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Abstract—We consider the concert queueing game in the fluid
framework, where the service facility opens at a specified time,
the customers are particles in a fluid with homogeneous costs
that are linear and additive in the waiting time and in the
time to service completion, and wish to choose their own arrival
times so as to minimize their cost. This problem has recently
been analyzed under the assumption that the total volume of
arriving customers is deterministic and known beforehand. We
consider here the more plausible setting where this volume
may be random, and only its probability distribution is known
beforehand. In this setting, we identify the unique symmetric
Nash equilibrium and show that under it the customer behavior
significantly differs from the case where such uncertainties do
not exist. While, in the latter case, the equilibrium profile is
uniform, in the former case it is uniform up to a point and then
it tapers off. We also solve the associated optimization problem to
determine the socially optimal solution when the central planner
is unaware of the actual amount of arrivals. Interestingly, the
Price of Anarchy (ratio of the social cost of the equilibrium
solution to that of the optimal one) for this model turns out to
be two exactly, as in the deterministic case, despite the different
form of the social and equilibrium arrival profiles.

I. INTRODUCTION

Customers going to a rock concert or a movie theater need to
resolve the following dilemma: Going early involves encoun-
tering a rush to get the best seats, going late involves sacrifice
in the viewing experience. Evening commuters often face the
trade-off between reaching home late from work or getting
caught in the evening rush hour. Similar trade-offs govern
queueing behavior in a busy cafeteria: People may prefer to
eat as soon as the cafeteria opens at lunch time or they may
choose to stay hungry and eat later when the waiting is less
but the food quality may deteriorate. We refer to this ‘queue
arrival timing problem’ as the concert queueing problem (see
[10] and [9]). This problem is especially important when the
number of potential customers involved is large. Typically,
even when the size of population coming to a queue is large,
it may still be substantially variable.

In this paper we consider this concert queueing problem in
the fluid framework. Here each customer is a particle or a point
in a continuum that needs to decide when to arrive to a queue
where the server opens service at a specified time. The arrivals
are non-cooperative, their cost structure is homogeneous and
is linear and additive in the waiting time and in the time to
service. The customers can arrive before or after the server

opens for service, and are served in a first come first serve
manner. This problem was recently considered in [10], where
the total volume of customers is assumed to be fixed and
known beforehand to arriving customers. This fluid model
approximates the actual scenario where the total number of
customers is finite but large and more or less constant (see
[11] for a proof of convergence of the equilibrium profile in
the discrete queueing model to that of the associated fluid
model as the number of customers increases to infinity). This
basic fluid model has been extended to multiple classes of
customers [9], parallel and serial queues [8], and different
opening and closing conditions [7]. In this paper, we analyze
a more realistic scenario in the fluid setting, where the volume
of arriving customers may be random, and only its probability
distribution is known upfront.

In [10] and [9], the authors show that there exists a unique
Nash equilibrium arrival profile that corresponds to customers
arriving uniformly over a specified interval. They further show
that the price of anarchy (the ratio of the social cost of the
worst Nash equilibrium to the optimal one) in their framework
equals 2. As mentioned above, we extend this framework to
allow for random arrival volume. Under this extension, we
derive the unique symmetric equilibrium profile for customer
arrival instances. We note that this differs significantly from
the arrival profile when volume of arrivals is fixed. Specifi-
cally, we show that in the random setting, the unique Nash
equilibrium profile is uniform only up to a point and then
it tapers off as a function of time. Thus, customers have a
higher arrival density in the beginning of the arrival period
than at its end. We also explicitly evaluate the cost incurred
by each customer in equilibrium, and verify that uncertainly
in the arrival volume tends to increase this cost.

We also consider the problem of determining the socially
optimal solution in this setting when the central planner is
unaware of the volume of the arriving traffic, but can dictate
the distribution of arrival times for those who do arrive. This
problem may be of independent interest in various settings. For
instance, when a central planner gives appointments to arriving
customers and a random amount of customers show up. It
is also useful in ascertaining the level of inefficiency of the
equilibrium profile through the computation of PoA. We note
that unlike in the case where the arrival volume is fixed, when
it is allowed to be random, the social optimal solution may
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involve queueing under certain scenarios. Interestingly, unlike
in the equilibrium solution, under the social optimal solution
the arrival profile of each customer is indeed uniform. Also,
the PoA turns out to exactly equal two, as in the deterministic
arrival volume case.

