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ABSTRACT
In this paper, we study the particular scenario where several
transmitter-receiver pairs communicate subject to mutual
interference due to the usage of the same frequency bands.
In particular, we focus on the case of heterogeneous net-
works, where radio devices have different interests (utility
functions), transmit configurations (sets of actions), as well
as different signal processing and calculation capabilities.
The underlying assumptions of this work are the followings:
(i) the network is described by a set of states, for instance,
the channel realization vector; (ii) radio devices are inter-
ested in their long-term average performance rather than
instantaneous performance; (iii) each radio device is able to
obtain a measure of its achieved performance at least once
after updating its transmission configuration. Considering
these conditions, we model the heterogenous network by a
stochastic game. Our main contribution consists of a fam-
ily of behavioral rules that allow radio devices to achieve
an epsilon-Nash equilibrium of the corresponding stochastic
game, namely a logit equilibrium. A thorough analysis of
the convergence properties of these behavioral rules is pre-
sented. Finally, our approach is used in the context of a
classical parallel interference channel in order to compare
with existing results.

1. INTRODUCTION
Self-configuring heterogeneous wireless networks is the term

generally used to identify distributed networks where radio
devices from different classes exploit common resources (e.g.,
frequency bands typically). Often, the difference from one
device to another relies mainly of the physical layer tech-
nology, e.g., Wi-Fi, Bluetooth, Zigbee, etc, and also on the
type of applications the devices are designed for. Within
this framework, coordination between radio devices is lim-
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ited due to the unfeasibility of any kind of message exchange,
and thus, each radio device must autonomously determine
its own optimal transmit configuration. This is one of the
reasons why game theory and the concept of Nash equilib-
rium (NE) [12] has been widely accepted in the analysis of
this kind of networks.
The relevance of the NE stems from the fact that once it
is achieved, each radio device’s transmission configuration
is optimal with respect to the transmit configuration of all
the other devices. Thus, the NE is clearly a desired solu-
tion from each radio device’s standpoint and appears to be
relevant in wireless networks where neither coordination at
all nor cooperation is possible. Nonetheless, achieving NE
is not an easy task. As the main constraint, we highlight
the fact that radio devices are not able to observe neither
the transmit configuration (e.g., the transmit power level or
the channel selected) for the other devices nor the instanta-
neous global state of the network, i.e., channel realizations,
energy constrains and quality of service requirements of all
the active radio devices. Thus, the lack of information nat-
urally constraints each radio device to determine its optimal
transmit configuration at a given instant.
From this perspective, an increasing interest has been ob-
served in the design of behavioral rules to allow radio devices
to achieve an NE configuration as a result of a short inter-
action with its counterparts, similar to a learning process
[8]. In this direction, the best response dynamics (BRD) [5]
and fictitious play (FP) [2] has been largely used in wireless
communications [24, 16, 22, 25, 14] and have been shown to
converge to NE in certain network topologies.
The main constraint in BRD, FP and its variants is the fact
that each radio device must observe the transmit configura-
tions of all the other devices, the actual game state and pos-
sess a closed form expression of the utility function, which
is clearly a very demanding condition in practical scenarios.
In some network topologies and depending on the perfor-
mance metric, this condition can be weakened and a simple
broadcast message from each receiver might be enough to
implement either BRD or FP [24]. However, the amount
of signaling might be too high depending on the number of
dimensions of the scenario, e.g., the number of frequency
bands or transmit antennas.
More elaborated behavioral rules for achieving equilibria are
based on reinforcement learning (RL) [3, 21, 29]. In RL,
the information required by each radio device is simply an
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observation of its own achieved performance at least every
time it changes its transmit configuration. The principle of
RL is as follows. After observing the current value of its
utility, each radio device updates a probability distribution
over all its feasible transmit configurations (or actions). At
each update, the probability of the played action increases
or decreases depending on the observed utility. In the wire-
less communication domain, this idea has been used and has
been proved to converge to NE in some particular radio re-
source allocation scenarios [28, 30]. The main advantages of
RL with respect to BRD and FP are numerous (provided
it converges to NE). For instance, RL is less demanding in
terms of information: only a numerical observation for the
achieved utility at each game stage is sufficient to implement
the RL rule.
However, aside from all the attractive advantages of RL, it
has a critical drawback: each observation of the utility is
used to directly update the probability distributions with-
out maintaining an estimate of the performance achieved
with each transmit configuration. This fact might lead the
network to converge to a stationary state which is not an
NE. We say stationary, in the sense that none of the radio
devices changes its transmit configuration since it is unable
to identify that other transmit configurations might bring a
higher performance. Consider for instance, the simple power
allocation game described in [17] and general examples in [9].
Motivated by this observation, in this paper, we introduce a
kind of behavioral rules which are known in the domain of
Markov decision processes as actor-critic algorithms [6, 27,
7]. Here, each radio device simultaneously learns both the
time-average performance achieved with each of its transmit
configurations and the equilibrium probability distribution.
This estimation helps to solve the problem encountered in
behavioral rules based on reinforcement learning, where con-
vergence is observed but the final network configuration does
not correspond to an NE. In particular, contrary to the RL
algorithms described above, whenever these behavioral rules
lead to a stationary network configuration, it corresponds to
a logit equilibrium (LE), which is indeed, an epsilon-close
Nash equilibrium concept.

