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ABSTRACT
This paper proposes to use histograms for characterising net-
work traffic and a simple stochastic process for network per-
formance analysis. The result of this process is the buffer
occupancy histogram (queue length distribution) using a fi-
nite queue model. From this buffer occupancy histogram
we detail how to obtain another interesting performance pa-
rameters like cell loss ratio and network delay distribution.
The proposed method has been extensively evaluated using
real traffic traces. These evaluations show that the model is
accurate. Applications of this model are very wide: analy-
sis and prediction of QoS parameters, network dimensioning
and provisioning, traffic admission control, etc.

Categories and Subject Descriptors
C.2 [Computer-Communication Networks]: Miscella-
neous; C.4 [Performance of Systems]: Modeling tech-
niques

Keywords
Traffic modeling, Network QoS, Stochastic Analysis

1. INTRODUCTION
Providing Quality-of-Service (QoS) requirements is a key

issue in today’s network communication. Guaranteeing per-
formance on this communication usually requires some net-
work resource allocation, like bandwidth and buffers. Ac-
curately evaluating these resources is one of the main chal-
lenges. This problem has been analysed in the literature
using two main approaches [3]: deterministic and statistical
techniques.

Deterministic approaches are based on simplistic work-
load characterisations and worst-case analyses using network
calculus. Statistical techniques have been studied in two dif-
ferent contexts. Real-time transmission approaches are ex-
tensions or modification of deterministic real-time bounds
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[9,25]. The classic traffic engineering approaches use statis-
tical techniques such as queuing theory to predict and engi-
neer the behaviour of telecommunications networks such as
telephone networks or the Internet.

Systems performance analysis relies mainly on two mod-
els: a workload model and a performance model. The work-
load model capture the resource demands and workload in-
tensity characteristics. This model must capture the static
and dynamic behavior of the real load and it must be com-
pact and accurate. The performance model is used to pre-
dict the performance of a system as a function of the system
description and the workload model.

In order to properly model a system it is critical to un-
derstand the nature of the traffic. There has been a con-
siderable amount of work on traffic characterisation in the
literature [2]. In classic networks, the Poisson process has
since long been used for call arrivals, because calls are gen-
erated independently from each other. However, Internet
traffic does not fit into this description. Two pioneering
articles [17, 20] showed two properties: i) self-similarity :
counts of packet arrivals in equally-spaced intervals of time
are long-range time dependent and have a large coefficient
of deviation, and ii) heavy tailed : packet inter-arrival have
a marginal distribution that has a longer tail than the ex-
ponential. Nevertheless, recent studies has shown that this
arrival process tends toward Poisson as load increases [5,6].
Several distributions were proposed to fit these traffic char-
acteristics. The Pareto and Weibull distributions are of-
ten used in order to reflect the heavy-tailed distribution.
The self-similarity property can be modeled by an aggregate
of multiple heavy-tailed ON/OFF sources. More complex
models are based on fractional Gaussian noise (fGN), frac-
tional autoregressive integrate moving average (fARIMA)
and wavelets [1].

Several queueing analysis methods has been proposed to
model and obtain performance parameters [13]: Markov
Modulated Poisson Process (MMPP) [15,18], Switched Batch
Bernouilli Process (SBBP) [10] or Discrete Gaussian Mod-
els [2]. There are several practical problems with these mod-
els. First, we must fit the traffic with the model. Neverthe-
less, the problem is that when the number of parameters
are high the model usually become intractable, so we must
use few parameters and this implies losing precision. Sec-
ond, most of the papers deal with the tail probability (or
overflow probability) P (Q > t) rather than the loss proba-
bility. Nevertheless, real networks have finite buffer so it is
necessary to study the loss probability in finite buffer sys-



tems (PL(x)). In infinite queue models the loss probability
is often approximated as PL(x) ≈ P (Q > x). However, this
approximation usually provides an upper bound (sometimes
a very pour bound) to the loss probability [14]. Therefore,
for network performance evaluation is better to use a model
with finite buffer. In [14] the authors presented an estima-
tion for the loss probability based on the tail probability.

An interesting approximation for traffic characterisation
are histogram based models which describe traffic as a dis-
crete statistical distribution. They extend deterministic mod-
els, that usually describe traffic with one or two classes (av-
erage and peak rate), with a discrete number of classes,
quantifying their probability. The model, known as the His-
togram Model [24] [22], was introduced by Skelly to pre-
dict buffer occupancy and loss rate for multiplexed streams.
These works use an analysis method based on a M/D/1/N
queueing system. The number of ATM cells generated dur-
ing a frame period is approximated to a Poisson distribution
with a given rate λ. For a given video sequence, λ is mod-
elled as a histogram. The buffer occupancy is calculated by
solving the M/D/1/N system as a function of λ and then
weighting the solutions according to the histogram proba-
bilities. This methods yields good results with a reduced
number of cells in the buffer, but the inaccuracy increases
with the number of cells. Another histogram-based perfor-
mance analysis was presented in [19]. The method is based
on a modification of the MVA (Mean Value Analysis) al-
gorithm for solving Queueing Network Models (QNM). The
drawback of these models is that they solve for each value
of the histograms classes independently (using M/D/1/N or
MVA), not taking into account the dependencies between
the histogram classes. Another more complex approach is
the distrete time SBBP/G/1 queue [10]. The SBBP process
is characterized by a probability generating function (pgf)
and two states. The system is solved only for the infinite ca-
pacity queue case. This model has two drawbacks when it is
applied to real-traffic modeling: the complexity of definining
the pgf from the traffic (the number of states can be very
large) and there is no solution for limited capacity buffer.

