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Abstract—In this work, we propose a novel power allocation
mechanism which allows one to optimize the energy-efficiency of
base stations operating in the downlink. The energy-efficiency
refers to the amount of bits that can be transmitted by the
base station per unit of energy consumed. This work studies
the impact of flow-level dynamics on the energy efficiency
of base stations, by considering user arrivals and departures.
Our proposed power allocation scheme optimizes the energy-
efficiency, accounting for the dynamic nature of users (referred
to as the global energy-efficiency). We emphasize our numerical
results that study the influence of the radio conditions, transmit
power and the user traffic on the energy-efficiency in an LTE
compliant framework. Finally, we show that the power allocation
scheme that considers traffic dynamics, is significantly different
from the power allocation scheme when the number of users is
considered as constant, and that it has a better performance.

I. INTRODUCTION

For a long time, the problem of energy in the field of
communications revolved around autonomous, embarked, or
mobile terminals. Nowadays, with the existence of large
networks involving both fixed and nomadic terminals and
the larger data rates supported, the energy consumed by
the fixed infrastructure has also become a central issue for
communications engineers [1]. As stated by the project Green-
Touch, the telecommunications industry currently account for
2% of the global carbon footprint, of which the major portion
comes through the energy consumed at base stations [2]. This
has led to the growing awareness for the need to reduce energy
consumption as well as to optimize the use of energy in order
to gain maximum benefit out of every unit of energy spent. The
present work falls into this framework, more specifically, our
goal is to devise the power allocation schemes for base stations
in green wireless networks with the focus on downlink. The
novelty of this work is in treating the problem of energy-
efficiency and power allocation for dynamic users, i.e for users
who, like in most practical cases, arrive randomly with a finite
workload and depart after finishing it.

Among the pioneering works on energy-efficient power
control is the work by Goodman et al [5] in which the authors
define the energy-efficiency of a communication as the ratio
of the net data rate to the radiated power; the corresponding
quantity is a measure of the average number of bits suc-
cessfully received per joule consumed at the transmitter. This
metric has motivated many works. A survey on works that

deal with this metric can be found in [6]. Other works like
[8] deal with the energy-efficiency metric, and it is applied
to the problem of distributed power allocation in multi-carrier
CDMA (code division multiple access systems) systems, in
[4] it is used to model the users delay requirements in energy-
efficient systems.

Summarizing the literature overview for energy-efficiency
optimization, we conclude that although several works con-
sider deal with this problem, they do not take into account
several key-aspects of the network. First, in the definition of
energy-efficiency, the number of users in the system is fixed,
corresponding to a full buffer traffic model. In a real system,
users arrive and depart and the number of users in the system
is a dynamic quantity. Secondly, the transmission cost usually
corresponds to the radiated power that is, the power of the
radio-frequency signals. In this paper, we propose a power al-
location scheme that responds to these two needs: considering
the dynamic behaviour of users and taking into account the
whole power consumption and not only the radiated power.
This work uses a cross-layer approach, which deals with both
the Media Access Control (MAC) layer, as well as the flow
level (user arrivals and departures) in Orthogonal Frequency-
Division Multiple Access (OFDMA) systems that are LTE
compliant. Similar cross-layer approaches have been used in
works like [9] and [7], but the metric used is often the capacity
or data rates maximized under power constraints, while in this
work we deal here with energy-efficiency optimization.

The original contributions of this paper are summarized as
follows:

1) We consider a new energy efficiency metric that ac-
counts for the overall power consumption of the base
station, including common channel and fixed consump-
tion parts.

2) We derive an optimal power allocation scheme that max-
imizes the energy efficiency, while preserving Quality of
Service (QoS).