Regarding related literature, a comprehensive overview of
game theoretic (or strategic) decision problems in queueing
systems may be found in the monograph [5]. However, it
does not address fluid models. Equilibrium flows in transporta-
tion and communication networks (also known as the selfish
routing problem) have been extensively studied following
Wardrop’s seminal 1952 paper [18]; see [16] for a survey of
that literature. This model essentially considers a fluid flow
problem which views users as infinitesimal and selfish, similar
to our model, but does not address timing decisions which
are the focus of this paper. Bottleneck fluid models similar to
ours have been extensively studied the transportation setting,
starting with a seminal paper by Vickrey [17]. In the basic
model, also known as the morning commute problem, a known
volume of infinitesimal users are served on a FCFS basis
by a fixed-rate server, and need to choose their staring time
so that their service ends as close as possible to a nominal
arrival time. Here a cost is typically incurred both for late and
for early arrival. For later developments on this model see,
e.g., [12], [13] and their references. The specific effects of
uncertainty in population size have been considered in [1],
which is perhaps the closest work to ours. In their set-up
penalties are imposed for early and late service completions
(relative to a nominal target time, common to all), while
we only penalize for lateness. They also explicitly model
demand and supply to determine the distribution of volume
of customers that show up. Our analysis on the other hand is
substantially more detailed. We also determine explicitly the
socially optimal solution not considered in those papers. In a
non-fluid setting, we finally mention the work in [4], [6], [11]
on similar strategic arrival timing problems in queues with
a finite customer population and stochastic service times. As
may be expected, the analysis there becomes more complicated
and the results less explicit.

The organization of this paper is as follows: In Section
2, we develop the mathematical framework for the concert
queuing game involving random volume of arrivals having
homogeneous and linear costs. In Section 3, we identify a
unique symmetric Nash Equilibrium in this framework. In
Section 4 we identify the socially optimal profile and calculate
the PoA. We explicitly solve for the equilibrium and social
profiles for a few examples in Section 5. We end with brief
conclusion in Section 6.

II. MATHEMATICAL FRAMEWORK

Consider the following fluid model: The population of
potential arrival is represented by the continuous interval
[0,∞), with each customer considered a point in that interval.
The volume of customers that actually arrive to the queue is
a random variable Λ ∈ [0,∞), with distribution function G0.
We assume that Λ has a finite mean. All arriving customers

are admitted to the queue, and are served in a first come first
serve manner.

Service starts at time zero, and commences thereafter as a
constant rate∗ µ > 0. The costs incurred by each customer
are taken to be linear and additive in waiting time and time to
service. For ease of analysis we restrict ourselves to customers
behaving symmetrically, in that they select their arrival times
from the same distribution F (this in fact is not crucial here
since in the fluid setting it is only the aggregate arrival profile
that matters; for more on this see [9]). The aim then is to
look for a common equilibrium distribution. Now, if random
Λ amount of customers that arrive, we can map them into the
interval [0,Λ]. If each of them samples its arrival time from
F , then, ΛF (t) denotes the random amount of arrivals by time
t. Let WΛ,F (t) be the waiting time of an arrival at time t in
this scenario. Conditioned that the amount of arrivals equals
Λ, the cost of an arrival at t to the serving facility is given by

CΛ,F (t) = αWΛ,F (t) + β(t+WΛ,F (t))

where t + WΛ,F (t) is the time to service of a customer who
arrives at time t. α > 0 is the unit cost of waiting time in
the system and β > 0 is the unit cost of time to service. It
will be convenient to normalize the cost so that α + β = 1;
in particular, 0 < α, β < 1.

Let QΛ,F (t) denote the queue size at time t when Λ amount
of customers arrive (recall that Λ is a random variable). To
relate this to F , let

XΛ,F (t) = ΛF (t)− µt1{t≥0}

denote the net input process to the system when Λ customers
arrive. Then, it is well known that (see Chapter 6.2 in [2]):

QΛ,F (t) = XΛ,F (t)−min{0, inf
s≤t

XΛ,F (s)}. (1)

Note that QΛ,F (t) ≥ 0, and that it can only have upward
jumps, that match those of F . In particular, if F does not
have a jump at time t, then

WΛ,F (t) = QΛ,F (t)/µ+ max{0,−t}.

If F has a jump at time t, then the position of an arriving cus-
tomer would be uniformly distributed in [QΛ,F (t−), QΛ,F (t)],
and its expected waiting time conditional on amount of arrivals
Λ,

WΛ,F (t) = Q̄Λ,F (t)/µ+ max{0,−t}

where
Q̄Λ,F (t) =

1

2
(QΛ,F (t−) +QΛ,F (t)).

Also note that the distribution of the volume of arrivals as seen
by an arriving customer differs from G0, and is given by the
tilted distribution G defined by

dG(λ) =
λdG0(λ)∫∞

0
λdG0(λ)

∗We consider here the service rate to be deterministic. However, most of
the following results are applicable to the case of stochastic µ, as the ratio
Λ/µ is the main quantity that appear in the analysis.



(see [3] or [1], for example). This length biased distribution
captures the fact that a particular arrival is more likely when
the total number of arrivals is large.

The unconditional expected cost seen by a customer if she
arrives at time t then equals (recalling that α+ β = 1)

ECF (t) =

∫ ∞
0

Wλ,F (t) dG(λ) + βt,

and the expected cost of a customer who selects her arrival
time by sampling from probability distribution H is

ECH,F =

∫ ∞
−∞

[∫ ∞
0

Wλ,F (t) dG(λ) + βt

]
dH(t).

Note that the expectation here is taken with respect to the
length-biased distribution G.

