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Abstract—Cloud Computing is emerging today as a commer-
cial infrastructure that through the use of virtualization aims
to provide on demand computing resources. In particular, the
Infrastructure as a Service (IaaS) is a cloud service that allows
the user to perform and execute any OS and application in
virtual environments. In this work we present an evaluation of
different policies for the assignment of virtual machines that IaaS
providers can adopt in order to both efficiently planning their
infrastructures and guaranteeing the quality of service expected
by customers. The study is based on the exploitation of a Mean
Field Model, able to evaluate systems with a relevant number of
interacting entities, that can provide interesting insights derived
from the computation of different performance indexes such as
the request loss rate, the mean number of executing/available
resources, and the overall ratio of satisfied requests to mention
a few.

Index Terms—Mean Field Analysis, Performance Evaluation
of Communication Networks, Cloud Computing

I. INTRODUCTION

Cloud Computing is a commercial infrastructure that
through the use of virtualization aims to provide on demand
computing resources. The Infrastructure as a Service (IaaS) is
a cloud service that allows the user to perform and execute any
OS and application in virtual environments. The most known
commercial examples available nowadays are the Amazon
Elastic Compute Cloud (EC2), and the IBM Smartcloud.
In this work we evaluate different policies for the assignment
of virtual machines that IAAS providers can adopt in order
to both efficiently plan their infrastructures and supply the
quality of service expected by customers. The correlation
between the resources allocated and the performance offered
is influenced by a number of factors such as the characteristic
of the different class of requests, the capacity of the resources,
and the workload sharing the same physical hardware.

The study is based on the exploitation of a Mean Field
Model that is able to describe systems with a relevant num-
ber of interacting entities (for instance physical and virtual
resources), and to compute the time evolution of all the
entities forming the cloud system. Thanks to the underlying
solution technique the resulting model can provide interesting
insights derived from the computation of different performance
indexes such as the request loss rate, the mean number of

executing/available resources, and the overall ratio of satisfied
requests to mention a few.
In the literature, there are several works that deal with
the optimal allocation of resources in virtual environments.
Several techniques and models focus on database consolida-
tion, some like in [8] by means of workload monitoring for
load balancing, others like in [10] using data migration and
task scheduling. Other techniques, as in [2][3][9] are aimed
to maintain acceptable application performance levels while
minimizing the costs of migration/consolidation of resources.
Many works propose different approaches to enable autonomic
controller to satisfy service level objectives by dynamically
provisioning resources, such as [6][12] [13]. In particular, in
[5] the dynamic allocation of VMs in cloud environment is
described.

The technique proposed in this paper is different from the
one presented in [2] that uses queueing network to represent
the studied systems, since our work exploits the object ori-
ented representation to describe all the elements forming the
systems, e.g., virtual machines, physical machines, and clients.
Moreover, thanks to the underlying solution technique it is
possible to perform the analysis for systems composed of a
huge number of interacting objects, providing more accurate
results as the number of component increases. In [12] the
analysis is focused on CPU allocation and on the application
response time, whereas in our work we take into account
OS and application virtualizations to evaluate the load request
response and the infrastructure efficiency by studying different
ad-hoc performance indexes. In this paper we apply the same
methodology used in [7] to model biological pathways to eval-
uate different scheduling policies in IaaS cloud applications.

The paper is organized as follows: in Section II we review
the basic concepts of Mean Field Analysis, Section III presents
the model and its validation, and in Section IV results from
the experiments are reported.

