6,6 1,6→ , whereas () *2,3 → ()4,6 .
Once the nesting tree has been constructed, the set of end-to-end
service curves for ()1, N is computed by visiting the nesting tree
from the leaves to the root as follows:
1. For each leaf t-node representing (),h kC for some parent t-node

(),h k , compute
 ()

()

,

,

h k

h k

C j

j C
π β

∈
= ⊗

2. at a non-leaf t-node (),h k , compute a service curve as

 { } ()

() ()

{ }
() ()(),

,

, ,
, ,

,
, ,h k

h k

Ch k i j
i j i j

i j S
E sπ π π α

∈

⎡ ⎤
= ⊗ ⎢ ⎥

⎢ ⎥⎣ ⎦
⊗ (7)

i.e. as the convolution of:
i) The (pseudoaffine) service curves obtained by applying

Corollary 2.7 to the service curve computed at all child t-
nodes;

ii) The (rate-latency) service curve (),h kCπ , if (),h kC ≠ ∅ (oth-
erwise assume for completeness that (),

0 0,
h kCπ δ β +∞= =).

The set of end-to-end service curves for ()1, N , call it { }1,Nπ , is
obtained by computing the service curve at the root t-node. The
latter is a function of a number of free parameters
() () ()*

, : , 1,i js i j N→ . However, from Property 2.2 and Property
2.3 we obtain that, for each instance of these parameters, the result-
ing end-to-end service curve is pseudoaffine. Now, if the tagged
flow traverses the whole tandem as part of an aggregate with other
flows, then { }1,Nπ is a service curve for the aggregate. Call tf and
rf the tagged flow and the aggregate of the rest of the flows, so
that ()1,tf rf Nα α α+ = . The following theorem, whose proof is re-
ported in [26], shows that we do not need to distinguish between
them for the purpose of computing the delay bound.
Theorem 4.1
Let Aα and Bα be the leaky-bucket arrival curves for two flows A
and B which are FIFO-multiplexed in a node. Assume that the node
has a pseudoaffine service curve π with offset D and n leaky-
bucket stages ,x xσ ργ , 1 x n≤ ≤ , with *

A Bπρ ρ ρ≥ + . Then:
 () ()(){ }

0
, min , , ,A B A Bs

h h E sα α π α π α
≥

+ =

■

Based on the above result, the least upper end-to-end delay bound
for the tagged flow is the following:

()

() ()
()

{ }
() () ()()(){ }

,
*

1, *
1, ,0,

, 1,

min , : , 1,
i j

N
N i js

i j N

D h s i j Nα π
≥

→

= → (8)

Now, since ()π is pseudoaffine and ()1,Nα is an affine curve, prob-
lem (8) is an optimization problem with a piecewise linear objective
function of x variables and x linear constraints, x being the num-
ber of distinguished flows in the tandem (or, equivalently, the number
of non-leaf t-nodes in the nesting tree) minus one, 2x N< . Standard
techniques exist to solve such piecewise-linear programming (P-LP)
problems (see, for instance, [25]). Furthermore, closed-form solutions
have been derived through ad-hoc methods for special cases of prob-
lem (8), i.e. for a 2-level nested tandem of arbitrary length [12], and
for a sink-tree tandem [13].

1 65432

()1, 6

()2, 3 ()4, 6

()3, 3 ()4, 4 ()5, 6

()6, 6

()1,6

()2,3

()3,3

()5,6

()6,6
()4,6

()4,4

Figure 4 – a nested tandem and the related nesting tree

4.1 Computing the output arrival curve for the
tagged flow
We now show how to compute the output arrival curve for a tagged
flow at the exit of a tandem. We will see later on in Section 5 that
this result is required when the LUDB methodology is to be applied
to non-nested tandems.
Call { }(){ }1, , , , 0Ntf

rf rf rfE s sπ π α= ≥ the set of end-to-end service
curves for the tagged flow (if ()1,tf N≡ , we assume that rfα is
null). In general, tfπ is computed through Corollary 2.7 as if rf was
nested within the tagged flow, and it depends on an additional free
parameter rfs . A constraint on the arrival curve of the tagged flow
after node N , call it 1N

tfα
+ , is thus the following (see [3], Chapter 6):

 ()
() () ()

{ }(){ }()*
,

1,1

0, , 1,
0

min , ,
i j

rf

NN
tf tf rf rf

s i j N
s

t E s tα α π α+

≥ →
≥

=

However, from Property 2.5, we have
 ()

() () ()
{ }()*

,

1

0, , 1,
0

min tf

i j

rf

N
tf tf Ds i j N

s

t tα α δ+

≥ →
≥

= (9)

Where { }()1,, Ntf
rf rfD h sα π= + , as shown in (5). Let tfσ and tfρ

be the leaky bucket parameters of tfα at node 1. Since all the
curves between curly brackets are affine and with the same slope,
then there exists one such curve which is smaller than the others for
every t . Therefore, ()1N

tf tα + is a leaky bucket with 1N
tf tfρ ρ+ = and

1 minN
tf tf tf Dσ σ ρ+ = + ⋅ , where:

() () ()

{ }()*
,

1,min

0, , 1,
0

min ,
i j

rf

N
rf rf

s i j N
s

D h sα π
≥ →

≥

⎡ ⎤= +⎣ ⎦ (10)

Now, since { }()1,, N
rfh α π ∝ rfs , this is equivalent to

() () ()

{ }()*
,

1,min

0, , 1,
min ,

i j

N
rf

s i j N
D h α π

≥ →
⎡ ⎤= ⎣ ⎦ (11)

Thus, computing the output arrival curve for the tagged flow is
equivalent to computing the LUDB. More specifically, if 0rfα ≠
(i.e., tf ≡ ()1, N), the two problems have the same number of vari-
ables () () ()*

, : , 1,i js i j N→ . Otherwise, if ()1,tf N≡ and 0rfα = ,
it can be easily shown that (see [26] for the computations)

() ()

()
()

()1,

*
,

1,

min

0, ,
min , N

i j
N

Cx
x

s i j xx S
D h α π θ

≥ →∈

⎧ ⎫⎡ ⎤= +⎨ ⎬⎣ ⎦⎩ ⎭
∑ (12)

i.e. minD is the sum of the LUDB delay bounds of the flows in
()1,NS , plus possibly the latency of the leaf t-node ()1, NC . Thus,

solving (12) implies solving several separate P-LP problems, one
for each non-leaf direct descendant of tf . This is generally easier
than solving (8). For instance, for the nested tandem of Figure 4
(assuming ()1,tf N≡), computing (10) requires computing the
LUDB of flows ()2,3 and ()4,6 in their respective sub-trees. The
latter depend on one and three variables respectively. On the other
hand, computing (8) for the tagged flow entails solving a P-LP
problem with six variables.
Hereafter, we show how to compute the end-to-end delay bounds in
non-nested tandems.

5. ANALYZING NON NESTED TANDEMS
The LUDB methodology cannot be applied directly to non-nested
tandems. In fact, the nesting tree for the tagged flow is built under
the assumption that the service curves of any two sibling t-nodes
can be computed independently, whereas in a non-nested tandem
this is not true anymore. While this makes it impossible to compute
a set of end-to-end service curves for the tagged flow, we can still
find a way to compute partial service curves for it in disjoint sub-
tandems. From those, partial, per sub-tandem delay bounds can be
computed. Then, an end-to-end delay bound can be computed by
summing up the partial delay bounds.
More formally, given a tandem { }:1T i i N= ≤ ≤ of N nodes, we
partition it into m disjoint sub-tandems { }1: 1i i iT k c k c−= ≤ ≤ − ,
1 i m≤ ≤ , with 1mc N= + , 1i ic c +< (and 0 1c = for ease of nota-
tion). Visually speaking, this can be done by cutting the tandem
right before each node ic , which is accordingly called a cut. Fur-
thermore, we call a set of cuts a set of nodes { }:1iSC c i m= ≤ ≤
such that

1 ii m
T T

≤ ≤
≡∪ and i jT T∩ =∅ for i j≠ . Now, if T is a

non-nested tandem, we can always find a set of cuts that partition it
into nested sub-tandems, where the (partial) delay bounds for the
tagged flow can actually be computed through the LUDB method-
ology. Such a partitioning requires at most 2N⎡ ⎤⎢ ⎥ cuts. In fact,
any two-node tandem is by definition a nested tandem.
We therefore need to describe i) how to compute a set of cuts given
a non-nested tandem, and ii) how to compute the per sub-tandem
delay and output bounds given a set of cuts. Before delving deeper
into the above two issues, we report a clarifying example.

()1,3

()1,2

()2,3
1 2 3

{ }2, 4bSC =

{ }3, 4aSC =
Figure 5 – A three-node non-nested tandem and two different sets of cuts

Example 5.1
Consider the simplest possible non-nested tandem, shown in Figure
5. Call (),i jσ and (),i jρ the leaky bucket parameters of the arrival
curve (),

i
i jα of flow (),i j , where () () () (){ }, 1,3 , 2,3 , 1,2i j ∈ , and

let iθ and iR be the latency and rate of node i , 1 3i≤ ≤ . Assume
also that (6) holds at each node.
We can compute a delay bound for flow ()1,3 by cutting the tandem
according to the set of cuts { }3,4aSC = . The algorithm is as follows:
a) Compute { }1,2d , i.e. the LUDB through sub-tandem { }1 1,2T = .
b) Compute the arrival curves for flow ()1,3 and ()2,3 at the cut,

i.e. at node 3, ()
3
1,3α , ()

3
2,3α .

c) Compute the delay bound through sub-tandem { }2 3T = , { }3d ,
as () ()()3 3 3

1,3 2,3 ,h α α β+ . Note that, by Theorem 4.1, flows ()1,3
and ()2,3 can be aggregated when computing { }3d .