In this paper we propose using histograms as the net-
work traffic model and introduce a stochastic process that
works directly with histograms. This stochastic process ob-
tains the queue length distribution as a histogram using a
finite queue model. The proposed method does not require
approximating traffic to a Poisson distribution nor solving
queueing models. The best way to verify the correctness of
our model is to compare the predicted results to the ones
obtained using a real model with real traffic. These exper-
iments are detailed in section IV and the results are very
accurate. These evaluations also analyse the influence of
the number of histogram classes on precision, showing that
10 classes are enough to obtain good results.

2. HISTOGRAM TRAFFIC MODEL
Network workloads will be characterised by the number

of transmission units produced by a traffic source during a
pre-established time period called the sampling period. Con-
cretely, let Ak be a discrete random variable representing the
amount of work entering the system during the kth sampling
interval. Then {Ak | k ∈ T} is a discrete stochastic process
and it is assumed to be stationary and ergodic. The pro-
posed model characterises variable workloads not as a func-
tion of time, but as a discrete statistical distribution. The

Class Interval Midpoint Probability Cumulative
number A p(A) probability

i [a−i , a+
i [ ai pA(i) p+

A(i)

0 [0, 20[ 10 0 0
1 [20, 40[ 30 0.1 0.1
2 [40, 60[ 50 0.4 0.5
3 [60, 80[ 70 0.2 0.7
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5 [100, 120[ 110 0.15 1.0
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Figure 1: A variable workload sample.

bit rate during a sampling period is, in general, variable. We
assume that traffic arrives at uniform rate in a period but
the number of arrivals in a period are independent and have
a distribution modeled by a histogram. In other words, if we
have N bits in a sampling period, the inter-arrival distribu-
tion is deterministic with value 1/N . The method proposed
in this paper is based on defining histogram operators for
a stochastic process based on a recurrence relation. The
steady state of this stochastic process is the buffer occu-
pancy distribution.

A histogram is a form of a bar graph representation of a
grouped probability distribution (gpd) which is a table rep-
resenting the values of a random variable A against their
corresponding probabilities (or frequencies). The range of
values of the variable is, in general, continuous and divided
into intervals, also referred to as classes. The probabilities of
values in an interval are grouped together. Figure 1a shows
the grouped probability distribution of a sample workload
and Figure 1b shows the corresponding histogram. For con-
venience, the X-axis of the histogram will show the interval
number or its midpoint rather than the interval limits.

All intervals have the same width and are characterised by
the following attributes: class number i, interval lower limit
a−i , interval upper limit a+

i , interval midpoint ai, and inter-
val probability pA(i). Formally: pA(i) ≡ P (a−i ≤ A < a+

i ).
Sometimes, it is also useful to include in these attributes the
cumulative probability p+

A(i) =
Pi

0 pA(i).
The example of Figure 1a corresponds to a workload (Ak)

that has been analysed using a sampling period of TA =
0.1 s. The range of the transmission units measured during
this sampling period is in [0, 120[ kb. This range is divided
into n = 6 intervals or classes so the interval length is lA =
20 kb (from now on we omit the units). Class 0 corresponds
to interval [0, 20[ whose midpoint is a0 = 10. The probabil-
ity that the traffic source produces a number of transmission
units in this interval is pA(0) = 0. Similarly, class 1 corre-
sponds to interval [20, 40[ with probability pA(1) = 0.1, and
so on.

A given gpd A will be usually managed only using two
attributes: the set of midpoints ai and the set of interval



probabilities pA(i), also known as the probability mass func-
tion or pmf. This will be denoted as:

A = (A, p(A))


A = [ai : i = 0 . . . n− 1]
p(A) = [pA(i) : i = 0 . . . n− 1]

(1)

In some contexts, where the midpoints are not relevant, A
will refer only to A = [pA(i) : i = 0 . . . n−1]. In the example
of Figure 1a: A = (A, p(A)) (A = [10, 30, 50, 70, 90, 110];
p(A) = [0, 0.1, 0.4, 0.2, 0.15, 0.15]).

It is important to note that a gpd A is defined over the
traffic domain A while its corresponding pmf p(A) is usually
defined over a domain of integers i = 0 . . . n−1 representing
the class numbers. The correspondence between some value
a in the domain of A and its class number â is given by the
following equation:

â = classA(a) =

—
a

lA

�
(2)

For example, given a = 55, its corresponding class can be
obtained as: â = classA(55) = b55/20c = 2.