II. METHODOLOGY

Current data-centers that provision cloud services are usu-
ally characterized by several hundreds (if not even thousands)
of machines. To properly model such systems, we require a
formal technique capable of dealing with such dimensions. The
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Mean Field Technique [11] is a good choice in this direction.
An Object-oriented Mean Field Model, is a representation that
describes the behavior of a system as a net composed of a large
number of interacting objects. Objects are divided into classes:
all the objects belonging to a given class have exactly the same
behavior. Objects might be influenced by the distribution of
the other objects in the system. Each object is modeled by a
CTMC, whose transition rates may depend on the state of the
whole system. All the objects that belong to the same class are
characterized by exactly the same infinitesimal generator and
the same parameters. If two objects perform the same actions
at different rates, they must belong to different classes. In order
to ease the description of complex systems, classes are further
grouped into meta-classes. All the classes that derive from
the same meta-class are characterized by the same structure,
but different rates.
The number of objects in every class changes dynamically:
new objects might be formed at a given rate (expressed as
quantity of new objects created per unit of time), and each
object has an exponentially distributed maximum lifetime. In
the following we report the formal description taken from [7].

We call an Object-oriented Mean Field Model M, a tuple:

M = (MC,OC), (1)

where MC = {mc(1), . . . ,mc(k)} is a set of k meta-classes
and OC = {oc[1], . . . , oc[m]} is a set of m object classes.
Each meta-class mc(i) is in turn defined by a tuple:

mc(i) = (c(i), n(i), L(i),Λ(i),C(i)), (2)

where c(i) is a label corresponding to the name of the meta-
class, n(i) is the number of states of the CTMC, L(i) = {l(i)}
is a set of labels (the names of the states) and Λ(i) =
{λ(i)

1 , . . . , λ
(i)
pi } is the set of formal parameters. Ci = |c(i)ul | is

the n(i)×n(i) infinitesimal generator of the CTMC where cul
is the transition rate from state u to state l. The entries of C(i)

may depend on the actual values assigned to the parameters
Λ(i). An object class oc[j] is also a tuple:

oc[j] = (o[j], c[j],Γ[j], N [j], π
[j]
0 ), (3)

where o[j] is a label representing the name of the class; c[j] is
name of the meta-class from which the class derives; Γ[j] =
{γ[j]

1 , . . . , γ
[j]
pi } is the set of actual parameters assigned to each

of the formal parameters of the meta-class defined by Λ(i);
N [j] is the initial number of objects; π[j]

0 is a probability vector
of size n[j] that defines the initial state probability for the
objects belonging to this class. We define n[j] as the number
of states of class j inherited from its meta-class, that is n[j] =
n(meta−class of j). The value of each actual parameter can
depend on the distribution of the number of objects among
the states of all the classes that compose the model. As a
notation, we use round brackets in superscripts for elements
corresponding to meta-classes and square brackets to denote
elements belonging to classes.

A. Analysis

The model is analyzed using mean field analysis [1] which
takes advantage of the result proposed in [4] to consider
the evolution of each class separately. Initially, object classes
are instantiated: matrix C[j](·) is computed for each oc[j]

by inserting the actual parameters Γ[j] in the definitions of
C(i). We call N[j](t) = |N [j]

l (t)| a vector of size n[j],
whose element N

[j]
l (t) represents the number of objects of

class j in state l at time t. Formal parameters can depend
on the number of objects in each state, and thus we have:
C[j](N[1](t), . . . ,N[m](t)).

The evolution of the system can then be studied solving for
j = 1..m:

dN[j](t)

dt
= N[j](t)C[j](·), (4)

with N[j](0) = N [j]π
[j]
0 . The derivation of Eq. (4) can

be summarized as follows. To simplify the presentation we
drop the [j] superscript and the state dependencies (·). The
number of objects of class j in state l at time t+∆t can be
approximated by:

Nl(t+∆t) ≈ Nl(t) +
∑
u ̸=l

Nu(t)cul∆t (5)

−Nl(t)
∑
u ̸=l

clu∆t.

The second and third terms on the r.h.s. of Eq. (5) represent
objects entering and leaving state l. By applying the definition
cll = −

∑
u ̸=l clu, rearranging the terms, and dividing by ∆t

we obtain:
Nl(t+∆t)−Nl(t)

∆t
≈

∑
u

Nu(t)cul. (6)

Eq. (4) can be obtained by letting ∆t → 0, and using vector
notation. The experiments presented in this paper compute the
solution of Eq. (4) with the Runge-Kutta method with adaptive
step size discretization.