3) We show that the power allocation that considers the
dynamic behavior of users is significantly different from
the scheme optimized locally for each state of the
network. In addition to that, the former performs better
than the latter. To the best of our knowledge, this is
the first time where such a flow level power allocation
scheme is derived.
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This paper is structured as follows. In Section II, we present
the system model and define the proposed performance metric.
In Section III, we derive the optimal power allocation scheme
when supposing that the number of users is fixed. Section IV
shows how to deal with the dynamic behavior of users. Sec-
tion V provides numerical results comparing both approaches
(local vs. global optimization). Finally, we conclude the paper
and suggest some possible extensions to this work.

II. SYSTEM MODEL

A. System description

We consider a transmitting base station with buffers of
infinite (or very large) size. The base station sends packets
into a queue for each user which is stored in these buffers.
The packets arrive at each time slot TP (expressed in seconds),
each packet being of size Sp (expressed in bits). The data rate
Rp is equal to Sp

TP
. The throughput when using all the available

bandwidth is denoted by R(ρ) (expressed in bits per second),
when the receiver has an average signal to interference plus
noise ratio (SINR) of ρ. This SINR depends directly on the
transmit power P (expressed in Watts) as ρ = P

σ2 . Here
σ2 represents the average noise for a given radio condition
(expressed in Watts) and it depends on the distance of the
receiver from the base station. Note that in this work, the
effects of fast fading are not studied and we just consider the
average SINR.

All packets of a user are assumed of the same size and the
average throughput on the radio interface, when the queue
for the corresponding user is active, is denoted by Ra(ρ)
(expressed in bits per second) which depends on the bandwidth
available. When all the packets in the queue are transmitted
the queue becomes empty and inactive. We assume that the
transmitter always transmits packets while the queue is not
empty. Each packet stored in the buffer is a collection of
frames that are transmitted over the symbol time Ts (expressed
in seconds). Each frame is transmitted or retransmitted till
it goes through and an acknowledgment is received. With
these assumptions we proceed to calculate the average packet
duration Td in the buffer.

Td =
Sp

Ra(ρ)
(1)

If this duration exceeds TP , the time by which the next packet
arrives, the queue size becomes infinite and the transmitter is
always on. Otherwise, the probability of the transmitter to be
active (Φ(ρ)) is given by the ratio of Td to TP . Thus we have:

Φ(ρ) = max

(
Rp

Ra(ρ)
, 1

)
(2)

In this work, we focus on an OFDMA system that suits
LTE standards, and obtain the throughput R(ρ) by link level
simulations as described in [3]. The values taken for R(ρ)
from [3], are in fact, averaged over the fast fading and are
thus suitable for our model. When there are several users in
the network, the available bandwidth is divided among the
active users. We assume the bandwidth allocation to be equal

among all users and this implies that if N users are all active
and experience the same radio conditions, the throughput is
reduced to R(ρ)

N .

B. Proposed performance metric

In the broadcast channel there are multiple users that have to
be served. In practice, users arrive randomly, and depart once
they finish downloading their requested data. New arrivals
are blocked when the total number of users crosses a certain
limit defined by the base station. Each user may experience a
different radio condition from its peers.

For convenience, we divide the area covered by the base
station into “zones”. Every user in the same zone, experiences
the same radio conditions. This implies that if the base
station transmits at a certain power, then all the users in the
same zone experience the same SINR. The radio conditions
are determined by the average distance of the zone to the
base station. If we have M zones in total, we can define
{σ2

1 , σ
2
2 , · · · , σ2

M} as the channel conditions for each zone. We
then define the “state” of the system s̄ = {N1, N2, · · · , NM}.
The state s̄ represents the number of users in each zone. For
example if there are two zones, and there are no users the state
is {0, 0}. When a user arrives to zone one, the state becomes
{1, 0}.

For a state s̄ = {N1, N2, · · · , NM}, the power allocation
scheme defined as P = {P1, P2, · · · , PM} results in an SINR
distribution of ρ̂ = {ρ1, ρ2, · · · ρM} among the zones 1 to M ,
where ρj =

Pj

σ2
j

.
First, we define the notion of energy-efficiency for a given

state or the “local” energy-efficiency. This is useful as in
practice, the base station can easily measure this quantity
only for a given state as it is unable to predict when a new
user will arrive. The “global” energy-efficiency defined as the
average of the energy-efficiency in each state weighted by their
probabilities.