It is easy to see that this traffic model has short-range
dependence (SRD). In [12] is discussed the impact of the
long-range dependence (LRD) on the buffer occupancy and
indicated that LRD does not affect the buffer occupancy
when the busy periods of the system are not large. The
same conclusions were obtained in [21]: short-term correla-
tion have dominant effect on cell loss ratio. More important
is to choose the critical time scale (CTS), that is related
with the sample period. In [21], the authors considered the
buffer behavior at the time-scale beyond the CTS is no sig-
nificantly affected. Our experiments shows that selecting
correctly the sampling period the results are very accurate.

2.1 Histogram Operators
Some important operators on random variables that will

be used throughout the paper are introduced next:

• The mean value (or expectation) of X is defined as:
E[X ] =

Pn−1
0 pX(i) · xi. The normalised mean value

of X is defined as Ê[X ] =
Pn−1

0 pX(i) · i. The maxi-
mum of X is defined as M [X ] = max(xi : pX(i) > 0)

and M̂ [X ] = n− 1.

• The scalar multiplication of X by a constant c is a new
random variable Y = c·X where yi = c·xi and pY (i) =
pX(i) for i = 0 . . . n. Note that variable Y has the same
pmf than X , that is, p(X) = p(Y ). Multiplying by a
scalar only affects the interval length: lY = c · lX .

• The convolution of two random variables X and Y,
denoted as X ⊗ Y, is only defined for variables with
the same interval length. Let n and m be the number
of intervals of X and Y respectively. The convolution
X ⊗Y is a new variable Z = (Z, p(Z)) with n+m− 1
intervals, with the same interval length and pZ(i) =Pi

k=0 pX(i− k) · pY (k).

2.2 Histogram classes and precision
One key issue is to determine the number of classes of

a histogram. This is in general a trade off between repre-
sentation economy and precision: with too many intervals,
the representation will be cumbersome and histogram pro-
cessing expensive, since the complexity of algorithms mostly

A
Q

R

Prob.

p(A) p(Q)

Processor

Figure 2: Single node scenario

depends on the number of classes but, on the other hand,
too few intervals may cause losing information about the
distribution and masking trends in data. The experiments
in the evaluation section shows that 10 classes are enough
to obtain accurate results.

Another important problem is that histogram processing
with a low number of classes is that the result has poor pre-
cision. It is paradoxical that these errors occur even if that
low number of classes is enough to properly describe a given
workload without losing much information. The reason for
those inaccuracies seems to be the effect of the low number
of classes when using the iterative algorithms. The solu-
tion proposed in this paper consists in overclassing the his-
togram which is a transformation for “artificially” increasing
the number of classes by splitting each class i with proba-
bility p(i) into m classes with the same probability p(i)/m.
That implies increasing the zoom factor of the distribution
by m.

3. THE HISTOGRAM BASED PROCESS
This section introduces a stochastic process based on his-

tograms for obtaining the buffer occupancy distribution. Us-
ing the buffer occupancy distribution we can calculate sev-
eral Quality of Service (QoS) parameters.

3.1 Method foundation
The analysis starts by considering a single node as shown

in Figure 2. Input traffic is supplied through buffers of finite
capacity. These buffers accumulate pending traffic that can-
not be transmitted over a sampling period. The system will
be said to be stable if the pending traffic converges to a fi-
nite value. The server discipline is First Come First Served
(FCFS) with deterministic (constant) distribution. Using
Kendall’s notation we are trying to resolve a HD/D/1/K
queue where HD stands for Histogram Deterministic Inter-
arrival Distribution.

The queue or buffer length can be expressed using a recur-
rence equation assuming a discrete time space T = 0, 1, 2, . . ..
Let Q[k] be the queue length for period k ∈ T 1:

Q[k] = φl
0(Q[k − 1] +A[k]− S[k]) (3)

where expression A[k] is the cumulative number of bits that
the data source puts into the buffer during the k-th period.

1This equation is also detailed in [12]. As stated in the
paper there is an easy solution when l = ∞. In this case
this recurrence equation is known as the Lindey’s equation.
Nevertheless, when l < ∞, they said that the solution was
’complicated’ and only present the values for the first 2 it-
erations



Analogously the service rate S[k] is the number of cumula-
tive bits that the processor removes from the buffer during
the same period. Operator φ limits buffer lengths so they
cannot be negative and cannot overflow the buffer length l.
This operator is defined as follows:

φb
a(x) =

8<: 0, for x < a
x− a, for a ≤ x < b+ a
b, for x ≥ b+ a

(4)

The service rate can be expressed as a constant r, that is
the output rate R multiplied by the period TA (r = R ×
TA). Then, arrivals are spread uniformly over the period
and the traffic is processed at constant rate, an arrival rate
of A[k] ≤ r will be served constantly and buffer occupancy is
not increased. If A[k] > r the buffer occupancy will increase
(up to the queue limit l).