Our arrival game therefore corresponds to a volume Λ of
arrivals showing up at the server facility and each selecting her
arrival time as an independent sample from F , a probability
distribution over the reals. We refer to F as the arrival profile.
The following definition of symmetric Nash equilibrium is
standard:

Definition 1: An arrival profile F is a Symmetric Nash
Equilibrium (SNE) if, for every distribution H ,

ECF,F ≤ ECH,F .

Equivalently, there exists a set TF of F -measure 1 and a
constant ce such that

(i) ECF (t) ≥ ce for all t, (2)
(ii) ECF (t) = ce for all t ∈ TF . (3)

Here ce denotes the expected cost incurred by a customer
that arrives with probability 1 along the set TF . Customer,
were it to arrive at any other time, will incur expected cost
that is at least ce.

To see the equivalence, first suppose that for a given F
and TF , (i) and (ii) above hold. Then, ECH,F ≥ ce for every
distribution H , while ECF,F = ce. On the other hand, if given
a candidate F for SNE, violation of (i) clearly implies that F
is not an SNE. Violation of (ii) again implies that there exists
a set of positive F -measure where the cost is less than it is
at another set of positive F -measure. Again, it is easy to that
such an F is not an SNE.

Recall that the support of a probability measure is the
smallest closed set that has probability 1. Let TF denote the
support of the probability measure associated with an arrival
profile F .

The following regularity assumption will be invoked in
parts of our analysis. A similar assumption was used in
[11]. While imposing reasonable restrictions on the arrival-
time distributions that may be employed by the customers, it
makes our search for the equilibrium distribution substantially
simpler.

Assumption 1: The support TF of SNE profile F can lo-
cally (i.e., on any finite interval) be represented as a finite
union of closed intervals and points.

III. EQUILIBRIUM ANALYSIS

In this section through a series of lemmas we develop
necessary conditions that an SNE must satisfy. We then show
the existence of a unique SNE. Let tb = {inf x : x ∈ T F} and
te = {supx : x ∈ TF } be the end points of the support of F ,
corresponding to the first and last arrival times. The following
properties of an SNE are easily seen.

Lemma 1: An SNE profile F is a continuous function of
t (i.e., the corresponding probability measure has no point
masses). In addition, the expected cost ECF (t) is constant
over the support TF . Furthermore, −∞ < tb < 0 and 0 <
te <∞ (hence, 0 < F (0) < 1).

Proof: The first claim is easily seen as if the profile had
a point mass at time t, then there must exist an ε > 0 such
that ECF (t− ε) < ECF (t).

To see the second claim note that since F is continuous,
the waiting time Wλ,F (t) is continuous for each λ so that the
cost ECF (t) is a continuous function of t. Hence, (3) extends
to the support TF .

Next, tb > −∞ follows as ECF (t) increases to ∞ as t ↓
−∞. To see that tb < 0 note that if it were larger than or equal
to zero, then a customer arriving at time zero would incur zero
wait, hence would incur a cost that is strictly smaller than any
customer arriving at a positive time, leading to a contradiction.
The assertion that 0 < te <∞ can be verified similarly.

Let
TΛ = inf{t ≥ 0 : ΛF (t) < µt} (4)

denote the first time after zero when the server starts to serve
at less than full rate µ, given that the arrival volume is Λ. Note
that QΛ,F (TΛ) = 0. Since F (0) > 0, it follows that TΛ > 0
for Λ > 0. Lemma 2 below is important for our analysis: It
states that no queue will build up beyond TΛ.

Lemma 2: For an SNE profile F , QΛ,F (τ) = 0 for all τ ≥
TΛ.

Proof: Suppose that there exists τ > TΛ, so that
QΛ,F (τ) > 0. Without loss of generality we may assume that
τ ∈ T F . Then due to continuity of F , (and hence through
continuity of QΛ,F ), there exists s ≥ TΛ denoting the last
time before τ that QΛ,F (t) equals zero. Clearly, if it were
known that Λ is the arrival volume, then arriving at s would
be preferable to arriving at τ , contradicting τ ∈ TF . We need
to show that this is the case also when the arrival volume is
stochastic.

From (1), it follows that

XΛ,F (τ)−XΛ,F (s) = QΛ,F (τ)−QΛ,F (s) > 0,

and hence,
Λ(F (τ)− F (s)) > µ(τ − s). (5)

Now, the desired contradiction follows by comparing the costs
at times τ and s and showing that ECF (τ) > ECF (s). To



see this, recall that,

ECF (t) =

∫ ∞
0

Wλ,F (t) dG(λ) + βt.

We claim that Wλ,F (τ) ≥Wλ,F (s) for all λ. Indeed, for any
λ such that Wλ,F (s) = 0, this holds trivially. Otherwise, for
λ such that Wλ,F (s) > 0 (that is, if λ > Λ), we have by (5)
that Wλ,F (τ) > Wλ,F (s). Now, since τ > s, we obtain that
ECF (τ) > ECF (s), providing the desired contradiction.