III. THE IAAS MODEL

We developed a model to describe resource allocation in
IaaS infrastructures: services that allow the users to perform
OS and applications in virtual environments. We consider
a scenario where the user requires the execution of virtual
machines (VMs). The provider assign such requests to physical
machines (PMs) to satisfy the user requests.
The development of an object oriented model that exploits the
Mean Field Analysis presented in Section II, permits us to
evaluate the performance of the IaaS system with respect to
the resource allocation policies, as functions of the different
classes of requests, the capacity of the resources, and the
workload sharing the same physical machines.

The modeled elements are clients, physical machines and
the virtual machines hosted by the physical ones. Commercial
cloud providers classify machines according to the resources
they assign to the users. For example, Amazon classifies its



Fig. 1. CTMC of the meta-class Physical Machine

virtual machines in terms of ECU (EC2 Compute Unit), that
roughly describes the number of cores, the speed of the CPU
and the total memory available to the user. In this paper we
focus on memory as the feature that characterizes the requests
that the user can place. However the proposed methodology
can be easily extended to consider other types of resources.
In particular, we take into account a set of request types
that is pre-defined and equal for all the PMs composing the
infrastructure. Without loss of generality, we mainly focus on
the maximum amount of memory required by a VM and we
measure it in slots where each slot can correspond to a fixed
amount of RAM (in our examples is 1 Gigabyte).

A. Basic model

The definition of a meta-class, denoted as Physical Machine,
provides the general structure that describes the behavior
of a physical machine. In this structure, each state is a
tuple (k, n1, .., nM ) where k reports the number of available
memory slots, and each ni denotes the number of virtual
machines in execution for each type of virtual machine i,
where i represents the associated number of memory slots.
The resulting CTMC depends on the maximum number of
memory slots available in the physical machine and on the
types of virtual machines it provides. Figure I reports the
CTMC for a scenario where each PM has 5GB memory
available and there are two types of virtual machines, with
1 and 2 Gigabytes respectively. Indeed, the CTMC structure
is automatically computed by the framework interface for any
parameter combination, allowing an easy analysis for different
scenarios.

The meta-class describing the scenario of the CTMC re-
ported in Fig. I, can be formalized as follow:
mc(1) = (’Physical Machine’, n(1), L,Λ(1),C(1)),

where n(1) = 12 states, and:

L = {(5, 0, 0), (4, 1, 0), (3, 0, 1), (3, 2, 0), (2, 1, 1), (1, 0, 2), (2, 3, 0),
(1, 2, 1), (0, 1, 2), (1, 4, 0), (0, 3, 1), (0, 5, 0)}

Other elements are: Λ(1) = {λ1, λ2, µ1, µ2}, C(1) = Q.
In this case λ1 and λ2 represent the inter arrival rate of

requests for VMs with 1 and 2 GB of memory respectively,
on the other hand µ1 and µ2 denote the service rate for the
execution of 1 and 2 GB VMs respectively. The infinitesimal
generator Q of the CTMC (Figure I), is reported in Table I.
This formalization provides the structure of a PM, the number
of objects in any CTMC state accounts for the number of the
PMs of the whole infrastructure that assume the associated
status. Given this representation we can model different types
of PM by deriving different classes according to the aspects
we would describe.

B. Resource allocation policies

In order to consider physical machines performing different
resource allocation policies, we derive a class (from the meta-
class) for each case we aim to study. Four policies were
selected:

• Random: VM requests are assigned randomly among all
the PMs, neglecting whether a request is addressed to a
machine without available resources.

• Available First: it considers only the set of PMs that have
available resources, and then it choose randomly from
that set.

• Best Available First: it considers only the set of PMs that
have available resources, and it privileges the choice of
the machines with a higher number of available resources.

• Optimal: it always assigns the requests to PMs with the
lowest load.