Q[k] = φl
0(Q[k − 1] +A[k]− r) = φl

r(Q[k − 1] +A[k])

This recurrence equation is the basis for defining a new
stochastic process. We eliminate the time dependence of
A[k] using a discrete random variable A that describes the
arrival process. As stated in the previous section, our traffic
model assume that traffic is stationary so A = Ak ∀k ∈ T .
The queue length is converted to a new random variable that
depends on the period. This way, the stochastic process is
defined as follows:

Qk = Φl
r(Qk−1 ⊗A) (5)

where the bound operator Φb
a() is defined as the statistical

generalisation of the previously defined φb
a() operator. If X

is a random variable with n intervals, then Y = Φb
a(X ) is a

random variable with b+ 1 intervals where:

p
`
Φb

a(X )
´

=
ˆ aX

i=0

pX(i), pX(a+ 1), pX(a+ 2), . . . ,

pX(a+ b− 1),

n−1X
i=a+b

pX(i)
˜

(6)

As an example of how this operator performs, given a
random variable X with histogram p(X) = [0, 0.1, 0.4, 0.2,
0.15, 0.15] (see Figure 1b), then Y = Φ2(X ) has p(Y ) = [
0+0.1+0.4, 0.2, 0.15, 0.15] = [0.5, 0.2, 0.15, 0.15] and Z =
Φ2

2(X ) has p(Z) = [ 0+0.1+0.4, 0.2, 0.15+0.15] = [0.5, 0.2,
0.3].

Equation 5 is the definition of a new discrete time stochas-
tic process {Qk | k ∈ T}. It will be referenced as the His-
togram Buffer Stochastic Process (HBSP). Although the ar-
rival process is deterministic the states of this process are
defined using the arrival process, that is, the number of ar-
rivals in a period, and it is assumed to be independent. Con-
sequently, this stochastic process is shown to be a Discrete
Time Markov Chain (DTMC) as detailed in the Appendix.

The explanation of this process is provided using the ex-
ample of Figure 3a. The mean and maximum values of A
are Ê[A] = 2.85, M̂ [A] = 5. The process is described using
an output rate R=600 kb/s (that is, a service rate of r =
60 kb per sampling period) and a bounded buffer length of
100 kb. In terms of the pmf, those values correspond to
r̂ = classX(r) = 3 and b̂ = classX(b) = 5.

In the first iteration, the pending execution histogram Q
is obtained by summing classes 0..3 of A (this workload is
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Figure 3: Buffer Histogram Evolution in HBSP.

processed without queueing, assuming a deterministic ar-
rival) and shifting it to the left (Figure 3d): Q1 = Φ3(A),
p(Q1) = [0.7, 0.15, 0.15].

The probability that the pending execution is 1 and 2 is
0.15 in each case. Since the buffer computation time is b̂ = 5
there is no probability of exceeding buffer capacity after the
first iteration but, in general, the bound operator establishes
an upper limit on the queued workload due to finite buffer
length: Q1 = Φ5

3(A), p(Q1) = [0.7, 0.15, 0.15].
In the second iteration, the buffer already stores a pending

workload of Q1 and, in addition, a new workload A arrives.
The cumulative workload histogram in the buffer after this
iteration, is the convolution of the previous histograms (Fig-
ure 3b): I2 = Q1 �A, p(I2) = [0, 0.07, 0.295, 0.215, 0.1950,
0.1575, 0.0450, 0.0225].

Now the effect of the finite buffer (5 classes) will pro-
duce a loss in the cases where there is a probability that
the buffer length is greater than 5. For example, for a 6
units length, 5 units are stored into the buffer and the other
one is discarded, so this probability has to be added to the
probability class 5. Analogously, in the case of 7 units, 5
are accumulated and 2 are discarded. According to this the
result of the second iteration is (Figure 3e): Q2 = Φ5

3(I2),
p(Q2) = [0.5800, 0.1950, 0.1575, 0.0450, 0.0255].

Using an iterative method, the steady state of Q =(Q,
p(Q)) is ([10, 30, 50, 70, 90, 110], [0.3275, 0.1625, 0.1699,
0.1291, 0.1077, 0.1033]) (see Figure 3f). Note that the trans-
formation to the histogram class domain produces discretiza-
tion errors. The effect of this transformation will be studied
in detail in the evaluation experiments.

The evolution in time of this stochastic process can be
analysed in terms of the mean value of A. When M̂ [A] ≤
r̂ (r = R × TA), then the pending computation time (or
buffer length) is zero because it is easy to prove, from its
definition, that Φr̂(A) is zero in this case. The case when

M̂ [A] > r̂ is the most interesting one because, statistical
analyses allow arrival rates to exceed occasionally the out-
put rate capacity during transitory overloads and still have
a stable system depending on Ê[A]. Two subcases must be
considered: using an infinite or a finite buffer. In the infinite
buffer case, the system converges to a steady-state pmf iff
Ê[A] ≤ r̂. With a finite buffer, the process always converges
because it is always bounded by operator Φb

a().