The paper is organized as follows. In Sec. 2 the prob-
lem of spectrum sharing is formulated. In Sec. 3, such a
problem is modeled by a stochastic game and the concept of
ε-equilibrium and state-independent behavioral strategies is
introduced. In Sec. 4 a particular ε-equilibrium known as
logit equilibrium is introduced. In Sec. 5 and Sec. 6 a fam-
ily of behavioral rules which allow radio devices to achieve
a logit equilibrium are presented and a thorough analysis of
its convergence in our particular system model is presented.
In Sec. 7, we provide some numerical examples in order to
evaluate the performance of the proposed behavioral rule.
The paper is concluded by Sec. 8

2. SYSTEM MODEL
In the following, we describe a decentralized self-configuring

network where transmitters aim to optimize their individ-
ual spectral efficiency by setting up their spectrum access
scheme, i.e., number of channels to access, allocated power
per channel. Nonetheless, as we shall see in Sec. 3, the con-
tributions of this paper can be applied to scenarios where
radio devices have different performance metrics and differ-
ent sets of transmit parameters to set up.
Consider a set K = {1, . . . ,K} of transmitters and a set J =
{1, . . . , J} receivers. Each ransmitter sends private informa-

tion to its respective receiver trough out a set S 4= {1, . . . , S}
of orthogonal channels. Here, the orthogonality is assumed

in the frequency domain. All transmitters simultaneously
use the same set S of channels and thus, communications

are subject to mutual interference. Let h
(s)
j,k(n) represent

the channel realization between transmitter k and receiver j
over channel s at time n. In our analysis, flat fading channels
are assumed during the frame period, i.e., the channel re-
alization is assumed time-invariant during the transmission
of one frame, however, the channel might vary from frame

to frame period. Denote by h(n) =
(
h

(s)
j,k(n)

)
∈ CJ·K·S the

vector of channel realizations at interval n and let H be the
finite set of all possible channel realization vectors (in prac-
tice, relevant quantities like channel quality indicators in 3G
cellular systems are quantized). Let h(i) be the i-th element
of the set H, with i ∈ {1, . . . , |H|}. For each channel use,
the vector h(n) is drawn from the set H following a proba-
bility distribution ρ = (ρh(1) , . . . , ρh(|H|)) ∈ 4 (H). That is,

ρh(i) = Pr
(
h(n) = h(i)

)
, with n ∈ N. The vector of trans-

mitted symbols xk(n), ∀k ∈ K, is an S-dimensional random
variable with zero mean and covariance matrix P k(n) =
E
(
xk(n)xHk (n)

)
= diag (pk,1(n), . . . , pk,S(n)). For all (k, s) ∈

K × S, pk,s(n) represents the transmit power allocated by
transmitter k over channel s. A power allocation (PA) vec-
tor for transmitter k ∈ K is any vector

pk(n) = (pk,1(n), . . . , pk,S(n)) ∈ Ak,

where, ∀k ∈ K,

S∑
s=1

pk(n) = pk,max and pk,max is the max-

imum transmit power of transmitter k. Following this no-

tation, the power allocation vector p
(s)
k represents the s-th

element of the setAk. We denote by Nk = |Ak| the cardinal-
ity of the set Ak. We respectively denote the noise spectral
density and the bandwidth of channel s ∈ S by N0 and Bs.
The total bandwidth is denoted by B =