d) Compute the end-to-end delay bound as { } { }1,2 3aV d d= + .
The result is (detailed computations are reported in [26]):
If ()

1 2
2,3R Rρ+ < ,

() () () ()

() () ()

() () () () ()

1,3 2,3 2,3 1,31 2 3
1 3 2 3

3
1,2 2,3 1,3

3 2 1

2
1,3 2,3 1,3 2,3 1,3
3 2 1 2 3

1 1 1

1 1

aV
R R R

R

R R R

R

R R R R R

ρ ρ ρ ρ
θ θ θ

σ ρ ρ

σ ρ σ σ ρ

⎡ ⎤ +⎛ ⎞ ⎛ ⎞
= ⋅ + ⋅ + + ⋅ + +⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

⎛ ⎞+
⎜ ⎟+ +
⎜ ⎟
⎝ ⎠

⎛ ⎞+⎛ ⎞
⎜ ⎟+ ⋅ + + + ⋅ +⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

 (13)

Otherwise,

() () () ()

() () () ()

() () () () ()

1,3 2,3 2,3 1,31 2 3
2 3 2 3

1,2 2,3 1,3 2,3
2 3 3 1

2 2
1,3 2,3 2,3 2,3 1,3
2 2 3 2 3

1 1 1

1 1

1 1

aV
R R R

R R R R

R R

R R R R R

ρ ρ ρ ρ
θ θ θ

σ ρ ρ ρ

σ ρ ρ σ ρ

⎡ ⎤ +⎛ ⎞ ⎛ ⎞
= ⋅ + ⋅ + + ⋅ + +⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

⎡ ⎤⎛ ⎞ ⎛ ⎞
+ ⋅ + + ⋅ +⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

⎛ ⎞ ⎛ ⎞+ +
⎜ ⎟ ⎜ ⎟+ ⋅ + + + ⋅ +
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (14)

Similarly, we can cut the tandem according to the set { }2,4bSC = .
In this case, the delay bound is computed as follows:

a) Compute the delay bound at sub-tandem { }1 1T = as
{ }

() ()()1 1 1 1
1,3 1,2 ,d h α α β= + .

b) Compute the arrival curves for flows ()1,3 and ()1,2 at
node 2, ()

2
1,3α , ()

2
1,2α .

c) Compute the LUDB { }2,3d through sub-tandem { }2 2,3T = .
Note that, by Theorem 4.1, flows ()1,3 and ()2,3 can be
aggregated when computing { }2,3d .

d) Compute the end-to-end delay bound as { } { }1 2,3bV d d= + .
The result is (detailed computations are reported in [26]):
If ()

3 2
1,2R Rρ+ < ,

() ()

() () () () () () ()

1,2 1,31 2 3
1 2 3

1,2 1,3 1,2 1,3 1,2 1,3 2,3
1 3 2 1 2 3 3

1

1 1

bV
R R

R R R R R R R

ρ ρ
θ θ θ

σ ρ σ σ ρ σ σ

⎛ ⎞
= ⋅ + + + +⎜ ⎟⎜ ⎟

⎝ ⎠
⎛ ⎞ ⎛ ⎞

+ + + + + + +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (15)

Otherwise,

() () ()

() () () () () ()

() () () ()

1,2 1,3 2,31 2 3
2 2 2 3

1,2 1,3 2,3 1,2 1,3 1,2
1 2 3 2 1 2

1,3 2,3 2,3 2,3
2 3 2 3

1 1

1 1 1

1 1

bV
R R R

R R R R R R

R R R R

ρ ρ ρ
θ θ θ

σ ρ ρ σ σ ρ

σ ρ σ ρ

⎡ ⎤⎛ ⎞
= ⋅ + + ⋅ + + +⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

⎡ ⎤⎛ ⎞ ⎛ ⎞
+ ⋅ + ⋅ + + + ⋅ +⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

⎛ ⎞ ⎛ ⎞
+ ⋅ + + ⋅ +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

 (16)

For any selection of the node and flow parameters, a bV V V= ∧ is
an end-to-end delay bound for the tagged flow.
■
Having in mind the above example, we first describe a general
algorithm for computing the end-to-end delay bound once a set of
cuts is identified, and then discuss how to compute a set of cuts.

5.1 Computing the end-to-end delay bound
Given a non-nested tandem T of N nodes and set of m cuts

{ }, 1iSC c i m= ≤ ≤ , we describe the algorithm for computing the
end-to-end delay bound. Call F the set of all flows in T . Similarly,
call iT the sub-tandem { }1, 1i ic c− − , and

(){ }1, : ori i iF j k F k c j c−= ∈ ≥ < the subset of flows traversing iT .
Let (){ }, :i iFC j k F j c k= ∈ ≤ ≤ denote the set of flows crossing
cut ic , and let () (), , 1

i
i i iT

j k j c k c−= ∨ ∧ − be the sub-tandem
reduction of flow (), ij k F∈ . The algorithm can be described as
follows: consider each sub-tandem iT iteratively in increasing order.
Assume that, for each flow () 1, ij k FC −∈ , its arrival curve at cut 1ic −
is available. Then, compute the LUDB iTd for the tagged flow and
the arrival curve at cut ic for all flows (), ij k FC∈ . Finally, com-
pute the end-to-end delay bound as