Corollary 1: For an SNE profile F ,

WΛ,F (t) = ΛF (t)/µ− t (6)

for t ≤ TΛ, and WΛ,F (t) = 0 otherwise.

Proof: Observe that for t < 0, QΛ,F (t) = ΛF (t) and
hence (6) follows, as −t is the customer wait before the server
becomes active, and ΛF (t)/µ is the remaining queueing delay.
For t ≥ 0 the required equality follows from Lemma 2, which
implies that the server will be working at full rate on 0 ≤ t ≤
TΛ.

Lemma 3: µt
F (t) strictly increases as a function of t for all

t ∈ TF .

Proof: From Corollary 1, it follows that for λ < µt
F (t) ,

the associated waiting time Wλ,F (t) = 0. Hence,

ECF (t) =

∫
λ≥ µt

F (t)

(
λ
F (t)

µ
− t
)
dG(λ) + βt.

Through integration by parts, letting Ḡ(λ) = 1 − G(λ) for
each λ, this may be re-expressed as

ECF (t) = t

(
F (t)

µt

∫ ∞h

µt
F (t)

Ḡ(λ)dλ+ β

)
.

Now, x
∫∞

1/x
Ḡ(λ)dλ is clearly a non-decreasing function of

x. Since ECF (t) is constant for all t ∈ TF , the result follows.

Lemma 4: An SNE profile F has a right continuous deriva-
tive in TF given by

F ′(t) = µ
Ḡ( µt

F (t) )− β∫∞
µt
F (t)

λdG(λ)
(7)

for each t ∈ TF .

Proof: Recall that

ECF (t) =
F (t)

µ

∫ ∞
µt
F (t)

Ḡ(λ)dλ+ βt.

Note that on TF , the derivative of ECF (t) in t equals zero.
Hence, through simple manipulations it follows that for t ∈
TF , wherever F is differentiable (that is, almost everywhere)

F ′(t) = µ
Ḡ( µt

F (t) )− β∫∞
µt
F (t)

λdG(λ)
= µ

Ḡ( µt
F (t) )− β∫∞

µt
F (t)

Ḡ(λ)dλ+ µt
F (t) Ḡ( µt

F (t) )
.

Since, the RHS is right continuous, there exists a right
continuous version of F ′ in TF .

Remark 1: Let G denote the set of points of discontinuity
of the length-biased volume distribution G (which is countable
at most). Then the points of discontinuity of F ′ correspond to
times t at which µt

F (t) ∈ G.

Lemma 5: Under Assumption 1, the support TF of an
SNE profile F is an interval, denoted [tb, te].

Proof: Clearly, TF does not consist of isolated points as
it cannot have point mass at any point. Suppose there exist
t1 < t2 < t3 ∈ TF such that 0 < F (t1) = F (t2) < 1 and
F ′(t3) > 0. We show that under Assumption 1, this leads to
a contradiction. Specifically, we argue that for such a t1 we
must have

Ḡ

(
µt1
F (t1)

)
≤ β, (8)

and
Ḡ

(
µt2
F (t2)

)
≥ β. (9)

Then, since µt
F (t) is strictly increasing with t, and Ḡ is

a non-increasing function, this implies that Ḡ
(

µt1
F (t1)

)
=

Ḡ
(

µt2
F (t2)

)
= β. However, since F ′(t3) > 0 implies from

(7) that Ḡ
(

µt3
F (t3)

)
> β, since µt

F (t) strictly increases with t,
we have the desired contradiction.

To see (8), note that since (t1, t2) is not in TF , it follows
from its definition that ECF (t) is differentiable along this
interval (with F (t) set as a constant independent of t) so that
ECF

′(t+1 ) ≥ 0. It then follows that Ḡ
(
µt+1
F (t1)

)
≤ β, and

therefore (8) follows since Ḡ is right continuous.
To see (9), note that under Assumption 1, F ′(t+2 ) ≥ 0, so

that

Ḡ

(
µt+2
F (t+2 )

)
≥ β.

Again, since F is continuous and Ḡ is right continuous, (9)
follows.

Let λl ≥ 0 denote the left limit of support of G, corre-
sponding to the minimal possible arrival volume. Recalling
the definition of TΛ from (4), Tλl is then the first time beyond
0 that the server starts serving at less than full capacity, for
some arrival volume. Also define

λ∗ = inf{λ : G(λ) ≥ α} (10)

(recall that 0 < α < 1 is the normalized waiting cost
coefficient). Evidently G(λ∗) = α, unless λ∗ is a discontinuity
point of G.

Theorem 1: Under Assumption 1, there exists a unique
SNE profile F satisfying the following properties:

(i) te = λ∗

µ .
(ii) The equilibrium cost ce is given by

ce =
1

µ

∫ ∞
λ∗

Ḡ(λ)dλ+ β
λ∗

µ
.



(iii) tb = − ceα .
(iv) For tb ≤ t ≤ Tλl , F ′ is constant and specified by

F ′(t) =
µ

EΛ
α.