∑S
s=1 Bs, indepen-

dently of the receiver. We denote the individual spectral
efficiency of transmitter k ∈ K as follows,

uk(h(n),pk(n),p−k(n)) =
∑
s∈S

Bs
B

log2 (1 + γk,s(n)) [bps/Hz],

(1)
where γk,s(n) is the signal-to-interference plus noise ratio
(SINR) seen by player k over its channel s at time n, i.e.,

γk,s(n) =
pk,s(n)g

(s)
jk,k

(n)

N0Bs +
∑

i∈K\{k}

p
(s)
i (n)g

(s)
jk,i

(n)
, (2)

where, jk ∈ J is the index of the receiver with which trans-
mitter k is associated. Moreover, for all (j, k) ∈ J × K and

n ∈ N, g
(s)
j,k(n) ,

∣∣∣h(s)
j,k(n)

∣∣∣2.

In the following of this paper, our interest focuses on design-
ing behavioral rules to determine how radio devices choose
their power allocation vectors at each interval n in order
to to maximize the time-average of their individual spectral
efficiency (1).

3. GAME MODEL
The long-term behavior of the decentralized network de-

scribed in the previous section can be modeled by a stochas-
tic game. In the following, we formulate such stochastic
game and the concept of epsilon-equilibrium. Finally, we
describe a particular class of behavioral strategies, to which
we restrict the analysis of our game.
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3.1 Game Formulation
Consider the stochastic game G described by the 5-tuple

G = (K, {Ak}k∈K, {ūk}k∈K,H, {ρh}h∈H) . (3)

The sets K = {1, . . . ,K}, H =
{
h(1), . . . ,h(H)

}
and Ak =

{A(1)
k , . . . , A

(Nk)
k }, ∀k ∈ K, represent the set of players, the

set of network states and the set of actions of player k, re-
spectively. In this analysis, such sets are assumed finite, non-
empty, and time-invariant sets. In the game G, each player
represents an active transmitter of the network. The set of
actions of a given transmitter corresponds to the set of all its
feasible transmission configurations, for instance, the power
allocation vectors, etc. The set H is the set of all possible
channel realizations. The vector ρ = (ρh(1) , . . . , ρh(|H|)) ∈
4 (H) is the probability distribution described in Sec. 2.
The function ūk is the long-term performance metric of
player k, for all k ∈ K, and will be described later.
The game G is played stage by stage ad infinitum. At
each stage n, every player k adopts an action e.g., a power
allocation vector pk(n) ∈ Ak. At the end of the stage,
player k observes a numerical value ũk(n) of its achieved
performance e.g., the individual spectral efficiency ũk(n) =
uk
(
h(n),pk(n),p−k(n)

)
. Note that these observations might

be noisy [15]. However, this case is not the focus of the
present work.
Note that all the information gathered by player k at stage
n is the 2-tuple (ak(n), ũk(n)) ∈ Ak × R. We denote by
θk(n) the available information gathered by player k up to
interval n, i.e.,

θk(n) = {(ak(0), ũk(0)), . . . , (ak(n− 1), ũk(n− 1))}. (4)

We refer to θk(n) as the private history of player k at time
n. The set of all possible private histories of player k at time
n is denoted by Θk(n), and,

Θk(n) = (Ak ×R)n . (5)

At each game stage, transmitters select their respective PA
vector following a probability distribution

πk(n) =

(
π
k,A

(1)
k

(n), . . . , π
k,A

(Nk)

k

(n)

)
∈ 4 (Ak)

which is built based on its private history θk(n). Here,
∀nk ∈ {1, . . . , Nk}, π

k,p
(nk)

k

(n) represents the probability

that player k plays action p
(nk)
k ∈ Ak at time n, i.e.,

π
k,A

(nk)

k

(n) = Pr
(
pk(n) = p

(nk)
k

)
. (6)

Such probability is built as follows. There exists a function
for each time interval n, which we denote by σk,n, and is
defined as follows,

σk,n : Θk(n)→4 (Ak) . (7)

Thus, at each time n player k determines its probability
distribution πk(n) based on its private history θk(n). Each
player k possesses an infinite sequence of functions,

σk = {σk,n}n>0 , (8)

such that at each game stage n, it is able to generate the
corresponding distribution π(n). We refer to the sequence
of functions σk as the behavioral strategy (BS) of player k.
In the following, we denote by Σk, the set of all possible BS
of player k and let Σ = Σ1 × . . . × ΣK be the set of all BS
profiles.