1
iT

i m
d

≤ ≤∑ . However, in doing
this, a key optimization is required, i.e. flows have to be kept aggre-
gated as much as possible. Note that, even if we assume that at most
one flow exists for a given pair of nodes (),j k in the tandem, we
cannot avoid that for two distinct flows (),a b , ()', 'a b , it is
() (), ', '

i iT T
a b a b= . When this happens, aggregating the two flows

within iT leads to tighter bounds. This can be justified with a simple
example: consider two flows whose leaky-bucket arrival curves are

1α and 2α , which are FIFO multiplexed into the same rate-latency
service curve β . Then, both

() ()''
1,2 1 2 2 2 1 1, , , ,E s E sα α β α α β α= + and

()'
1,2 1 2α α α β= + are output constraints for the aggregate of the

two flows. However, one can easily recognize that ' ''
1,2 1,2α α< , i.e. it

is a tighter constraint.
Flow aggregation can be exploited in the following four ways:
a. in order to compute the LUDB in iT , any two flows (),a b ,

()', 'a b , such that () (), ', '
i iT T

a b a b= , can be aggregated at
their entry node in iT . This has been done, for instance, in
Example 5.1, for { }2,4bSC = and { }2 2,3T = .

b. In order to compute the arrival curve at cut ic for a flow
(), i ij k F FC∈ ∩ , any two flows (),a b , ()', 'a b , such that
() (), ', '

i iT T
a b a b= , can be aggregated at their entry node in
iT . However, flow (),j k itself must not be aggregated with

others;
c. any two flows in iF (),a b , ()',a b , leaving at the same node

b , can be permanently aggregated at cut ic . This means that,
starting from the sub-tandem 1iT + , the two flows can in fact be
regarded as a single flow for all computations;

d. consider two flows (),a b and ()', 'a b , (with 'b b≠), such that
() (){ }, , ', ' i ka b a b F FC∈ ∩ for some i and k i> . At least when

traversing hT , 1i h k+ ≤ ≤ , the two flows can be temporarily
aggregated and considered as a single flow. Thus, their joint out-
put arrival curve at cuts 1hc − can be computed and used in sub-
tandem hT . Note that, since the two flows will actually leave at
different nodes (since 'b b≠), we cannot avoid to compute also
their single output arrival curves, which we will be forced to use
later on (possibly in sub-tandem 1i kT + +). However, at least we
can avoid using them when not strictly necessary.

5.2 Computing a set of cuts
Hereafter, we present a greedy algorithm for computing a set of
cuts in a tandem. The latter selects the longest downstream nested
sub-tandem at each iteration. First of all, we consider the subset of
flows which might potentially intersect with each other, i.e.

(){ } (){ }' \ , ,1 \ 1,F F i i i N N= ≤ ≤ , since flows spanning just one
node cannot intersect with other flows, nor can the tagged flow,
which encompasses all others. The pseudocode for the algorithm is
shown in Figure 6. The NextCut variable stores the value of the
next cut, which is initially 1N + (see lines 1 and 13), and can be
decreased when two intersecting flows are detected (line 6). Going
downstream along the tandem (lines 2 and 8), at each node i the
set G includes all the flows (or sub-tandem reductions of) which
might potentially intersect with others. Thus, whenever a new node
i is considered, flows which have left the tandem at 1i − are re-
moved from G (line 3), and flows which enter at i are examined
(lines 4-5) before they are added to G (line 7): if any of these
flows intersect with another flow (),h k , in G , h i< , then we
must place the next cut ic at most at node 1k + (line 6). Once a
cut ic is reached (line 9), the computations are reset by substituting
all the flows (),h k which are intersected by that cut with their
remainder (),ic k (lines 11-13). Furthermore, the NextCut variable
and the G set are reset (line 14).
1. NextCut=N+1; { }1SC N= + ; G = ∅ ; i=1;

2. While i<N do

3. () (){ }'\ , 1 : , 1G G l i l i F← − − ∈

4. For each flow () ',i j F∈ ,

5. If h i k j< ≤ < for some (),h k G∈ then

6. NextCut=min(NextCut,k+1)

7. (){ },G G i j← ∪

8. Increase i

9. If i==NextCut then

10. { }SC SC i← ∪

11. For each flow (),h k G∈ ,

12. If i k≤ then (){ }' ' ,F F i k← ∪

13. ' ' \F F G←

14. NextCut=N+1; G = ∅ ;
Figure 6 – computation of a set of cuts

As an example, consider the tandem shown in Figure 7. It is
() () () (){ }' 1,2 , 2,5 , 3,4 , 4,5F F= ⊂ . At node 1, (){ }1,2G = . Then,

at node 2, flow ()2,5 is found to intersect with flow ()1,2 , and
therefore a cut has to be placed at node 3. Starting from node 3, we
have () () (){ }' 3,5 , 3,4 , 4,5F = , ()3,5 being the sub-tandem reduc-

tion of flow ()2,5 after cut 3. We then have () (){ }3,5 , 3,4G = . At
node 4, flow ()4,5 is found to intersect with flow ()3,4 , and
therefore a cut has to be placed at node 5.