If there is always one and only one user, the energy-
efficiency can be defined based on [5] and other works as

ηSU =
R(ρ)Φ(ρ)

b+ PΦ(ρ)
(3)

where b is the constant power consumed by the base station
while serving at least one user1. The proposed form is easy to
interpret as R(ρ) represents the average throughput when the
transmitter is active and P is the cost when the transmitter is
active.

When the system is state s̄, the energy-efficiency is defined
as:

ηs̄(P) =
R̄s̄(ρ̂)

P̄s̄(P)
(4)

where R̄s̄ and P̄s̄ represent the total throughput and power
consumed respectively in state s̄.

1This cost can have several origins like energy spent on the power amplifier,
computation, cooling mechanisms etc. Details of the power consumption
model are given in [1].



When the number of users is random, then the global
energy-efficiency function is defined as:

η̂ =
∑
s̄

π(̄s)R̄s̄

P̄s̄
(5)

Where π(̄s) is the probability of finding the base station at
state s̄ of user distribution. The global energy-efficiency could
alternately be defined as ratio of the total throughput over all
states to the total power over all states. However, in practice,
calculating the energy-efficiency for each state and taking
the average, is easier and more reasonable. The goal of this
work is to improve the above defined energy-efficiency of a
transmitting base station.

This metric can be physically interpreted as the average
number of bits that can be transmitted by spending one Joule
of energy. Alternately, the average power cost of the base
station can be written an Traffic

η . Hence, optimizing the global
energy-efficiency amounts to minimizing the average power
consumption of the base station.

III. OPTIMAL POWER ALLOCATION FOR A FIXED NUMBER
OF USERS

In this section we consider the case where the number
of users is fixed. We will refer to the optimization of the
metric defined in this section as “local” optimization as it
deals with the optimization of a single state of the wireless
network. When the state of the network is given, we know
the number of users in each zone and can thus calculate
the relevant information required to obtain and optimize the
energy-efficiency. For our calculations we assume a knowledge
of the average noise levels for each zone, i.e {σ2

1 , σ
2
2 , · · · , σ2

M}
are known.

A. Homogeneous radio conditions

First, we consider the problem where all users experience
the same average SINR, as the model is easier to be under-
stood; the case of heterogeneous SINRs will be exposed next.
Let the total number of users in the cell be N . As all the users
experience the same radio conditions, s̄ = {N}. In this case
if we define the average throughput experienced by any queue
as Ra, we can derive:

Ra(ρ) =
N−1∑
i=0

(
N − 1

i

)
Φ(ρ)i(1− Φ(ρ))N−1−iR(ρ)

i+ 1
(6)

where Φ(ρ) denotes the probability that any of the N users
are actively being served and is given as in equation 2. The
summation is upto N −1 as Ra is the throughput experienced
by an active user, and so we consider the remaining N − 1
users. The Ra for every user is identical as all users experience
the same SINR for the same transmit power. This symmetry
can be exploited to conclude that the transmit power for each
user will be equal when optimized. Note that Ra(ρ) depends
on Φ(ρ) and Φ(ρ) depends on Ra(ρ) leading to a fixed point
equation.

Clearly if N is large enough, then the demand in data
rate will exceed the maximum available throughput and Φ(ρ)

becomes 1. On the other hand, if N is small enough, the users
may transmit their data faster than the packet arrival speed
causing the queue to empty occasionally. In this period, other
users can take advantage of the excess bandwidth.