Now note that, given any behavioral strategy σ, the ini-
tial channel selection profile p(0) ∈ A induce a set of se-
quences of probability distributions {πk(n)}n>0, for all k ∈
K. Hence the set of sequences {πk(n)}n>0 induced by p(0) ∈
A together with the initial probability distributions π(0) =
(π1(0), . . . ,πK(0)) induce a probability distribution over all
the possible sequences of action profiles {p(0),p(1), . . . }.
We denote the expectation with respect to such probabil-
ity distribution by E(π(0),σ). Then, the long-term expected
performance of player k can be measured by the function,
ūk : Σ1 × . . .× ΣK → R+, where,

ūk(σk,σ−k |π(0) ) = lim
n→∞

1

n
E(π(0),σ)

[
n−1∑
i=0

ũk(i)

]
. (9)

The function (9) captures the situation in which the inter-
action between all transmitters in the network lasts many
time intervals and the instantaneous performance is insignif-
icant compared with the performance in all the other time
intervals.
In the following, the game G is analyzed assuming that the
aim of each player k is to choose a BS σk ∈ Σk such that it
maximizes its performance metric (9) given the BS σ−k ∈
Σ−k adopted by all the other players and regardless of the
initial action profile a(0) ∈ A. In particular, we look for a
the BS profile σ∗ = (σ∗1 , . . . , σ

∗
K) ∈ Σ1 × . . .ΣK such that

none of the players can obtain a performance improvement
by unilaterally using other BS. We provide a more precise
concept of this expected solution of the stochastic game G
in the following subsection.

3.2 Nash Equilibrium and ε-Equilibrium
In the following, we describe the concept of ε-equilibrium

and Nash equilibrium in the context of the stochastic game
G. First, let us define the ε-equilibrium as follows,

Definition 1 (ε-equilibrium in the game G). Let ε >
0. In the game G, a strategy profile σ∗ ∈ Σ1× . . .×ΣK is an
ε-equilibrium if it satisfies, for all k ∈ K and for all σk ∈ Σk,

ūk(σ∗k,σ
∗
−k |π(0) ) > ūk(σk,σ

∗
−k |π(0) )− ε, (10)

independently of the initial probability distributions πk(0) ∈
4 (Ak), ∀k ∈ K.

An ε-equilibrium can be interpreted as a BS profile such
that, none of the players can obtain an improvement higher
than ε by unilaterally changing its own BS. Note also that,
by letting ε = 0 in Def. 1, the classical definition of Nash
equilibrium is obtained.
In the following section, we discuss the feasibility of achiev-
ing these equilibrium concepts in the game G.

3.3 Stationary State Independent Behavioral
Strategies

Stationary state independent behavioral strategies (SSI-
BS) are considered the simplest class of BS in stochastic
games [26, 13]. Let the set of stationary state independent
behavioral strategy (SSI-BS) profiles be denoted by Σ̄ and
let a given SSI-BS profile be defined as follows,

Definition 2 (Stationary State Independent BS).
Consider the game G and let σ ∈ Σ be a behavioral strategy.
Then, σ is said to be stationary state-independent (SSI) if
for all k ∈ K and any two private histories θk(n) ∈ Θk(n)
and θk(m) ∈ Θk(m), with n 6= m, it follows that

σk,n (θk(n)) = σk,m (θk(m)) , (11)

independently of the states h(n) and h(m).
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From Def. 2, it can be implied that for a player k, an SSI-BS
does not depend on any of the previous channel selections
pk(0), . . . ,pk(n−1) and neither on the previous nor current
channel realizations h(0), . . . ,h(n). Thus, a SSI-BS σk ∈ Σ̄
can be identified by a vector π = (π1, . . . ,πK) ∈ 4 (A1)×
. . . × 4 (AK), such that, ∀k ∈ K and ∀ (θk(n),h(n)) ∈
Θk(n)×H, it holds that σk,n(θk(n)) = πk. In the sequel, we
indifferently use the infinite set of sequences σk = {πk}n>0