1 65432

()1,6

()6,6()4,5()1,1()1, 2 ()3,4

()2,5
Figure 7 – a sample non-nested tandem

The algorithm yields { }1 3,5,7SC = , which is in fact obtained by
considering the longest sub-path in a greedy fashion. However, we
observe that there exist two sets, namely { }2 2,5,7SC = and

{ }2 2,4,7SC = , both of which generate one three-node sub-tandem.
As the example shows, several different sets of cuts can be super-
imposed to a non-nested tandem, and for each set of cuts a different
delay bound can be computed. In general, given M sets of cuts

1,..., MSC SC , we can compute M end-to-end delay bounds iV ,
1 i M≤ ≤ , and then compute:

1

i

i M
V V

≤ ≤
= ∧

i.e., the tightest delay bound among those that can be found with this
method. For instance, in Example 5.1, one can see through straight-
forward algebraic manipulations that both aV and bV can actually
be the minimum, depending on the actual values of the parameters.
Since the computation of the LUDB – especially for large tandems
– may require complex computations, one might wonder whether
an optimal set of cuts, i.e., one leading to the smallest delay bound,
can be identified without computing all the bounds, or at least
whether some sets of cuts can be excluded a priori since they will
certainly lead to larger bounds. Research on this topic is still ongo-
ing at the time of writing. However, we can give some guidelines.
Broadly speaking, the smaller the number of cuts is, the smaller the
end-to-end delay bound is likely to be. In fact, cutting the tandem
entails assuming partial worst-case scenarios which are not simul-
taneously possible. Consider for instance the computation related
to the set aSC in Example 5.1: the worst-case output arrival curves
()
3
1,3α , ()

3
2,3α are obtained separately, under different scenarios,

which are not simultaneously possible. Furthermore, both scenarios
are not simultaneously possible with the one that leads to the par-
tial delay bound { }1,2d . Therefore, using ()

3
1,3α , ()

3
2,3α and { }1,2d in

the same computation overestimates the delay bound. Similar con-
siderations hold for set bSC . To reinforce the above statement, we
observe that, in all the above expressions, there is at least one burst
(),i jσ which appears more than once. This further motivates us to

think that neither bound is tight (although to the best of our knowl-
edge no formal proof exists that the “pay burst only once” principle
holds in FIFO multiplexing tandems).
This said, one might wonder whether the smallest delay bound is
achieved with the set of (or, more precisely, with one of the sets of)
cuts of minimum cardinality. Unfortunately, the answer is not so
straightforward. The reason is that, for each cut, the set of output
arrival curves for possibly all the n flows intersected by the cut
need be computed (although in the previous sub-section we have
described some optimization that may actually reduce that num-
ber). The larger n is, the more different output arrival curves need
be computed independently. However the cumulative departure
functions of all the flows at the cut are correlated, since they have

been scheduled together through one or more upstream FIFO
nodes. Therefore, assuming that they are independent worsens the
scenario on which the subsequent partial delay bounds are com-
puted. The larger n is, the more such effect worsens the delay
bounds. Thus, it is not just the number of cuts that matters.

6. A CASE STUDY
In order to show the effectiveness of the proposed approach, we
compare it to per-node analysis in a case study tandem (shown in
Figure 8). An even number of nodes N are traversed by a tagged
flow ()1, N , by all flows (), 1i i + , 1 i N≤ < , and by two flows
()1,1 and (),N N for symmetry. We assume that all flows have the
same leaky-bucket arrival curve ,σ ργ , and that all nodes have the
same rate-latency service curve ,R θβ , with 3R ρ≥ ⋅ . The greedy
cut computation algorithm produces the set of cuts

{ }: 2 1,1 2SC k k i i N= = + ≤ ≤ , hence the end-to-end delay is
computed as the sum of the maximum number of partial delay
bounds, which is the most unfavorable condition for our methodol-
ogy.