From Φ(ρ), the total power consumed can be calculated as

P̄s̄ = b+ P (1− (1− Φ(ρ))N ) (7)

Here (1−Φ(ρ))N is the probability of all queues being empty.
If any queue is active the power consumed is P . The total
throughput is R̄s̄ = NΦ(ρ)Ra leading to an energy-efficiency
of

ηs̄ =
NΦ(ρ)Ra(ρ)

b+ P (1− Φ(ρ))N
(8)

B. Heterogeneous radio conditions

Consider a more realistic setting where users experience
different radio conditions in each zone. Denoting the average
throughput experienced by zone j as Ra:j , we can compute

Ra:j(ρ̂) = R(ρj)

N1∑
i1=0

N2∑
i2=0

· · ·
Nj−1∑
ij=0

· · ·
NM∑
iM=0

(
N1

ii

)
×
(
N2

i2

)
· · · ×

(
Nj − 1

ij

)
× · · · ×

(
NM

iM

)
× (Φ1(ρ̂))

i1

× (Φ2(ρ̂))
i2 × · · · × (ΦM (ρ̂))iM × (1− Φ1(ρ̂))

N1−i1

× (1− Φ2(ρ̂))
N2−i2 × · · · × (1− Φj(ρ̂))

Nj−ij−1

× · · · × (1− ΦM (ρ̂))NM−iM × 1

i1 + i2 + · · ·+ iM + 1
(9)

where
Φ(ρ̂)j = max

(
Rp

Ra:j(ρ̂)
, 1

)
(10)

Leading to a set of fixed point equations that can be solved
to calculate all Ra:j(ρ̂) for a given P. Equation (9) is similar
to (6), but considers the presence of users in other zones as
well. The average power can be calculated as

P̄s̄(P) = b+

N1∑
i1=0

· · ·
NM∑
iM=0

(1− δ(i1 + · · ·+ iM ))

× (Φ1(ρ̂))
i1 × · · · × (ΦM (ρ̂))iM × P1i1 + · · ·+ PM iM

i1 + · · ·+ iM
× (1− Φ1(ρ̂))

N1−i1 × · · · × (1− ΦM (ρ̂))NM−iM (11)

Where the δ function is used to exclude the state where all
zones are empty (δ(x) = 0 for all real x but 0, and δ(0) =
1). The energy-efficiency in this state can be calculated with
R̄s̄(ρ̂) =

∑M
i=1 NiΦ(ρ̂)iRa:i and total power from equation

(11).

IV. OPTIMAL POWER ALLOCATION CONSIDERING THE
DYNAMIC BEHAVIOR OF USERS

In the previous section, we optimized the energy-efficiency
for fixed numbers of users. To analyze the impact of power
allocation on the network performance and account for the
users arrivals and departures, a flow-level capacity analysis is
required. The arrival rate can be modeled through a Poisson
process (of intensity λi in zone i) and users leave when they



finish streaming a file of average size F (we assume that F is
the same for all users). When the total number of users exceed
a given threshold Nmax, new user arrivals are blocked.

A. Processor sharing analysis

When users with a finite workload are considered, the
number of users is not constant but varies dynamically during
time. The distribution of the number of users is determined
by the traffic intensity within the cell. Indeed, if the traffic
intensity is large, more users connect to the system per unit
time and the average number of active users increases. In
this section, we show how to compute the distribution of the
number of users knowing the traffic intensity.

The heterogeneity in radio conditions translates into a larger
service time for cell edge users. When the system is in state
s̄ = {N1, N2, · · · , NM}, the total number of users in the cell
is N (̄s) = N1 + · · · + NM . Based on [7], we can model
the system as a Generalized Processor Sharing queue, whose
evolution is just described by the overall number of users in a
cell. The solution of the Markov process has the simple form

π(̄s) =
1

Γ

N (̄s)!∏M
i=1 Ni!

M∏
c=1

ΩNc
c∏Nc

j=1 jΦc;̄s(Nc=j)Ra:c;̄s(Nc=j)

(12)

where Ωc = Sλc and Γ is a normalizing constant. The notation
s̄(Nc = j) is used to take the Φ and Ra for the state s̄ with
j users in zone c.

In this model, the user blocking rate can be calculated as
α =

∑
i λi

∑
x π(x), x such that the system is full (N(x) =

Nmax). Quality of service (QoS) is measured through the user
blocking rate. The QoS constraint is thus α ≤ ϵ, where ϵ is
the maximum tolerable blocking rate.