or the vectors πk, with k ∈ K, to refer to the SSI-BS
σ. Moreover, with a slight abuse of notation, we indiffer-
ently write either ūk (σk,σ−k) or ūk (πk,π−k) to denote the
achieved performance of player k given the SSI-BS σ. In the
following, we restrict the analysis of the game G to the set of
SSI-BS. The justifications for this choice are manifold. First,
note that none of the players is able to identify the current
network state at each stage of the game. Moreover, given
the information gathered by player k up to stage n− 1, i.e.,
θk(n − 1), with k ∈ K and n > 1, it is not possible to infer
any information about the network state h(n). This implies
that, player k is unable to calculate an optimal probability
distribution πk(n) at each stage n, since the ignorance of the
network state at each stage implies the ignorance of a closed
form expression of the instantaneous performance metric uk
and the long-term performance metric ūk. Thus, regardless
of the stage n and all the information gathered up to such
stage n, all players face the same scenario.

4. LOGIT EQUILIBRIUM
In this section, we introduce the concept of an ε-equilibrium

known as logit equilibrium. We define the logit equilibrium
in the context of the game G in SSI-BS and we conclude this
section claiming its existence and providing some insight on
its uniqueness in the game G.

4.1 Logit Equilibrium in SSI-BS
Before we provide a formal definition of the logit equilib-

rium, we introduce the idea of logit best response.

Definition 3 (Logit Best Response). Consider the
game G and let the vector π−k ∈ 4 (A1)× . . .×4 (Ak−1)×
4 (Ak+1) × . . . × 4 (AK) represent a given SSI-BS pro-
file, with k ∈ K. Then, the logit best response of player
k, with parameter γk > 0, is the probability distribution

β
(γk)
k (ūk(·,π−k)) ∈ 4 (Ak) such that, β

(γk)
k : RNk →

4 (Ak) is the logit function,

β
(γk)
k

(ūk(·,π−k)) =

β(γk)

k,A
(1)
k

(ūk(·,π−k)),...,β
(γk)

k,A
(Nk)
k

(ūk(·,π−k))



and ∀nk ∈ {1, . . . , Nk},

β
(γk)

k,A
(nk)

k

(ūk(·,π−k)) =
exp

(
γkūk(e

(nk)
k ,π−k)

)
Nk∑
m=1

exp
(
γkūk(e

(m)
k ,π−k)

) .(12)

From Def. 3, it can be implied that at each stage of the
game, every power allocation vector of a given transmit-
ter has a non-zero probability of being played, i.e., ∀k ∈
K and ∀nk ∈ {1, . . . , Nk} and ∀γk ∈ R+, it holds that,

β
(γk)

k,A
(nk)

k

(ūk (·,π−k)) > 0. More generally, it can be stated

that the logit best response in SSI-BS is represented by a
probability distribution that assigns high probabilities to the
power allocation vectors associated with a high average in-
dividual spectral efficiencies and low probability to power

allocations associated with low average individual average
performance.
Finally, note also that conversely to the case of the best
response in the case of Nash equilibrium [12], the logit best
response of player k is unique for all the SSI-BS profiles the
other players might adopt.
Using Def. 3, we define the logit equilibrium as follows,

Definition 4 (Logit Equilibrium in SSI-BS). Con-
sider the game G and let the vector π∗ = (π∗1, . . . ,π

∗
K) ∈

4 (A1)×. . .×4 (AK) represent a stationary state-independent
behavioral strategy (SSI-BS). Then, π∗ is a logit equilib-
rium SSI-BS profile with parameter γ = (γ1, . . . , γK) if for
all k ∈ K, it holds that,

π∗k = β
(γk)
k

(
ūk
(
e

(Nk)
1 ,π∗−k

)
, . . . , ūk

(
e

(Nk)
Nk

,π∗−k

))
.(13)

At the logit equilibrium, since all actions are played with
non-zero probability, at some given game stages the actions
taken by player k do not maximize the instantaneous per-
formance uk, which negatively impacts the long-term per-
formance ūk. In [15], it has been shown that the maximum
loss of performance player k might experience is not higher
than 1

γk
ln(Nk), which confirms that the logit equilibrium

falls in the class of ε-equilibrium described in Def. 1.

4.2 Existence and Uniqueness of the LE
The main result regarding the existence of an LE in the

game G is the following.

Theorem 5 (Existence of the LE). The stochastic
game G has at least one logit equilibrium in the set of sta-
tionary state-independent behavioral strategies.