N1N −1 5432

()1, N

()1,1 ()2,3

()1,2 ()3,4

()4,5 (),N N

()1,N N−

1c 2c 2 1Nc − 2Nc

Figure 8 – the case-study tandem

Each sub-tandem { }2 1,2iT i i= − , 1 2i N≤ ≤ , is a two-node, one-
level nested tandem, for which we need to compute:
a) the end-to-end delay bound iTd ;
b) the output arrival curve for the tagged flow at the cut, ()

2 1
1,
i
Nα + ;

c) the output arrival curve for flow ()2 ,2 1i i + at the cut, ()
2 1
2 ,2 1
i
i iα +

+ .
Assuming that we have in input the same quantities computed for
sub-tandem 1iT − .
Call t

iσ , f
iσ the burstiness of the arrival curve at node 2 1i − of

the tagged flow and of flow ()2 2,2 1i i− − , 1 2i N< ≤ , and let
1 1
t fσ σ σ= = be the burstiness of the tagged flow and of flow ()1,1

at node 12. By means of straightforward algebraic manipulations,
the following three recursive formulas can be computed:

 2i

f t
T i id

R R
σ σ σ σθ

ρ
+ += + +

−

()

1

2t f
i if

i

R
R

σ σ ρ θ σ
σ σ ρ θ+

⎡ ⎤+ + ⋅ +
⎢ ⎥= + ⋅ +
⎢ ⎥⎣ ⎦

 1 2
f

t t i
i i R R

σ σ σσ σ ρ θ
ρ+

⎡ ⎤+= + ⋅ + +⎢ ⎥−⎣ ⎦

On the other hand, we can also compute the sum of per-node delay
bounds recursively as follows. Call t

kσ , f
kσ the burstiness of the

arrival curve at node k of the tagged flow and of flow ()1,k k− ,
1 k N< ≤ , and let 1 1

t fσ σ σ= = be the burstiness of the tagged
flow and of flow ()1,1 at node 1. The expressions are as follows:

t f

k k kd
R

σ σ σθ + += +

 1

f t
f k k

k R
σ σσ σ ρ θ+

⎡ ⎤+= + ⋅ +⎢ ⎥
⎣ ⎦

, 1

f
t t k
k k R

σ σσ σ ρ θ+

⎡ ⎤+= + ⋅ +⎢ ⎥
⎣ ⎦

2 The rate for all arrival curves is obviously ρ .

In Figure 9 we plot the ratio of the per node delay bound to the one
found through the LUDB methodology, as a function of the number
of nodes, and for several utilization values (i.e., assuming

3R Uρ= , with U ranging from 20% to 100%). In the graph, we
have 1θ = , 5σ = and 4ρ = . However, the results are almost
insensitive to the value of those three parameters.

0

1

2

3

4

5

6

7

8

0 5 10 15 20 25 30 35 40

100%
80%
60%
40%
20%

V pe
r-

no
de

/V
LU

D
B

N
Figure 9 – Ratio of the end-to-end delay bounds computed with per-node
analysis and through the LUDB methodology for several utilizations

As the figure clearly shows, the ratio is always above one, which
means that the LUDB bound is always tighter. The ratio increases
with the length of the tandem, and it gets larger as the utilization
approaches 100%. In Figure 10, the ratio of the burst of the tagged
flow’s output arrival curve are plotted, showing the same behavior.

0

1

2

3

4

5

6

7

8

0 5 10 15 20 25 30 35 40

100%
80%
60%
40%
20%

σ pe
r-

no
de

/σ
LU

D
B

N
Figure 10 - Ratio of the burst of the tagged flow computed with per-node
analysis and through the LUDB methodology for several utilizations

7. RELATED WORK
The problem of finding end-to-end delay bounds for single flows
under aggregate scheduling has been the focus of quite a few re-
search efforts in the recent past. Some works (e.g., [24]) envisage
that traffic be aggregated in the network using fair aggregators.
The latter are non work-conserving network elements which multi-
plex flows fairly into aggregates, so as to prevent bursts from ac-
cumulating. While employing fair aggregators is likely to yield
better bounds than those obtained with FIFO multiplexing, the
added complexity of non-work conserving fair aggregators, which
in fact are elements which may work at a finer grain that that of a
single aggregate, should not be understated. Architectures employ-
ing those elements, besides, have not been standardized, nor (to the
best of our knowledge) practically deployed. A recent work [23]
presents a tool for computing end-to-end delay bounds for flows
subject to blind multiplexing. “Blind” means that no assumption is
made regarding the multiplexing criterion: for instance, both a
FIFO multiplexing scheme and a strict priority multiplexing
scheme in which the tagged flow is always multiplexed at the low-

est priority fit this definition. In that framework, concave piecewise
arrival curves are assumed as a traffic constraint, and nodes are
supposed to offer strict service curves to the aggregates traversing
them. While the first hypothesis generalizes the one used in the
paper, the second one (which is mandatorily required in order to be
able to deal with blind multiplexing) imposes stricter constraints on
the service, since a strict service curve constraint implies a service
curve one, but not vice versa.
Despite being the easiest way to aggregate flows, few results exist in
the literature related to FIFO multiplexing. A survey on the subject
can be found in [19]. A closed form delay bound for a generic net-
work configuration has been derived in [20], under the fluid model
assumption, and extended in [21] to take packetization effects into
consideration. In both cases, when a generic network configuration is
considered, a bound can be derived only for small utilization factors:
let H be a bound on the number of nodes traversed by any flow, and
ν a bound on the utilization at any link, then the delay bound holds
only if ()max 1/ 1Hν ν< = − . Furthermore, the bound is inversely
proportional to ()1 1Hν− − , that is, the bound approaches infinity
when the utilization level ν gets closer to maxν . It is shown in [20]
that, in order to derive any tighter bound for a network in which