(v) For Tλl ≤ t ≤ te,

F ′(t) = µ
Ḡ( µt

F (t) )− β∫∞
µt
F (t)

λdG(λ)
.

(vi) For Tλl < t ≤ te, F ′(t) is a non-increasing function.
Hence F (t) is a concave function on the interval [tb,∞).

(vii) Finally,

F (0) =
µ

EΛ
ce =

1

EΛ

(∫ ∞
λ∗

Ḡ(λ)dλ+ βλ∗
)
,

Tλl =
F (0)

µ

[
1

λl
− α

EΛ

]−1

,

F (Tλl) =
F (0)

λl

[
1

λl
− α

EΛ

]−1

.

Proof: First we argue that an SNE profile has to satisfy
properties (i) − (vii). Then we show that a unique profile
satisfying these conditions exists.

To see (i), note that since F ′(t−e ) ≥ 0, we have

Ḡ

(
µt−e
F (t−e )

)
≥ β. (11)

Furthermore, since te is the largest point in the support of F ,
we have d

dtECF (t+e ) ≥ 0 (note that the cost for t > te has
F (t) = 1 and is differentiable) so that

Ḡ

(
µt+e
F (t+e )

)
≤ β. (12)

From (11) and (12), (i) follows when Ḡ(λ) = β has at most
one solution. When it has multiple solutions (which must lie
on an interval), it follows that Ḡ(µte) = β. Then, µte = λ∗

because by definition of te, there exists a sequence tn ↑ te
with F ′(tn) > 0 for all n sufficiently large. This implies that
Ḡ
(

µtn
F (tn)

)
> β for all n sufficiently large, so that µte = λ∗.

(ii) follows by noting that

ce = ECF (t) =
F (t)

µ

∫ ∞
µt
F (t)

Ḡ(λ)dλ+ βt. (13)

for all t ∈ TF and evaluating this cost at te.
(iii) is obvious. (iv) follows from (7), after noting that

λlF (t) ≥ µt for t ≤ Tλl so that for such a t, Ḡ
(

µt
F (t)

)
= 1.

(v) simply restates (7).
(vi) can be seen by differentiating F ′(t) in (iv) and (v).

We get For tb ≤ t ≤ Tλl clearly F ′′(t) = 0. For Tλl ≤ t ≤ te,
after simple manipulations, it follows that

F ′′(t) = −µ2
G′( µt

F (t) )(1− tF ′(t)
F (t) )2

F (t)
∫∞
µt
F (t)

λdG(λ)
≤ 0,

at points where F ′(t) is differentiable. It is not differentiable
for t for which µt

F (t) ∈ G. At these points F ′(t) is non-
increasing.

In (vii), to evaluate F (0), simply equate the equilibrium
cost at time zero to ce. Tλl and F (Tλl) are determined by
noting that

F (Tλl) = F (0) + Tλl
µ

EΛ
α = µTλlλl.

The conditions (i)− (vii) specify the necessary conditions
that must apply to any SNE. We now employ a monotonicity
argument to show that there exists a unique arrival profile F (t)
that satisfies these conditions, and is in fact the unique SNE.

Consider the function

h(x, t) =

∫ ∞
µt
x

(
λ
x

µ
− t
)
dG(λ) + βt− ce. (14)

For 0 < t ≤ te, the function h(x, t) increases from less
than zero to infinity as x increases from zero to infinity. In
particular, for any 0 < t ≤ te, there exists a unique F (t) so
that h(F (t), t) = 0. It is easy to see that for 0 < t < te,

∂

∂x
h(x, t) =

1

µ

∫ ∞
µt
x

λdG(λ).

Since, for 0 < t < te, ∂
∂xh(F (t), t) > 0, by implicit function

theorem (see, e.g., Luenberger 1984) this F (t) satisfies the
ode (7) for 0 < t < te. The remaining conditions on F (t) for
t ≥ 0 follow from simple algebraic manipulations in (14).

Remark 2: We may now examine the effect of randomized
arrival volume on the equilibrium cost. Consider the determin-
istic model with a deterministic arrival volume Λ0 that equals
E0(Λ) (note that in computing the last expectation, we use the
true distribution G0 rather than the biased distribution G). It
is easily seen from (13) that the equilibrium cost equals β

µΛ0

(see also [10]). On the other hand, in the stochastic model,

ce =
1

µ

∫ ∞
λ∗

Ḡ(λ)dλ+ β
λ∗

µ
(15)

≥β
µ

(∫ ∞
λ∗

Ḡ(λ)dλ+

∫ λ∗

0

Ḡ(λ)dλ

)

=
β

µ
EΛ =

β

µ

E0Λ2

E0Λ
≥ β

µ
E0Λ,

(note that E denotes the expectation with respect to the biased
distribution G). Thus, the equilibrium cost with random Λ is
larger that in the corresponding deterministic model.