System evolution for the above considered cases is shown
in Figures 4, 5 and 6. The example workloadA= [0, 0.1, 0.4,

0.2, 0.15, 0.15] of Figure 1b has Ê[A] = 2.85 and M̂ [A] = 5.
Figure 4 shows that the stochastic process converges to a
steady state solution for an infinite buffer and a constant
service rate r̂ = 3, since Ê[A] ≤ r̂. Figure 5 shows the
evolution for the case of an infinite buffer and r̂ = 2. With
Ê[A] > r̂ the system is unstable and the pmf of the buffer
length is shifted to the right in each iteration. Figure 6
shows the situation with r̂ = 2 and a finite buffer b̂ = 30. It
can be seen that the probability of full buffer tends to 1.

Summing up, the method for obtaining the queue occu-
pancy distribution is based on this stochastic process. First,
we obtain the histogram for the traffic workload and using
this stochastic process we obtain the buffer histogram.

3.2 QoS parameters
Some of the most important performance parameters of a

router are delay and loss ratio. This section shows how to
obtain these parameters using the histogram method.

The router delay D is the time between message arrival at
that station and message departure from the station. It is
the sum of the queuing delay U and the transmission delay
T . This can be expressed in statistical terms as:

D = U ⊗ T (7)

The queueing delay is the time spent by the message waiting
for previous buffered messages to be transmitted. In the
case of a router with a output rate of R, and a buffer length
characterised by a gpd Q the queueing delay is proportional
to Q, so it has the same pmf.

U =
1

R
· Q (8)

In statistical terms, multiplyingQ by a scalar 1
R

(scalar mul-
tiplication) only affects its interval length. Then the interval
length of U is lU = lQ/R, expressed in seconds.

The transmission delay is the time spent by the network
interface in processing the message and it is closely related
to the transmission speed. Assuming d is the delay for any
transmission unit of size lesser than the MTU (Maximum
Transmission Unit) and using the same interval length of U
we obtain the class interval as d̂ = classT (d). In statistical
terms, T is a deterministic distribution of the form T =
(T, p(T )) = ([lU , 2 · lU , . . . d̂ · lU ], [t0, . . . , td̂]) with ti = 0 for

i ≤ d̂ and ti = 1 for i = d̂. Then, D = U ⊗ T can be
calculated convolutioning Q and T :

D = Q⊗ [0, . . . , 0, 1k] (9)

As an example, consider the buffer length Q obtained for
the histogram used in subsection 3.1 using a service rate
R = 600 kb/s (r̂ = 3), and assume that the transmission
delay is Td = 0.1 s. First, we obtain the interval length
of U as lU = lA/R = 20/600 = 0.0333 s. The class of d

is d̂ = classU (0.1) = 3. The router delay is calculated as:
D = Q⊗T = [0.3275, 0.1625, 0.1699, 0.1291, 0.1077, 0.1033
] ⊗ [0,0,0,1] = [0, 0, 0, 0.3275, 0.1625, 0.1699, 0.1291, 0.1077,
0.1033]. Obtaining the midpoints of D we have (D, p(D) =
([ 0.033, 0.066, 0.1, 0.133, 0.166, 0.2, 0.233 ,0.266, 0.3], [0,
0, 0, 0.3275, 0.1625, 0.1699, 0.1291, 0.1077, 0.1033] ).

The calculus of the loss ratio can be clearly understood
using the same example. Consider the stationary cumula-
tive workload pmf (I = Q�A = [0, 0.0327, 0.1472, 0.1475,

0.1625, 0.1699, 0.1291, 0.1077, 0.0562, 0.0317, 0.0155]). With

a service rate class r̂ = 3 and a buffer length class b̂ = 5, from
a workload of 10 units, 3 units are sent, 5 units are stored
in the buffer and 2 units are lost. Therefore, the loss pmf
(C) can be obtained by shifting (with accumulation) r̂+ b̂ =
3 + 5 = 8 positions to the right. Using the bound opera-
tor: C = Φ8(I), p(C) = [0.9528, 0.0317, 0.0155].Histogram
C reflects that 0.9528 is the probability of no loss, 0.0317 is
the probability that 1 unit is lost and 0.0155 is the proba-
bility that 2 units are lost. According to this, the probabil-
ity of at least 1 unit is lost is the following weighted sum:
Ê[C] = 0.0317 ∗ 1 + 0.0155 ∗ 2 = 0.0627. Then, the loss ratio
is the proportion between all the units that are lost and the
mean of the arrival workload:

PL(b) =
Ê[C]
Ê[A]

=
0.0627

2.85
= 2.2% (10)

4. EVALUATION
This section presents an evaluation aimed to validate the

HBSP model. The best way to validate a performance model
is to compare the predicted results (buffer occupancy dis-
tribution and loss ratio) with the ones obtained using real
traffic traces and real network models. Another key aspect
of the experiments is to evaluate the accuracy of the HBSP
model, since using discrete variables may introduce impor-
tant deviations. Accuracy evaluation is estimated by com-
paring the results of the HBSP obtained analytically, with
results obtained through simulation. Finally, the results of
the HBSP model are compared to the results of some other
methods.