B. Optimal power allocation

The steady-state probabilities defined in the previous section
are calculated knowing the throughputs for each state of the
network. This throughput will of course depend on the power
allocation as explained in Sections II and III. The power
allocation has thus to be optimized taking into account the
dynamics of users. A power allocation policy P̂ is defined as
a set of actions for each of the possible states:

P̂ =
∪
s̄

Ps̄ (13)

The global energy efficiency; knowing the policy P̂, is given
by:

η̂(P̂) =
∑
s̄

π(̄s)R̄s̄(ρ̂)

P̄s̄(Ps̄)
(14)

The optimization problem can be defined as

P̂∗ = argmax[η̂(P̂)] (15)

And the maximum global energy-efficiency possible is η̂(P̂∗).
The idea behind this global optimization is that the power

allocation does not depend uniquely on the actual state of the
network, but takes also into account the future evolutions of the
network. For instance, a power allocation decision that is taken

at one moment may have an influence on the evolution of the
state of the network by favoring a subset of users by a better
throughput. We will study in the next section the difference
between this global policy maximization and a local one, as
defined in section III.

V. NUMERICAL RESULTS

In this section, we use simulations and numerical calcula-
tions to study the properties of the energy-efficiency function
and obtain the power allocation that maximizes it. We consider
the receiver and the transmitter to have two antennas each
forming a 2 × 2 MIMO system. The data rates for this
configuration which are LTE compliant are taken from [3] and
are given as a function of the SINR. For the single zone case
we take σ2 = 1 mW while for the two zone case we have
{σ2

1 , σ
2
2} = {1, 1

8} mW. We begin by illustrating the results
when the network is optimized supposing that the number of
users is fixed. The dynamic behavior of users is taken into
account afterwards and the performance of the network is
compared for both schemes.

A. Numerical results for the local optimization

We begin by illustrating the power allocation scheme when
the dynamic behavior of users is not taken into account, and
when all users are subject to the same radio conditions. In
figure 1, we show the energy-efficiency as a function of the
transmit power. Here, due to symmetry, all the users use
the same power. The results show that the energy efficiency
begins by increasing with the transmit power increases, as
users are able to reach higher throughputs. However, starting
from one point, users reach the maximal throughput they are
able to reach as, in LTE, modulation schemes are limited; the
energy efficiency begins thus decreasing as throughputs remain
constant while power consumption increases.

Fig. 1. η vs P with b
σ2 = 100 (20dB). Note that the energy-efficiency is

peaked at higher powers with additional users.

In figure 2, we consider the case of two users: one in the
“inner” zone (near base station) and the other in the “outer”
zone (at cell edge). In this case, the system has a sufficient
capacity to support both users and the energy efficiency is
optimized when more power is used on the outer zone which



compensates for its lower SINR. Here the total throughput can
thus be increased by using more power on the outer zone user.
However in figure 3, we have three users in both the inner and
outer zones. Here the throughput of the wireless network is
not sufficient for all the users and so the energy-efficiency is
optimized by simply putting more power in the inner zone
with the higher SINR as the total throughput is not improved
by putting more power into the outer zone.

Fig. 2. η over combinations of P1 and P2 with b
σ2
1
= 100 (20dB), N1 =

N2 = 1. Zone 2 corresponds to a lower SINR and in this case the efficiency
is optimized by using more power on the zone 2 user.

Fig. 3. η over combinations of P1 and P2 with b
σ2 = 100 (20dB), N1 =

N2 = 3. As before, zone 2 corresponds to a lower SINR and interestingly, in
this case, the efficiency is optimized by using more power along the zone 1
user. This is because with 3 users in each zone, the demanded rate exceeds the
maximum available throughput and so, optimization is done by using power
on users with a better SINR.