IV. SOCIAL OPTIMALITY

The socially optimal solution to our problem may be con-
sidered under two scenarios: 1) The central planner knows the
realized Λ and uses this information in selecting the arrival
profile F for the arriving customers; 2) The central planner is
only aware of the distribution G0 of Λ, and plans the customer
arrival profile F before observing Λ. In the first case, when
there the arrival volume is Λ, the arrival profile corresponds
to a uniform distribution along the interval [0,Λ/µ] and the



associated total cost equals βΛ/µ (see [9]). Its expected value
equals βE0Λ/µ. The PoA in this case clearly exceeds 2
(see Remark 2 above). The second case arguably provides a
more fair comparison in terms of the information available
to the respective decision makers. It is also analytically more
interesting, and requires the solution of a non-trivial variational
problem. Our key observations are that the arrival profile
remains uniform in this case, and the PoA exactly equals 2.

Consider then the second problem, where a central planner
is given the distribution G0 of the arrival volume, and wishes
to specify the arrival profile F (t) so as to minimize the
expected social cost. It is easy to see that an optimal arrival
profile would put zero mass before the opening time. Thus,
our objective is to minimize

JF =

∫
λ

dG0(λ)

∫ ∞
0

Cλ,F (t)λdF (t) (16)

where

Cλ,F (t) = αWλ,F (t) + β(Wλ,F (t) + t) (17)
= Wλ,F (t) + βt (18)

and
Wλ,F (t) = Qλ,F (t)/µ (19)

Theorem 2: The socially optimal arrival profile F that
minimizes JF is given by the uniform distribution

F ′(t) =
µ

λ∗
, 0 ≤ t ≤ te =

λ∗

µ

where λ∗ is defined in (10).

The proof is given below. We note that the socially optimal
arrival profile shares the same endpoint te with the Nash
equilibrium solution. However, the starting point and shape
is different.

Under the derived solution, the actual queue size is given
by Qλ,F (t) = ( λλ∗ − 1)+µt for 0 ≤ t ≤ te = λ∗/µ. At time
te the queue length equals (λ−λ∗)+ and thereafter for t ≥ te
it equals

(λ− µt)+.

We illustrate this graphically in Figure IV.
We also point out that the last theorem and its proof are

somewhat deeper than what may first meet the eye. Using
essentially the same proof, it may be shown that the optimal
arrival density F ′(t) is proportional to the instantaneous ser-
vice rate µ(t) even if that rate is not constant in time. However,
we will not deal here with this more general case.

A. Price of Anarchy

Substituting the expression for socially optimal F (t) in (16),
the socially optimal cost J∗ can be seen to be

J∗ =
1

2µ

∫ ∞
λ∗

Ḡ(λ)dλ+
β

2µ
λ∗.

From Theorem 1(ii), the Nash Equilibrium cost is given by
ce,

1

µ

∫ ∞
λ∗

Ḡ(λ)dλ+ β
λ∗

µ
.

Fig. 1. Queue length process under socially optimal profile. q1 and q2
correspond to scenarios where arriving λ > λ∗. q3 corresponds to λ ≤ λ∗.

Therefore, PoA = ce/cS = 2 in this case.

B. Proof of Theorem 2

The proof proceeds through several steps.
1. An alternative form for the cost function: The treatment

of the optimization problem is greatly simplified by expressing
the cost differently. Start from∫ ∞

0

Cλ,F (t)λdF (t) =

∫ ∞
0

(Wλ,F (t) + βt)λdF (t). (20)

For the integral over Wλ,F we have:∫ ∞
0

Wλ,F (t)λdF (t) =

∫ ∞
0

Qλ,F (t)dt. (21)

This is just the well-known relation between (linear) waiting
cost and holding cost. It follow from∫ ∞

0

Wλ,F (t)λdF (t)

=

∫ ∞
t=0

∫ ∞
s=0

1{t≤s<t+Wλ,F (t)}ds λdF (t), (22)

=

∫ ∞
s=0

(

∫ ∞
t=0

1{t≤s<t+Wλ,F (t)}λdF (t))ds, (23)

=

∫ ∞
0

Qλ,F (s)ds. (24)

For the integral over t we have the standard formula for the
expected value of a positive random variable:∫ ∞

0

tdF (t) =

∫ ∞
0

(1− F (t))dt. (25)

Therefore,∫ ∞
0

Cλ,F (t)λdF (t) =

∫ ∞
0

(Qλ,F (t)+βλ(1−F (t))dt, (26)

and

JF =

∫
λ

dG0(λ)

∫ ∞
0

(Qλ,F (t) + βλ(1− F (t))dt. (27)

2. A relaxed variational problem: In order to minimize the
cost (27), we first formulate and solve a relaxed optimization



problem, and show that the solution to that problem also solves
the original one. Observe that

Qλ,F (t) ≥ Q̃λ,F (t)+, (28)

where
Q̃λ,F (t)

.
= λF (t)− µt . (29)

We note that Q̃ can be considered as a (possibly negative)
queue size in a system that continues service at full rate µ
even when the queue is negative.