4.1 Real Traffic Experiments
Real traffic experiments are based on the MAWI traf-

fic traces [7] due to their high resolution. Specifically, we
took a 1-hour trace of IP traffic corresponding to Jan 09,
2007 12:00 through 13:00 of a 100 Mbps trans-pacific line
(samplepoint-F). This traffic trace has 71,545,586 packets
with a total size of about 49 Gbytes and an average rate of
109 Mb/s. These MAWI traces are in tcpdump raw format,
so we distilled them to obtain a simple file that contains
the arrival time (in microseconds) and size (in bytes) of all
the packets transmitted during this hour. Using a sampling
period of T=40 ms (25 samples per second), the resulting
traffic trace has 90,000 frames (see Figure 7a). The arrival
load histogram of this traffic using 10 classes is shown in
Figure 7b that has E[A]= 4.37 Mb and an interval length
lA = 0.8 Mb. In order to evaluate the model an accurate and
realistic event driven simulation using these real traffic trace
was performed. In each period, the simulation calculates the
buffer length and the number of lost packets.

In the first experiment, an infinite buffer was considered
and the output rate was set to R = 180 Mb/s. The param-
eter r̂ is obtained as classA(R× TA) = classA(180 Mb/s×
0.04 s) = classA(7.2 Mb). For example, for 10 classes r̂ = 9
and for 100 classes (lA = 0.08 Mb) r̂ = 90. The HBSP model
model was used considering the following arrival workloads:
a) a pmf of 10 classes (as shown in Figure 7b) , b) a pmf
of 100 classes and c) 10 classes with an overclassing factor
of 10. For each simulation a histogram (QS) was obtained.
The results are in Figure 8a and show that there is loss of ac-
curacy for buffer lengths greater than 0.6Mb. This is mainly
due mainly to accuracy in performing convolutions: values
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Figure 4: Stochastic process with Ê[A] = 2.85, r̂ = 3 and infinite buffer
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Figure 5: Stochastic process with Ê[A] = 2.85, r̂ = 2 and infinite buffer
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Figure 6: Stochastic process with Ê[A] = 2.85, r̂ = 2 and a finite buffer of 30 bits

more to the right are the result of accumulating a lot of prod-
ucts. Nevertheless, the normalized difference 2 between the
simulated histograms and the histogram obtained obtained
using the HBSP model is about 1.69× 10−4, so they are re-
ally close. In the second experiment the output rate was set
to aproximately the mean rate R = 110 Mb/s and the buffer

length was set to B = 1 Mb. The parameters r̂ and b̂ are ob-
tained as r̂ = classA(110 Mb/s× 0.04 s) = classA(4.4 Mb)

and b̂ = classA(B) = classA(1 Mb). For example, for 10

classes r̂ = 5 and b̂ = 1, and for 100 classes r̂ = 50 and
b̂ = 12. The same workloads than in previous experiments
were considered. Figure 8b shows the results. Histograms
with 100 classes and 10 classes with overclassing exhibit very
accurate results. Regarding the loss ratio, the simulation
provided a value of 0.0640109 while the HBSP model esti-
mated a value of 0.148567 with 10 classes, 0.0460523 with
100 classes and 0.0501956 with 10 classes and overclassing,
that are very close to the simulated one.

Previous experiments used a 1-hour trace for obtaining
the histogram, producing very good results. The following
experiment uses a 12-hour trace (from 8:00 to 20:00 of the
Jan 09, 2007 traces). The rate was set R = 120 Mb/s and
the buffer length to B = 1 Mb. This means using long-term
traces instead of short-term traces. Results are still very ac-
curate, as shown in Figure 9. Regarding the loss ratio, the
HBSP model predicted a value of 0.01463, while the simula-
tion yielded 0.02259. In summary there is a little loss of ac-
curacy when using long-term traces, as it could be expected,
due to information loss in the histogram representation.

Previous experiments were also repeated with different

2the normalized difference of 2 vectors A=[a1, · · · an] and

B=[b1, · · · bn] is defined as
p

(a1 − b1) + · · ·+ (an − bn)

traffic traces (using MAWI traces from another day and
hour, the CAIDA OC-48 traces and traces from the NLANR
repository), output rates and buffer lengths. Results were
very similar to the ones presented here.

4.2 Accuracy
This subsection is devoted to identify and evaluate factors

that may affect the accuracy of the results. The selection of
the number of classes and the sample period was based on
the results of the following experiments.

The first experiment analyses the relation between buffer
length and loss ratio. Loss ratios are calculated for different
output rates varying the buffer length between 100 kb and 10
Mb (this corresponds to a maximal queue delay of less than
0.1 s). Results are presented in the form of a loss ratio curve
(see Figure 10). The prediction of loss rate using the HBSP
model is very accurate, since it is very close to simulations.
Best results are obtained when the loss ratio is high. There
is a loss of accuracy when the loss ratio is very low.