B. Numerical results for the global optimization

We have illustrated, till now, the performance of the system
when the number of users is fixed. In this section, we consider
the dynamic behavior of users. In this setting, the power
allocation is not determined for a fixed number of users, but for
a given traffic intensity. the number of users is thus a random
variable whose distribution depends on the traffic intensity.
The optimal power allocation is the one that maximizes the
energy efficiency while maintaining a constraint on the QoS.
Note that this optimal power allocation is a matrix that gives,
for each state of the network composed of the number of users
in the cell, the power allocation for each of the users.

Initially we consider the cell with homogeneous radio con-
ditions, i.e. we suppose that all the users experience the same
SINR on average. In this setting, if Nmax is the maximum
number of users allowed, optimization is performed over
Nmax variables, i.e. the power used in each state. For the
single zone case we take σ2 = 1 mW. The optimal power
allocation is shown in figure 4. Note that, in this case, the
power allocation is a vector and not a matrix, as all users
experience the same radio conditions and have, by symmetry,
the same allocated power.

Fig. 4. The power allocation scheme (P1, · · · , P4) plotted against the traffic
Ω when η̂ is optimized. Also note that the QoS constraint of maintaining the
blocking rate below 0.01 is satisfied.

Figure 5 compares the energy-efficiency obtained for the
local and the global optimizations. Recall that, by local, we
mean that the optimization is done for each state independently
from the others, taking into account only the observed number
of users and not the future evolutions of the system. As seen
from the simulations (Figure 5), using a global optimization
does not seem to yield much gains in the energy-efficiency
for the single zone case. This is because the throughput, and
thus service times, are the same for all users. We next move
on to the two-zone case (cell center and cell edge). Here we
consider a cell divided into two concentric rings, and define the
outer zone as the region when the SINR is 4.8 dB (3 times)



Fig. 5. η̂ plotted against the traffic Ω when η̂ is optimized and when η is
optimized for each state separately.

lower than the SINR for the inner zone, when the transmit
power is unchanged. The outer zone also has 3 times the area
of the inner zone causing λ2 = 3λ1. With these parameters
we attempt to calculate the optimal global energy-efficiency
and corresponding power allocation for given values of λ1.
We have {σ2

1 , σ
2
2} = {1, 1

3} mW. Figure 6 shows the energy
efficiencies corresponding to local and global optimizations.
It is obvious that global optimization yields much higher
efficiency when users have heterogeneous radio conditions.
This is because, in the local optimization setting, the notion
of call duration cannot be taken into account as users are
considered as always active. The optimal power allocation
will then tend to favor cell center users in order to maximize
throughput. However, when the dynamic behavior of users is
taken into consideration, it is sometimes better to use more
power on cell edge users in order to let them finish their service
quickly and quit the system. Applying the policy obtained from
the local optimization will lead to users accumulating at the
cell edge as they are not able to finish their transfers.

Fig. 6. η̂ plotted against the traffic Ω1 = λ1S when η̂ is optimized and when
η is optimized for each state separately. Also note that the QoS constraint of
maintaining the blocking rate below 0.01 is satisfied at all points shown.

VI. CONCLUSION

In this work we study and optimize the flow level energy
efficiency of base stations in LTE. We introduce the notion
of a “global” energy-efficiency which is defined as the aver-
age of the energy-efficiencies of each state the cell can be
in. These states represent the traffic configurations, i.e. the
numbers and positions of users in the cell. Through extensive
simulations we see that optimizing the global efficiency yields
a different power allocation from optimizing the efficiency of
each individual state. Although this difference can be neglected
when considering a cell in which all users experience the same
average SINR, when considering a more realistic setting where
users are subject to heterogeneous radio conditions, the global
optimization yields a considerable gain. This is because, when
users are considered as static, it may be optimal to give more
power to cell center in order to increase throughputs. However,
when the dynamic behavior of users is taken into account,
giving more power to users with bad radio conditions will
allow them leaving the system faster and thus alleviating load
in the future. When compared to the local optimization, it is
observed that the global optimization improves the energy-
efficiency up to a factor of 50%.
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