maxvν < , as well as bounds which can be applied to a network in
which maxvν ≥ , some more assumptions about the underlying net-
work are required. On one hand, such further assumptions may con-
sist in the type of information included in each packet. This is the
approach in [22], where timestamps are associated to packets and
appropriate scheduling algorithms are introduced. On the other hand,
one can assume that the network topology and configuration within
an administration domain are known, and attempt deriving delay
bounds which rely on such information. For instance, feed-forward
networks are known to be stable, which implies that delay bounds can
actually be computed for any utilization value below 100% [3].
This last approach, which is also ours, has also been the focus of
previous researches. A closed form expression for the end-to-end
service curve for a tagged flow in a generic tandem of FIFO nodes,
obtained under the same hypotheses as in this paper (i.e. leaky-
bucket constrained flows and rate-latency service curves for the
aggregates) was presented in [15]. However, the result, claimed to
hold for an arbitrary topology tandem, has already been disproved
in [13]. A method for deriving delay bounds in feed-forward net-
works with leaky-bucket constrained flows and rate-latency service
curves for the aggregates has also been presented in [16],[17],
although no end-to-end analysis of complex tandems is taken over
therein. It consists in applying Theorem 2.1 iteratively in order to
obtain an end-to-end service curve for a tagged flow, as we do in
this paper. However, each time a family of equivalent service
curves is computed at a node, only one service curve is considered
(specifically, the one that we would obtain by applying Corollary
2.7 with 0s =). For the particular case of sink-tree tandems, it has
been shown in [13] that the delay thus computed is always larger
than the one computed according to the LUDB methodology
(which, instead, capitalizes on keeping track of all the service
curves), and that it can be arbitrarily loose, e.g. it can go to infinite
when the rate provided for the aggregate is sufficient, and all the
aggregate rates are finite. The same result can now be proved to
hold for non-nested tandems. Consider for instance the three-node
tandem of Example 5.1. The delay bound expression computed
according to [16] is:

()

()() () ()() ()()
()

()()
()

()()
()

()()
() () () ()()

3
1,3

1 2 3
1 1,2 1,2 2,3 2,3

1,2 2,3

2 1 2 3
2,3 1,2

2
1,3 1,2 1,3 1,22,3 2

22 3
1,2

i

i
D

R R R

R R R R

RR R

σ
θ

ρ ρ ρ ρ

σ σ

ρ ρ

σ σ θ ρ ρρ
θ

ρ

=

= +
− ∧ − − ∧ −

+ +
− ∧ − ∧

⎡ ⎤+ + ⋅ +
⎢ ⎥+ +
⎢ ⎥− ∧ ⎣ ⎦

∑

 (17)

However, the rate that divides the burst of the tagged flow ()1,3σ
approach ()1,3ρ as the rate provisioning gets tighter. This implies
that, no matter how large the node rates are, the delay bound of the
tagged flow goes to infinite if ()1,3 0ρ → . On the other hand, (13)-
(16) can be easily proved to yield finite delay bounds in these con-
ditions, which means that the bound (17) can be arbitrarily loose.

8. CONCLUSIONS AND FUTURE WORK
In this paper we have presented the Least Upper Delay Bound
(LUDB) methodology, which allows one to derive good end-to-end
delay bounds in FIFO multiplexing networks of rate-latency nodes. It
consists in computing the minimum among all the delay bounds that
can be found by iteratively applying a known Network Calculus
Theorem. Although the LUDB method can only be applied “as is” to
nested tandems, we have devised algorithms to partition a tandem
into nested sub-tandems. Thus, the end-to-end delay bound can be
computed as the sum of the partial delay bounds computed in all sub-
tandems. The above methodology has been shown to be more effec-
tive than per-node analysis even in a very unfavorable scenario.
This work can be extended in several directions: first of all, devis-
ing an ad-hoc algorithm for computing the LUDB given a nesting
tree, with improved efficiency over standard P-LP solving meth-
ods. Then, devising algorithms for the optimal partitioning of non-
nested tandems, so as to reduce the computations required for find-
ing the best bound. Furthermore, implementing all the above algo-
rithms into a standalone tool for analysis of FIFO networks (simi-
lar, in that respect, to [23]). Last, since there is reasonable evidence
that the LUDB method may not yield the actual worst-case delay,
especially if applied to non-nested tandems, assessing how reliable
the delay bounds are. All the above mentioned extensions are being
actively pursued at the time of writing.

9. REFERENCES
[1] R. Braden, D. Clark and S. Shenker, “Integrated Services in

the Internet Architecture: an Overview”, IETF RFC 1633,
June 1994.

[2] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W.
Weiss, “An Architecture for Differentiated Services,” IETF
RFC 2475, 1998.

[3] J.-Y. Le Boudec, P. Thiran, Network Calculus, Springer-
Verlag LNCS vol. 2050, 2001.