The second experiment evaluate the relation between the
number of classes of a histogram and the accuracy. Previous
experiments already showed that accuracy depends on the
number of classes and the overclassing (increasing the num-
ber of classes by splitting each class into a set of classes with
equal probability) factor. Histograms can be a powerful and
compact description of the traffic as long as they allow to
obtain good accuracy on a low number of classes. The key
questions are: how many classes are necessary to get a good
accuracy? and, when is necessary to use overclassing in or-
der to obtain good results?. The second experiment reveals
the relation between the sample period and accuracy. The
experiments uses the same scenarios than previous subsec-
tion (the 1-hour MAWI traffic). The output rate was set
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Figure 7: MAWI Traffic traces.

initially to R = 150 Mb/s and B = 1 Mb was considered.
In the first experiment the number of classes was varied

from 6 to 100 and 4 histograms were calculated: the first
one using the original histogram with no overclassing and
the other 3 using overclassing factors of 5, 10 and 20. The
normalized difference between these histograms and the one
obtained through simulation is shown in Figure 11a. The
loss ratio is compared with the loss ratio of simulations in
Figure 11b. Results show that the main effect of overclass-
ing is to smooth the results reducing the original peaks. It
can be also seen that there is no significant variation us-
ing a overclassing factor greater than 10. Regarding on the
number of original classes, it can be seen that accuracy is
not greatly improved using more than 15 of 20 classes. For
the original histogram, accuracy is better in some cases us-
ing more than 60 classes (see Figure 11a) but in some other
cases it is worst. Therefore, in the average case, it is better
to use overclassing. The final conclusion is that the best re-
sults are obtained using 10 to 20 classes with an overclassing
factor of 10.

The third experiment analyses the relation between the
sampling period and accuracy. This experiment shows the
differences between histograms obtained using the HBSP
model and simulations varying the sample rate from 0.01 s
to 20 s. Results are shown in Figure 12. The best precission
is obtained using periods between 20 ms and 200 ms. So,
this is the appropiate time scale for this traffic trace.

4.3 Comparison with other methods
This section compares the HBSP model with previous

published methods for analysing buffer length and loss ra-
tio. Regarding the calculation of the buffer length, the best
known approach is the method introduced by Skelly and
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Figure 8: Experiment results using MAWI Traffic traces.

Shroff (known as the Histogram Model [24] or the General-
ized Histogram Model [22] and used with few modifications
in [23] and [16]). This approximation is based on resolving
an M/D/1/N queue for each arrival rate of the histogram.
We implemented this method and compared the obtained
buffer length histogram with the one obtained using the
HBSP model. Figure 13a shows that the differences between
the HBSP model and the M/D/1/N method are really high.
The results using the M/D/1/N are very bad. The problems
with the M/D/1/N is that the buffer curve collapses when
the buffer size if high. The results presented in [24] used
very low buffer lengths (about 50 cells) so the results were
more accurate. Nevertheless when larger buffer (about 500)
the buffer curve begins to collapse.

Regarding the loss ratio most of the papers deal with the
tail probability (or overflow probability) P (Q > t) rather
than the loss probability. In this paper we compare the
HBSP method versus the Maximum Variance Asymptotic
(MVA) approximation for loss detailed in [14]. The loss
probability depending on the buffer size for an output rate
R = 110 Mb/s is shown in in Figure 13b. The graph shows
that the HBSP cell loss curve is more precise than the MVA
curve.
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5. APPLICATIONS OF THE MODEL
There is a wide spectrum of applications of the HBSP

model. We can obtain the traffic QoS parameters, as loss
ratio or node delay using the HBSP model. Using the router
delay of the nodes we can obtain the network delay pmf DN .
This pmf is obtained as the sum (convolution) of the node
pmfs that traverses a packet:

DN = ⊗i∈pathDi (11)

This pmf is very useful because we can obtain the mean
delay, or for example, the probability that a packet is delayed
more than a certain value. For example, if we transmit video
or audio, the delay histogram can be useful in the end nodes
to adapt their transmissions rates or to configure the buffer
in the reception nodes. This information can be used for
admission control as well.

Another important application is for traffic provisioning
and network configuration. Optimal provisioning of network
resources is crucial for reducing the service cost of network
transmission. This is the goal of Traffic Engineering : the
design, provisioning, performance evaluation and tuning of
operational networks. The fundamental problem with pro-
visioning is to have methods and tools to decide the network
resource reservation for a given Quality of Service require-
ments [4]. Therefore, the HBSP method can be very useful
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for Traffic Engineering.
The HBSP method allows to obtain the load histogram of

the nodes of a network. These histograms can be used to
configure the network. It also allows to evaluate parameters
like the loss ratio (for a given buffer and output ratio), the
node delay, the buffer/output ratio needed for a required
loss, etc. One important decision that must be taken is the
time-scale of the provisioning. The measured traffic can be a
long-term trace (daily or weekly traces) or a short-term trace
(hourly traces). This depends on the network capability to
support dynamical variation in the reservation of the channel
resources (for example, an hour) (see [11]).

A great advantage of the HBSP model is the easy imple-
mentation of the histograms. Is very easy to capture and
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store a load histogram with few classes (about 10) in a net-
work node.