By assigning different functions to the rates included in (Λ)
it is possible to describe the different policies. In particular,
each policy can be modeled by differentiating the state inter
arrival rates (λi). The formalization of a class will result as:

oc[1] = (’Policy Name’,′ PhysicalMachine′, {λv1, λv2, µ1, µ2},
N, |1, 0, . . . , 0|)

where the first element defines the name according the
policy it models, the second element indicate the meta-class
from which it derives. It is followed by the parameter list
that determines the behavior of the objects of this class, N
stays for the initial number of objects, i.e., the initial number
of PM performing the policy identified by this class, and the
last vector denotes the initial distribution of the N objects in
the CTMC states.

The total arrival rate of requests for given set of resources
has been made proportional to the total number of available
PMs to consider scalability issues. In the following are re-
ported the functions computing the arrival rates for any case,
given that N is the total number of PMs and N ∗ λi is the
total arrival rate for requests of type i:

• Random: this policy is modeled by assigning, for any
request type i, the same arrival rate λi for all CTMC



states:

fi(n, v) = λi, (7)

where n(v) is the number of objects in a CTMC state
v. The idea behind this equation is that the total arrival
rate λi ×N is equally divided by the N available PMs,
and thus each machine receives requests for i resources
at rate λi.

• Available First: the arrival rate is divided for the sum
of PMs that can satisfy the request. Let us call Ri the
set of states that represents PMs with enough space to
satisfy request of i resources. More formally, Ri = {v′ =
(k, n1, .., nM ) : i ≤ k}. Then we can compute the arrival
rate in state v as:

fi(n, v) =
λi ×N∑
v′∈Ri

n(v′)
. (8)

• Best Available First: in this case the sharing algorithm
assigns resources with a higher probability to machines
with more free resources. To simplify the notation, let us
call K(v) the total number of resources available in v
(more formally: if v = (k, n1, .., nM ), then K(v) = k).
Then we have:

fi(n, v) =
λi ×N ×K(v)∑

v′∈Ri
n(v′)×K(v′)

. (9)

• Optimal: the requests are always sent to the machines
with the lowest load first, that is machines that have
the maximum number of available resources. If there
are more machines with the same maximum number of
available resources, then the choice is made randomly.
Formally

fi(n, v) =
λi ×N∑

v′:K(v′)=K(v) n(v
′)

× (10)

1 (∀v′ : K(v′) < K(v) ⇒ n(v′) = 0) ,

where 1(x) is the indicator function that returns 1 if
argument is true, 0 otherwise.

For what concerns the service time, we imagine that the
PM executes all their jobs with a processor sharing scheme. If
1/µi is the mean service time for machines with i resources,
then in a state v = (k, n1, .., nM ) we have that the completion
rate µi(v) for a request of i resources is:

µi(v) =
ni∑
j nj

µi. (11)

In the following, we have supposed that µi = µ,∀i. In this
case, by considering the PM represented in Figure 1, we have
that µ1(v) and µ2(v) are equal to:

µ1(v) =
n1

n1 + n2
µ ; µ2(v) =

n2

n1 + n2
µ, (12)

respectively.
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C. Model output and performance indexes

Thanks to the solution technique described in Section II-A
the model output computes the time evolution of the number
of objects in all the states for each class, i.e., it provides the
number of PM’s for any possible state. In Figures 2 and 3
are reported the plots for some states of the class Random.
Indeed, we exploit the output to compute a set of performance
indexes to capture interesting insights related to both the
quality perceived by users and the infrastructure planning. We
derived the following indexes:

• Mean number of empty PMs (with all resources avail-
able);

• Mean number of executing VMs;
• Mean number of PMs without available resources;
• Mean number of available resources (without VM type

differentiation);
• Mean number of busy resources;
• Mean overall throughput;
• Request loss rate;
• Mean number of executing VM with j resources;
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Fig. 4. CTMC for the Random policy, with M = 2 PMs, and two resources

We used these indexes to compare the performance among
the considered policies.