The proof of Theorem 5 is presented in [15]
The uniqueness of the LE in the game G in SSI-BS is

strongly related to the parameters γk, with k ∈ K. For
instance, when ∀k ∈ K, γk → 0, there exits a unique LE in
SSI-BS and corresponds to the vectors πk = 1

Nk
(1, . . . , 1) ∈

4 (Ak). This LE (uniform probability distributions over the
sets A1, . . . ,AK) is unique, independently of the number of
NE the game G might possess. Conversely, when ∀k ∈ K,
γk → ∞, the set of LE becomes identical to the set of NE
and thus, the game G exhibits as many LE as NE might
exist in G in SSI-BS.
The number of NE (and thus, the number of LE) of the
game G is often not unique. In fact, it has been already
shown that even the simplest cases exhibit several NE. For
instance, when K = {1, 2} and H and J are unitary, the
number of NE can be 1 or 2 in pure strategies [16]. When,
J = K = {1, 2} and H is unitary, the number of NE can be
1, 2 or 3 in pure strategies [19].

5. LEARNING LOGIT EQUILIBRIA
In this section, we design behavioral strategy profiles σ =

(σ1, . . . , σK) ∈ Σ such that given the information gathered
by player k at each stage n, i.e., given the sets {θk(n)}n>0 for
all k ∈ K, it is able to generate infinite sequences {πk(n)}n>0,
such that, limn→∞ ||πk (n)− π∗k|| = 0, where

π∗ = (π∗1, . . . ,π
∗
K) ∈ 4 (A1)× . . .×4 (AK)

is a logit equilibrium in SSI-BS of the game G (Def. 4).
An important remark is that achieving a logit equilibrium
implies that at a given game stage, radio devices are able to
build logit best responses in order to face the other players
behavioral strategies. Nonetheless, building such a proba-
bility requires each player to know the vector ūk(·,π−k(n)).
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Thus, radio devices must estimate their corresponding vec-
tor ūk(·,π−k(n)) at each game stage n based on their cur-
rent history θk(n) in order to generate their logit best re-
sponse.
Let the Nk−dimensional vector

ûk(n) =

(
û
k,A

(1)
k

(n), . . . , û
k,A

(Nk)

k

(n)

)
(14)

be the estimation, at the game stage n, that player k pos-
sesses of the vector ūk(·,π−k(n)). In the following, we
present a result initially introduced in [17, 15], which al-
lows radio devices to simultaneously estimate the vector
ūk(·,π−k(n)) and determine the probability distribution πk(n),
with which it chooses the power allocation vector pk(n).

Theorem 6 (LE Behavioral Strategy). Consider
the game G and assume that for all k ∈ K and for all nk ∈
{1, . . . , Nk}, it holds that for all n ∈ N,

û
k,p

(nk)
k

(n) = û
k,p

(nk)
k

(n−1)+

αk(n)

1{
pk(n−1)=p

(nk)
k

}
π
k,p

(nk)
k

(n)

ũk(n−1)−û
k,p

(nk)
k

(n−1)

,
π
k,p

(nk)
k

(n) = π
k,p

(nk)
k

(n−1)+

λk(n)

β(γk)

k,p
(nk)
k

(ûk(n))−π
k,p

(nk)
k

(n−1)

,
(15)

where, pk(0) ∈ Ak, ûk(0) ∈ RNk and πk(0) ∈ 4 (Ak) are
arbitrary initializations. Consider also the following assump-
tions and for all (j, k) ∈ K2, the learning rates αk and λj
satisfy that

(B0) lim
T→∞

T∑
n=0

αk(n) = +∞ and lim
T→∞

T∑
n=0

αk(n)2 < +∞,

(B1) lim
T→∞

T∑
n=0

λk(n) = +∞ and lim
T→∞

T∑
n=0

λk(n)2 < +∞,

and,

(B2) lim
n→∞

λj(n)

αk(n)
= 0.

Then, if the set of coupled stochastic approximation algo-
rithms (15) converge, it holds that,

lim
n→∞

πk(n) = π∗k, (16)

lim
n→∞

û
k,p

(nk)

k

(n) = ūk(e(Nk)
nk ,π∗−k), (17)

where π∗k ∈ 4 (Ak) satisfies that,

π∗k =β(γk)

k

(
ūk

(
e
(Nk)
1 ,π∗−k

)
,...,ūk

(
e
(Nk)

Nk
,π∗−k

))
. (18)

The proof of Theorem 6 is presented in the most gen-
eral case of the game G in [15], based on previous results
on stochastic approximations [9, 1]. The behavioral rule in
Theorem 6 has been proved to convergence in several classes
of games, e.g., potential games [11]. However, in general, the
game G does not fall in any of those classes and thus, the
convergence must be proved.