6. CONCLUSIONS
This paper deals with a well known problem that can be

resumed using the following question by Addie et al. [2]:
‘Is there an accurate and useful traffic model in the form
of a simple stochastic process which can be described by a
small number of parameter and, when fed into a single server
queue gives the same performance as a real traffic stream?’.

This paper presents a new model to answer the question.
The model is based in a stochastic process working with
histograms (the HBSP model). The result of this stochastic
process is a histogram of the buffer distribution. This buffer
distribution has an easy solution for the infinite buffer case
but it seems to have a complicated solution for the finite
buffer case [12]. For this reason, most of the papers ob-
tains the tail probability P (Q > t) using an infinite buffer
model and approximate the cell loss using this tail probabil-
ity. The model presented in this paper is a solution of the
finite buffer case. Consequently, from the buffer histogram
and the arrival histogram it is easy to obtain the cell loss
ratio.

This model is shown to be very accurate. Experiments
were performed using synthetic and real-traffic traces. The
results show that using a histogram of about 10 classes is
enough to obtain good results, so the HBSP model is very

compact.
Finally. we can affirm that the HBSP model: (a) is com-

pact : about 10 classes are needed to obtain accurate results
(b) is easy to implement : is simply to sample and store the
traffic load of network routers in classes (c) is accurate: the
results obtained are very accurate (d) is practical : from the
buffer load histogram we can obtain another useful QoS pa-
rameters as loss ratio and delay .
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APPENDIX
A. BUFFER ANALYSIS AS A DTMC

In this appendix we show that the {Ak | k ∈ T} stochas-
tic process is a Discrete-Time Markov Chain (DTMC). Ad-
ditionally, we can easily obtain the transition probability
matrix P . Using this probability matrix we can obtain the
values for Qk. The problem of using DTMC it that is not
easy to obtain an analytical solution for the steady state
(that is, when n→∞).

A Discrete-Time Markov Chain is a stochastic process
whose probabilities distributions in state j only depends on

the previous state i, and not on how the process arrived to
state i. It is easy to proof that {Ak | k ∈ T} is a DTMC.
The probability that the buffer in period k takes the value
j can be expressed using the buffer probabilities of period
k − 1 as follows:

P [Qk = j] =
X

i

P [Qk = i] · P [Qk = j|Qk−1 = i] (12)

The term pij(k − 1, k) = P [Qk = j|Qk−1 = i] denotes the
probability that the process makes a transition from state
i at period k − 1 to state j at period k. This probability
is obtained from the arrival load A and given that A is the
same in all the periods, then the pij(k−1, k) does not depend
on the period k. Therefore, we can represent pij(k−1, k) as
pij and Eq.13 is reduced to:

P [Qk = j] =
X

i

P [Qk = i] · pij (13)

pij is known as the one-step transition probability. From
this we can obtain the transition probability matrix:

P = [pij ] =

264p00 p01 p02 · · ·
p10 p11 p12 · · ·
...

...
...

. . .

375 (14)

The components of this matrix are easy to obtain using the
definition of the stochastic process {Qn}. That is, for ob-
taining the i-row of P we apply one iteration of the stochas-
tic process using an initial load of one unit in j. For example,

the first row is obtained as Φb̂
r̂([1, 0, 0, 0, . . .]�A). Using the

matrix P we can obtain the pmf of Qk as:

Qk = Q1P
k (15)

Nevertheless, determining the asymptotic behavior (that is,
the steady state) poses problems. This implies obtaining the
steady-state probability vector v as:

v = vP vj ≥ 0,
X

j

vj = 1 (16)

As the matrix dimensions depends on the r̂ and b̂ values two
cases are studied. When b is infinite (the no-buffer case), this
matrix is infinite. This matrix is well studied in [8]. It is
shown that the matrix presents a certain regularity in its
rows and when the utilization is less than 1 it converges (it

is a positive recurrent chain). In the other hand, when b̂

is finite the matrix has a finite size of b̂ + 1 × b̂ + 1 and it
more amenable to work with it. Nevertheless, numerically
resolving Eq.16 is not easy even for a little matrix. There-
fore, we must use iterative methods as the power method or
something similar.

Using the example of subsection 3.1, A =[0, 0.1, 0.4, 0.2,

0.15, 0.15] with r̂=3 and b̂=5 we obtain the following matrix:

P =

2666664
0.70 0.15 0.15 0.00 0.00 0.00
0.50 0.20 0.15 0.15 0.00 0.00
0.10 0.40 0.20 0.15 0.15 0.00
0.00 0.10 0.40 0.20 0.15 0.15
0.00 0.00 0.10 0.40 0.20 0.30
0.00 0.00 0.00 0.10 0.40 0.50

3777775 (17)

We can obtain the second iteration state as Q2 = Q1P =
[0.580, 0.195, 0.1575, 0.045, 0.0225]. The steady state prob-
ability vector is v = [0.3275, 0.1625, 0.1699, 0.1291, 0.1077,
0.1033]. This is the pmf of Q (p(Q)).
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