Consider then the modified cost function J̃F ≤ JF :

J̃F =

∫
λ

dG0(λ)

∫ ∞
0

(Q̃λ,F (t)+ + βλ(1− F (t))dt (30)

or
J̃F =

∫
λ

dG0(λ)

∫ ∞
0

kλ(F (t), t)dt, (31)

where
kλ(x, t) = (λx− µt)+ + βλ(1− x). (32)

This can be written as

J̃F =

∫ ∞
0

K(F (t), t)dt, (33)

where

K(F (t), t) =

∫
λ

kλ(F (t), t) dG0(λ). (34)

This can be seen to be in the standard form of a variational
problem, with cost function K, optimizing over the (convex)
set of probability distribution functions F (i.e, subject to dF ≥
0, F (0) = 0, F (∞) = 1).

It is further easily seen that kλ(x, t) is a convex function in
x (for any fixed t). It follows then that J̃F is a convex function
of F . This implies that any solution that satisfies the first-order
necessary conditions is a global optimum (e.g., see [15]). It is
therefore sufficient to show that the proposed solution satisfies
the first-order conditions, as we do below.

3. The first variation: Let εH(t) be a continuous variation
around F (t), with H(0) = H(∞) = 0. We will also require
that F ′(t) + εH ′(t) ≥ 0 for ε > 0 small enough. From (31),

J̃F+εH =

∫
λ

dG0(λ)

∫ ∞
0

kλ(F (t) + εH(t), t)dt (35)

Now,
dkλ(x, t)

dx
= λ(1{λx−µt≥0} − β) (36)

almost everywhere, hence

DF
.
=
dJF+εH(t)

dε

∣∣∣∣
ε↓0

(37)

=

∫
λ

dG0(λ)

∫ ∞
0

λ(1{λF (t)−µt≥0} − β)H(t)dt (38)

= E0Λ

∫
λ

dG(λ)

∫ ∞
0

(1{Q̃λ,F (t)≥0} − β)H(t)dt (39)

= E0Λ

∫ ∞
0

(q+(t)− β)H(t)dt, (40)

where in (39) we used the relation dG(λ) = λdG0(λ)
E0Λ , and

q+(t)
.
=

∫
λ

1{Q̃λ,F (t)≥0}dG(λ). (41)

4. First-order conditions: Consider the proposed solution,
namely F (t) = µt/λ∗ on [0, te], so that q+(t) = β on that
interval. Since q+(t) cannot increase in absence of arrivals,
we can infer that q+(t) ≤ β for t > te.

Since H(t) ≤ 0 when F (t) = 1, i.e., for t ≥ te, it
follows from (40) that DF ≥ 0. Thus F satisfies the first-
order conditions, and by the stated convexity F is a global
solution of the relaxed problem.

5. Back to the original problem: We finally observe the
solution F ∗(t) = µt/λ∗, 0 ≤ t ≤ t∗ of the relaxed problem
is also an optimal solution to the original problem. Indeed,
under this arrival profile the original queue size Qλ,F∗(t) has
at most one busy period that starts at t = 0 (the busy period
exists if λ > λ∗, and otherwise Qλ,F∗(t) ≡ 0), which implies
that Qλ,F∗(t) = Q̃λ,F∗(t)

+, and JF∗ = J̃F∗ . However, since
JF ≥ J̃F holds in general, it follows that F ∗ minimizes JF
as well. �

V. EXAMPLES

In this section we illustrate the derived equilibrium and
socially optimal profiles on two examples: when G is a two
point distribution as well as when G is uniformly distributed.
Note that the latter corresponds to G0(λ) proportional to λ−1

over an interval.

A. Distribution G is Supported on Two Points

Consider the setting where the number of arrivals can take
two possible values under the length biased distribution G: λl
with probability pλl or λh > λl with probability pλh = 1−pλl .
The profiles depend on whether pλhα > pλlβ or not.

Case 1: pλhα > pλlβ (equivalently, pλh > β). Here,
the equilibrium profile is no longer uniform but is piecewise
uniform with the density of the arrival profile taking two
possible positive values, higher one first and then lower one
in a contiguous interval.

Specifically, from Theorem 1, λ∗ = λh, so te = λh
µ . The

equilibrium cost ce equals

1

µ

∫ λh

λh

Ḡ(λ)dλ+ β
λh
µ

= β
λh
µ
.

Then, tb = −βλhαµ . Furthermore, for tb ≤ t ≤ Tl, F ′(t) =
µ

λhpλh+λlpλl
α, and for Tl ≤ t ≤ te,

F ′(t) = µ
(pλh − β)

λhpλh
= µ

(pλhα− pλlβ)

λhpλh
.

This may be re-expressed as

µ

EΛ
α ∗ EΛ

λh

(
1− βpλl

αpλh

)
<

µ

EΛ
α.



Note that F ′ is piecewise constant and concave on [tb,∞).
Also,

F (0) =
βλh

λhpλh + λlpλl
,

Tλl =
λlλh

µ[pλhλh + λl(βpλl − αpλh)]
,

F (Tλl) =
λh

pλhλh + λl(βpλl − αpλh)
.