[4] E. Rosen, A. Viswanathan, R. Callon, “Multiprotocol Label
Switching Architecture”, IETF RFC 3031, January 2001

[5] H. Saito, Y. Miyao, M. Yoshisda, “Traffic Engineering using
Multiple Multipoint-to-point LSPs.”, Proc. of IEEE Infocom
2000, Tel Aviv (Israel), 26-30 March 2000, pp. 894-902.

[6] S. Bhatnagar, S. Ganguly, B. Nath, “Creating Multipoint-to-
Point LSPs for Traffic Engineering”, Proceedings of
HPSR‘03, Torino (Italy), 24-27 June 2003, pp. 201-207.

[7] T. Li, Y. Rekhter, “A provider Architecure for Differentiated
Services and Traffic Engineering (PASTE)”, IETF RFC 2430,
October 1998

[8] R.L. Cruz. “A calculus for network delay, part i: Network
elements in isolation”. IEEE Transactions on Information
Theory, Vol. 37, No. 1, March 1991, pp. 114-131.

[9] R.L. Cruz. “A calculus for network delay, part ii: Network
analysis”. IEEE Transactions on Information Theory, Vol. 37,
No. 1, March 1991, pp. 132–141.

[10] R. Agrawal, R. L. Cruz, C. Okino, and R. Rajan, “Perform-
ance Bounds for Flow Control Protocols,” IEEE/ACM Trans-
actions on Networking, Vol. 7, No. 3, June 1999, pp. 310-323.

[11] C. S. Chang, Performance Guarantees in Communication
Networks, Springer-Verlag, New York, 2000.

[12] L. Lenzini, E. Mingozzi, G. Stea, “Delay Bounds for FIFO
Aggregates: a Case Study”, Elsevier Computer Communica-
tions Vol. 28 Issue 3, February 2005 pp. 287–299.

[13] L. Lenzini, L. Martorini, E. Mingozzi, G. Stea, “Tight End-to-
end Per-flow Delay Bounds in FIFO Multiplexing Sink-tree
Networks", Performance Evaluation, Vol. 63, October 2006,
pp. 956-987.

[14] G. Urvoy-Keller, G. Hèbuterne, Y. Dallery, “Traffic Engi-
neering in a Multipoint-to-point network.”, IEEE JSAC, Vol.
20, No. 4, May 2002, pp. 834-849.

[15] M. Fidler, “Extending the Network Calculus Pay Bursts Only
Once Principle to Aggregate Scheduling”, Proc. of QoS-IP’03,
Milan (Italy), 24-26 Feb. 2003, pp. 19-34.

[16] M. Fidler, V. Sander, “A Parameter Based Admission Control
for Differentiated Services Networks”, Elsevier Computer
Networks, Vol. 44, No 1, January 2004, pp. 463-479.

[17] M. Fidler, “Providing Internet quality of service based on
differentiated services traffic engineering”, Ph.D. Thesis,
Aachen University, 2003

[18] R. L. Cruz. “Sced+: Efficient management of quality of ser-
vice guarantees”. Proc. of IEEE Infocom’98, San Francisco
(USA), 29 March-April 1998, pp. 625-634.

[19] J. C. R. Bennett, K. Benson, A. Charny, W. F. Courtney, and
J.-Y. Le Boudec, “Delay Jitter Bounds and Packet Scale Rate
Guarantee for Expedited Forwarding,” IEEE/ACM Trans. on
Networking, Vol. 10, No. 4, August 2002, pp. 529-540.

[20] A. Charny, and J.-Y. Le Boudec, “Delay Bounds in a Network
with Aggregate Scheduling,” Proc. of QoFIS’00, Berlin (Ger-
many), 25-26 September 2000, pp. 1-13.

[21] Y. Jiang, “Delay Bounds for a Network of Guaranteed Rate
Servers with FIFO Aggregation,” Computer Networks, Vol.
40, No. 6, December 2002, pp. 683-694.

[22] Z.-L. Zhang, Z. Duan, and T.Y. Hou, “Fundamental trade-offs
in aggregate packet scheduling” Proceedings of ICNP’01,
Riverside (USA), 11-14 November 2001, pp. 129-137.

[23] J. B. Schmitt, F. A. Zdarsky, “The DISCO Network Calculator
- A Toolbox for Worst Case Analysis” Proc. of VALUE-
TOOLS '06, Pisa, Italy. ACM, November 2006.

[24] J. A. Cobb, “Preserving quality of service guarantees in spite
of flow aggregation”, IEEE/ACM Trans. on Networking Vol.
10, No. 1, 2002, pp. 43-53.

[25] R. Fourer and R.E. Marsten, “Solving Piecewise Linear Pro-
grams: Experiments with a Simplex Approach”, ORSA Jour-
nal on Computing, Vol. 4, 1992, pp. 16-31

[26] L. Lenzini, E. Mingozzi, G. Stea, “End-to-end Delay Bounds
in FIFO-multiplexing Tandems”, Technical Report, University
of Pisa, April 2007