D. Model validation

As shown in [4], the Mean Field Analysis technique, which
converges to the exact solution of the model as the number of
considered objects tends to infinity, can provide very accurate
approximations of the exact solution for finite populations.
However the quality of the approximation depends a lot on
the functions used to describe the evolution of the system
population, and on the load of the system. In order to validate
the proposed approach, we compared the solution of the mean
field model with the one of the exact CTMC for a small
number of resources and PMs. In particular we focused on
two resources and from two to five PMs. Figure 4 shows
the CTMC corresponding to the Random policy, and Figure
5 shows the CTMC of the Available First policy, both with
M = 2. In order to reduce the state space, the CTMC describes
a lumped version of the system: the state of the model is a
tuple (c0, c1, c2), where each component ci corresponds to the
number of PMs that have i resources used (and thus, since we
consider at most two resources, 2− i available). Both CTMCa
are very similar, with the only differences in the Available
First with respect to the Random is in states (1, 0, 1) and
(0, 1, 1), where the exit from the state is at rate 2λ instead
of λ, and there is no loss until the system is full (state 0, 0, 2).
This small difference is what characterize the policy, since
the Available First do not send requests to PMs already full.
Figure 6 shows the results for M = 2 and M = 5 PMs,
for both the Random and Available First policies, and for the
mean number of assigned resources, and the mean number of
full PMs. As we can see, the steady state solution is matched
very closely by the mean field model. We can thus conclude
that the mean field model is appropriate to study the proposed
system.

IV. RESULTS

In this section we discuss the results obtained executing the
model of each allocation policy and deriving the performance
index described in the previous section. We perform the
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Fig. 5. CTMC for the Available First policy, with M = 2 PMs, and two
resources

comparison on some of these indexes for different policies
to capture insights about the proposed schemes. The Mean
number of PMs without available resources and the Mean
number of executing VMs can be useful for both infrastructure
planning and efficiency improvement; the analysis of the
quality of service perceived by the clients can be instead
estimated computing measures such as the Mean number of
available resources, and the Request loss rate.

A. Policy evaluation as function of the workload

The analysis is performed for a scenario with 100 PMs
hosting 5 resources (e.g. 5 GBytes of RAM) each, where
clients can request VMs requiring either 1 or 2 resources (e.g.
1 or 2 GBytes of RAM). The overall request arrival rate ranges
from 0.1 to 1 requests per day, whereas the mean service time
µ is set to 1 day. Figure 7 plots the Mean number of PMs
without available resources. On one hand it can be noted that
the Available First policy has the larger number of unavailable
PMs as λ increases, on the other hand the Optimal one has
always PMs available. It is also interesting to remark that from
this point of view the Random policy outperforms the Best
Available First when λ become greater than at least 0.87.

The same result is supported by the graph depicted in
Figure 8 where is reported the Mean number of available
resources. Indeed, this indexes is strongly correlated with
the Mean number of PMs without available resources that
is complementary but accounts also for the total number of
resources.

The curves of Figure 9 reports the Mean number of exe-
cuting VMs. By looking at this graph together with the one
reported in Figure 10 it is possible to find an interesting
indication, indeed, while the latter shows that the Random
policy is the only to lose requests (it assigns request to any
machine regardless wether it has resources available), the
Available First and the Best Available First have a mean
number of executing VMs that is higher with respect to the
Random one (this is always true for the Available First, it is
true for λ greater than 0.6 in the Best Available First case).
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The Optimal has the lowest value since it selects always the
PMs with the lower load and hence it is able to rapidly execute
the VMs.
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Figure 11 plots the Mean overall throughput, the Random
one decreases due to the losses whereas the others are linear
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Fig. 10. Request loss rate

and depend on the ratio among the µ and λ parameters.
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B. Analysis for different initial numbers of resources

As expected, by increasing the number of available re-
sources for each PM also the policies that do not use the
optimal approach improve their performance as illustrated in
Figure 12. Moreover, this graph points out that when K is
greater or equal to 15 the Best Available First has a lower
number of executing VMs than the Random that tends to
behaves like the Available First as K increases. The Optimal
maintains the same performance for all depicted configurations
since with these workloads the policy is always able to rapidly
finish off the requests.