Under the socially optimal profile in this parametric setting
we have λ∗ = λh, so te = λh

µ . The social cost cs equals β λh2µ .
For 0 ≤ t ≤ te, F ′(t) = µ

λh
.

Case 2: pλhα ≤ pλlβ (equivalently, pλh ≤ β). Here
the equilibrium profile turns out to be uniform. Again, from
Theorem 1, λ∗ = λl, so te = λl

µ . The equilibrium cost ce
equals

1

µ

∫ λh

λl

pλhdλ+ β
λl
µ

=
pλhλh + λl(βpλl − αpλh)

µ
.

tb =
pλhλh + λl(βpλl − αpλh)

αµ
.

For tb ≤ t ≤ te, F ′(t) = µ
λhpλh+λlpλl

α. In this case, F ′ is
constant on [tb, te),

F (0) =
pλhλh + λl(βpλl − αpλh)

λhpλh + λlpλl
, and Tλl = te =

λl
µ
.

Under the socially optimal profile in this parametric setting
we have λ∗ = λl, so te = λl

µ . The social cost cs equals

pλhλh + λl(βpλl − αpλh)

2µ
.

For 0 ≤ t ≤ te, F ′(t) = µ
λl

.

B. Distribution G is Uniform

Suppose that G corresponds to the uniform distribution
between [λl, λh]. Under the equilibrium profile, from The-
orem 1: λ∗ = G−1(α) = λhα + λlβ, which implies that
te = 1

µ (λhα+ λlβ). The equilibrium cost ce equals

1

µ

∫ λh

λ∗
Ḡ(λ)dλ+ β

λ∗

µ
,

which in turn equals

β2

2µ
(λh − λl) + β

λ∗

µ
= β2λh + λl

2µ
+ αβ

λh
µ
.

Then, tb = 2λhαβ+(λh+λl)β
2

2µα .
For tb ≤ t ≤ Tλl , F ′(t) = µα

EΛ .

For Tλl ≤ t ≤ te, F ′(t) = 2µ2 te− t
F (t)

λh2− µt
F (t)

2 .

For Tλl < t ≤ te, F ′ is a strictly decreasing function. Hence

F (t) is a strictly concave function on that interval, and concave
on the larger interval [tb,∞). Furthermore,

F (0) = β2λh + λl
2EΛ

+ αβ
λh
EΛ

,

Tλl =
F (0)

µ

[
1

λl
− α

EΛ

]−1

,

F (Tλl) =
F (0)

λl

[
1

λl
− α

EΛ

]−1

.

Figures 2, 3 and 4 illustrate the density of the equilibrium
profiles graphically. Note that for mean (λh + λl)/2 fixed,
equilibrium cost increases with λh and hence with variance.
This also leads to increase in deviation from uniform distribu-
tion in the arrival profile. These are depicted in Figure 2. In
Figure 3, we keep the variance of the uniform distribution the
same but change the mean. Thus, (λh−λl) is kept fixed while
(λh + λl) is increased. As the mean increases, the curves can
be seen to become closer to the uniform distribution, since
the randomness becomes relatively less significant. In Figure
4, λl and λh are fixed but we change the cost of time to service
parameter β (in all these figures α+ β = 1). As β increases,
the customers arrive earlier and have to wait more.

Under the socially optimal profile λ∗ = G−1(α) = λhα +
λlβ which again implies that te = 1

µ (λhα+ λlβ). The social
cost cs equals

β2λh + λl
4µ

+ αβ
λh
2µ
,

and for 0 ≤ t ≤ te, F ′(t) = (λhα+λlβ)
µ .

VI. CONCLUSION

In this article we considered the concert queueing problem
in the fluid framework where the arriving volumes were
random. We derived the unique equilibrium arrival profile
in this setting and noted that while this profile is uniformly
distributed when the arrival volume is fixed, when it is random,
the arrival profile is constant up to a point and thereafter tapers
down. We also derived the arrival profile that minimizes the
overall social welfare cost. Interestingly, this turned out to
be uniformly distributed. Somewhat surprisingly, the price of
anarchy remained equal to 2 even in the scenario where the
arrival volumes were random.

There are many directions related to presence of uncertainty
in the fluid system that require further research. For instance,
how does the system behavior change when the service rates
are variable, both deterministically and randomly? It would
be interesting to see how random server start times impact the
system behavior. One generalization that is of obvious interest
is to consider heterogeneous arrivals with non-linear costs.
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Fig. 2. G is uniformly distributed, f1: λl = 50, λh = 350; f2: λl = 100,
λh = 300; f3: λl = 190, λh = 210; β = 3/8, µ = 5

Fig. 3. G is uniformly distributed, f1: λl = 100, λh = 300; f2: λl = 300,
λh = 500; f3: λl = 800, λh = 1000; β = 3/8, µ = 5

Fig. 4. G is uniformly distributed, f1: β/α = 3/5 ; f2 :β/α = 1 ;f3
:β/α = 2; λl = 100, λh = 300, µ = 5
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