6. CONVERGENCE ANALYSIS
In the following, we consider some particular cases of the

scenario described above and we present some results on the
convergence of the proposed algorithms.

6.1 Parallel Multiple Access Channels (J = 1)
Note that when J = 1, the scenario described before re-

duces to a parallel multiple access channel [4], and thus, the
corresponding game has a potential function φ, defined as
follows,

φ(π) =
∑
h∈H

∑
s∈S

log2

(
σ2
s +

K∑
i=1

pi,s

∣∣∣h(s)
1,i (n)

∣∣∣2) ρh K∏
j=1

πj,pj .

(19)
Then, from Theorem 4.6.1 in [15], the following holds,

Proposition 7. When J = 1, the algorithm in (15), with
λ1 = . . . = λK , converges to a logit equilibrium of the result-
ing game G.

In particular, the BRD has been used to achieve equilibria in
this context [24] and proved to converge to NE. Other algo-
rithms such as FP and its variants are also shown to converge
[18]. Nonetheless, the advantages of the algorithm in (15)
over the BRD (and FP) stem from the fact that there is no
synchronization required for the radio devices to coordinate
in sequential or simultaneous updates of their configuration
[20]. Here, the only requirement for each device is to observe
a numerical value of its SINR each time it updates its con-
figuration, independently of all the other devices’ strategy
update timing. Moreover, contrary to the case of simulta-
neous BRD, the convergence is always ensured [18].

6.2 Parallel Interference Channels (J = 2 )
When J = 2 receivers, the resulting network topology

describes in the simplest case, i.e., when ∀j ∈ J , |Kj | = 1,
the parallel interference channel [4]. In the most general
case, i.e., when ∀j ∈ J , |Kj | > 1, it describes a 2-cell multi-
carrier cellular channel (in uplink), e.g., an OFDM cellular
network system. In both cases, the resulting game is no
longer a potential game and thus, convergence of the BRD
(and FP) are not always observed [25, 23]. Nonetheless,
using our algorithm, convergence is always achieved, as we
show in the following proposition,

Proposition 8. When J = 2, λi = λ1, ∀i ∈ K1, λj =
λ2, ∀j ∈ K2 and

lim
n→∞

λ1(n)

λ2(n)
= 0 (20)

the algorithm in (15) converges to a logit equilibrium of the
resulting game G.

The proof of proposition 8 follows from Theorem 4.6.2 in
[15].

7. NUMERICAL ANALYSIS
In this section, we provide a numerical analysis of the per-

formance achieved by radio devices following the behavioral
rule proposed in this article. First, we focus on the achieved
performance in limited time. Here, our interest focuses in
determining the sum spectral efficiency when the learning
period is limited. Note that the theoretical analysis requires
infinite time for convergence, which is not practically ap-
pealing. Second, we focus on the impact of the number
of choices each radio devices might possess at a given time.
Here, we verify the counter intuitive result which states that
increasing the set of choices each radio device possesses dur-
ing the whole game realization might lead to worse global
performance.
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7.1 Convergence in Finite Time
In the following, we say that a learning algorithm con-

verges to either a LE, if there exists a number n ∈ N1, given
a sufficiently small number ε > 0, such that,

∀k ∈ K, ||πk(n)− π∗k|| < ε, (21)

where π∗ = (π∗1, . . . ,π
∗
K) is a LE strategy profile, respec-

tively. We measure the convergence time, as the number
of iterations required to observe convergence in the sense of
(21), assuming that all convergence updates occur period-
ically at a constant frequency. We refer as achieved per-
formance to the time-average utility observed by the radio
devices from the first strategy update up to convergence.
As another note, we point out the fact that there exist other
ways to measure convergence other than Euclidian distance
as in (21). For instance, using the Kullback-Leibler diver-
gence as in [10]. In the following, we evaluate numerically
the convergence time and the achieved performance by radio
devices in the particular cases described above.
Consider the decentralized wireless network described in Sec.
2, when there exist only two transmitters, i.e., K = {1, 2},
two receivers, i.e., J = {1, 2} and two channels S = {1, 2}.
We limit the set of power allocation vectors, to the channel
selection case, i.e.,