C. System response to bursts

One of the main advantages of Mean Field analysis, is the
possibility of performing transient analysis, We exploit this
feature by modulating (with a deterministic time dependent
process) the arrival rates to describe workload bursts, i.e.,
relevant amount of VMs requests that arrives in a small time
intervals. Burst are thus modeled by increasing the overall
inter-arrival rate in fixed time periods. In Figure 13 is reported



the system response to bursts for each policy, λ switches from
0.5 to 1.2 and vice versa. Note that during the burst, the arrival
rate is much higher than the service rate, and VMs tends to
accumulate in the system. During the peak’s period the Mean
number of executing VMs of the Optimal is lower with respect
to the others, whereas the Best Available First has the greatest
value. The Random and the Available First behave at the same
way.
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V. CONCLUSIONS

In this work we evaluate different policies for the assign-
ment of virtual machines in an IaaS cloud infrastructures.
The developed model, thanks to the Mean Field Analysis, is
able to easily describe different topologies characterized by
relevant numbers of components. We compared four different
scheduling policies and in the considered scenarios the results
highlight that the Optimal policy outperforms the others,
indeed, it has always the lower number of executing VMs and
such as the Available First and the Best Available First does
not lose client requests. Moreover, results show that despite
the Random causes the loss of requests, even the system
could serve them, its mean number of executing VMs can
be lower than the Available First and the Best Available First
ones, providing insights about the cost planning (number of
resources) versus the expected quality of service (e.g. loss
requests rate).
Nevertheless some outcome could be quite intuitive, this study
proposes further investigations, for instance, a model refine-
ment devoted to take into account the time required to compute
the scheduling policies could evaluate how this impacts on
the overall performance. The model can also be effortlessly
extended to represents PMs classes with both different CPUs
and different VM sets.
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Fig. 6. Comparison of results between Mean Field Analysis and exact solution of the underlaying CTMC with the following parameters: N = 2, λ = 0.4
and µ = 1. Random policy is considered in a)-d), while Available First in e)-h). The total number of PMs is M = 2 in a), b), e) and f), and it is M = 5 in
c), d), g) and h). The mean number of assigned resources is shown in a), c), e) and g), while the mean number of full machines is plotted in b), d), f) and g).
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Fig. 12. Mean number of executing VMs for different K (initial number of resources)



states 5,0,0 4,1,0 3,0,1 3,2,0 2,1,1 1,0,2 2,3,0 1,2,1 0,1,2 1,4,0 0,3,1 0,5,0

5,0,0 -(λ1 + λ2 ) λ1 λ2 0 0 0 0 0 0 0 0 0

4,1,0 µ1 -(λ1 + λ2 + µ1 ) 0 λ1 λ2 0 0 0 0 0 0 0

3,0,1 µ2 0 -(λ1 + λ2 + µ2 ) 0 λ1 λ2 0 0 0 0 0 0

3,2,0 0 µ1 0 -(λ1 + λ2 + µ1) 0 0 λ1 λ2 0 0 0 0

2,1,1 0 µ2 µ2 0 -(λ1 + λ2 + µ1 + µ2 ) 0 0 λ1 λ2 0 0 0

1,0,2 0 0 µ2 0 0 -(λ1 + µ2 ) 0 0 λ1 0 0 0

2,3,0 0 0 0 µ1 0 0 -(λ1 + λ2 + µ1 ) 0 0 λ1 λ2 0

1,2,1 0 0 0 µ2 µ1 0 0 -(λ1 + µ1 + µ2 ) 0 0 λ1 0

0,1,2 0 0 0 0 µ2 µ1 0 0 -(µ1 + µ2 ) 0 0 0

1,4,0 0 0 0 0 0 0 µ1 0 0 -(λ1 + µ1 ) 0 λ1

0,3,1 0 0 0 0 0 0 µ2 µ1 0 0 -(µ1 + µ2 ) 0

0,5,0 0 0 0 0 0 0 0 0 0 µ1 0 -µ1

TABLE I
CTMC INFINITESIMAL GENERATOR OF THE META-CLASS Physical Machine