Ak =
{
p

(s)
k = pk,max es : ∀s ∈ S, es = (es,1, . . . , es,S) ,

∀r ∈ S \ s, es,r = 0, and es,s = 1} . (22)

In order to facilitate a fair comparison of the behavioral rule
in Theorem 6 with existing results [20], we consider the set
H is unitary. This implies that the stochastic game reduces
to play the same game repeatedly ad infinitum. At each
stage, the corresponding one-shot game G (h) might have
either one NE in pure strategies or two NE in pure strate-
gies plus one NE in mixed strategies [19]. Here, we generate
10000 channel realizations. For each channel realization, we
calculate the sum of individual spectral efficiencies at the
NE. We treat separately the case of unique and multiple
equilibria. Similarly, for each channel realization, we deter-
mine the sum of individual spectral efficiencies achieved by
both transmitters when their learning time is limited to a
fixed number of time intervals (game repetitions). In Fig.
1, we plot the average sum of individual spectral efficiencies
as a function of the number of times the game is let to be
repeated. On the left, we consider the case of a unique equi-
librium and on the right, the case of multiple equilibria is
considered.
In Fig. 1, it is clearly seen that the longer the radio devices
are left to learn, the better their achieved performance. In-
terestingly, after certain number of iterations, radio devices
are able to achieve an average sum spectral efficiency which
is better than the worst NE, i.e., the NE with the lowest
sum spectral efficiency. Another important remark, is the
impact of the parameter γk, for all k ∈ K. In Fig. 1, it is
also shown that the smaller γk the more interest player k has
in playing uniformly all its own actions. Conversely, when
the parameter γk is large, the corresponding radio devices is
tempted to use more often the best configuration and thus,
it achieves a better performance.

7.2 Impact of the Number of Choices
In this subsection, we increase the number of available

channels and we let each transmitter to use either a unique
channel or any subset of adjacent channels. Thus, if we con-
sider S channels, the cardinality of the sets Ak is S

2
(1 + S),

for all k ∈ K. Here, we generate 10000 channel realizations
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Figure 1: Achieved sum spectral efficiency in
the two-transmitter two-receiver two-channel game,
when transmitters are limited to channel selection.
Here α1(n) = α2(n) = 1

n
( 3
4
)
, α2(n) = 1

n
( 2
3
)

and λ1(n) = 1
n
.

Moreover, SNR =
pk,max

σ2 = 10 dBs. (left) Case of
unique NE. (right) Case of multiple NE.
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Figure 2: Achieved sum spectral efficiency in the
two-transmitter two-receiver N-channel game, when
transmitters are limited to use only one channel or
any combination of adjacent channels. Here α1(n) =
α2(n) = 1

n
( 3
4
)
, α2(n) = 1

n
( 2
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)

and λ1(n) = 1
n
. Moreover,

SNR =
pk,max

σ2 = 10 dBs.

and we let radio devices to learn through 1000 game repe-
titions. In Fig. 2, it is shown that increasing the number
of available channels leads to a loss of spectral efficiency.
This observation is due to the fact that letting each radio
device to use an additional channel implies increasing the
number of possible power allocation vectors. This implies
that the radio device has to try more power allocation vec-
tors in order to estimate the individual spectral efficiency it
obtains with each of them. However, such power allocation
vectors might not be those bringing the highest individual
spectral efficiency, and thus, using them reduces the average
individual spectral efficiency.

8. CONCLUSIONS
This paper presents a framework to learn distributed strate-

gies in communication networks where the transmitters may
not know much about the structure of the game, have dif-
ferent action sets, have different utility functions, and only
know the realizations of their utility and nothing else (in
particular the utility function is not assumed to be known).
The interesting case where transmitters learn at different
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speeds is addressed, which is also a possible feature in het-
erogeneous networks. In this context, we have shown that
the proposed (behavioral) strategies are independent of the
closed-form expression of the performance metric and the
set of transmit configurations of each radio device. Here,
the required conditions for our results to be valid are: Each
device must possess a finite set of feasible actions and it
must be able to observe its achieved instantaneous perfor-
mance at least once after each update of its transmit con-
figuration. When the proposed behavioral rule is used and
convergence is observed, then the system is said to achieve
a Logit equilibrium. A convergence analysis was carried out
for a particular scenario considering as performance metric
the individual spectral efficiency.
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