
Risk-hedging using options for upgrading
investments in mobile networks

Fréd́eric Morlot, Salah Eddine Elayoubi, Thomas Redon
Orange Labs

38-40 rue du Ǵeńeral Leclerc
92794 Issy-Les-Moulineaux, France

frederic.morlot@polytechnique.org, salaheddine.elayoubi@orange.com, thomas.redon@polytechnique.org

Abstract—In this paper, we illustrate how a mobile network
operator can plan an upgrading investment to anticipate explo-
sions of the traffic demand, taking into account the expected
generated profit and the customers satisfaction. The former
parameter grows with the demand, whereas the latter sinks if
the demand is too high as individual Quality of Service (QoS)
may collapse due to capacity saturation problems. In addition
to that, as the equipment price decreases with time, it may be
interesting to wait rather than to invest at once. Taking into
account this trade off, we propose a real option strategy to hedge
against the risk that the investment has to take place earlier than
expected. At last, we price this option with a backward dynamic
programming approach, using recent improvements based on
least-squares estimations.

I. I NTRODUCTION

Today, it is expected that the mobile data traffic will be
significantly growing. To face these soaring volumes of data
to be transferred, mobile operators must periodically upgrade
their equipments to offer higher throughputs and avoid QoS
(Quality of Service) problems. However as the demand does
not increase steadily and must be considered as partly random,
the upgrading investment date is difficult to be forecast.

In this article, we consider upgrade investments in a
telecommunication network, with an application to Beyond 3G
wireless systems. In this context, when the traffic increases,
the operator naturally increases its profit until the demand
approaches the limiting capacity of the network. In this case,
the network starts experiencing saturation, throughput and QoS
problems, so the operator’s profit may fall. The operator must
then upgrade its network to increase the capacity. An example
of an upgrading means consists in adding a frequency carrier.
The operator then faces the following trade-off:

• The later the investment, the lower individual throughputs
and customer satisfaction. Permanent non-satisfaction
will result into churn and additional loss of profit.

• The sooner the investment, the more expensive the costs
of upgrade elements.

This article aims at resolving analytically this trade-off.
Throughout the paper, we propose a general methodology and
illustrate it on the practical example of HSDPA networks. We
first derive analytical value for operator’s profit, taking into
account randomness of the rising demand, and decrease of
network element costs according to time. We second introduce

a real options method to hedge against the risk that demand
evolves in an unexpected way leading to a premature invest-
ment decision or a too late one. To perform that, we introduce
an American call that allows its owner (the mobile operator)
to buy an equipment at a fixed price, possibly less than the
real one, until a maturity date. Given the profit analytical
model and the option’s parameters, we propose a dynamic
programming method to price the option. At the same time,
we obtain the expected best investment date.

RELATED WORK

Recently, the real options framework [1] has been widely
used for evaluating investments under uncertainty when tim-
ing is a critical issue and the infrastructure project requires
the commitment of huge costs up front. The real options
approach evaluates a firm’s opportunity to invest in a real,
partially or completely irreversible, project, in uncertain future
environment by evaluating the managerial flexibility as a
financial option [2]. The first applications of real options
where in natural resource investments as in [3] where the
authors valued a Gold Mine as an option. Afterwards, the
real options method were used for evaluating transportation
projects [4], sustainable development investments [5][6], and
even intellectual property rights [7], etc. In these contexts,
uncertainty can come from the project revenue [3], from the
demand [4][5], or from R&D efforts that may reduce the
investment costs [6][8].

In the field of telecommunications, real options are clas-
sically used for evaluating strategic decisions like regulation
of the telecommunication market [9], definition of tariffs for
operators [10], or pricing of spectrum licenses [11]. This
work focuses on a less macroscopic application, but that is
of high importance for operators: deploying mobile network
infrastructures for an already licensed system, in order to
respond to the progressive increase of customer demand. Only
few works was interested by applying real options on this field.
For instance, d’Halluin presented a method to determine the
best investment date in a fixed [12] or a wireless [13] network,
based on real options and a simple network capacity model. To
the best of our knowledge, this work is the first that considers
option’s pricing for capacity investments in mobile networks,
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based on realistic network capacity models, and that proposes
both optimal timing and risk hedging for the investments.

The remainder of this paper is organized as follows: in
a first section, we build an analytical model of the oper-
ator’s profit and illustrate it on an HSDPA network. Then
we introduce in section II an American option to hedge
against the risk aforementioned. We define the underlying asset
and the option’s payoff. To price the option we use a risk-
neutral approach, whose mathematical justification lies inthe
appendix. In section III, we show how dynamic programming
can help solving the pricing problem, and the best investment
date problem as well. In section IV, we present the numerical
results before concluding the paper.

II. T HE BASIC MODEL: OPERATOR’ S PROFIT AND

INVESTMENT COST

In this section, we calculate the operator’s profit, that will
be used next in evaluating the investment.

A. Traffic Demand

The operator profit depends on the amount of data flowed
by the network. The traffic is generally composed of real
time (voice, streaming) as well as elastic traffic. Real time
traffic is measured in minutes of communication per hour per
cell, generally translated into Erlang/cell. For elastic traffic,
this demand is expressed in Mbits/sec/cell (aggregated traffic
demand from all clients in a typical cell). We denote the overall
traffic (real-time or elastic) byXt, where the timet = 0, 1...
variesdiscretely.

To model the evolution of(Xt)t∈N, let us consider it
as the daily sampling of a continuous stochastic process
(X̃(t,Wt))t∈R+ . As many random phenomena related to a
social behavior (e.g. [5]), we assume that̃X(t,Wt) is a
geometric Brownian motion:

X̃(t,Wt) = x0e(α−
σ
2/2)t+σWt , t ∈ R+ ,

whereWt is a standard Brownian motion,α is the trend of
the demand andσ is its volatility.

B. Customers satisfaction and operator’s profit

In this section, we define the relationship between the
traffic, the capacity, the QoS and the profit. Let the capacity
of a typical cell of the network be equal toC. The QoS
perceived by users depends on the load, defined by the ratio
between the traffic and the capacity. In all cases, the QoS is a
functionQt(Xt, C) that decreases when the traffic increases,
and that increases when the capacity is higher. This QoS is
generally expressed in throughput for elastic traffic and access
probability for real-time traffic.

Now we can compute the customer satisfaction, which can
reasonably be supposed to depend on the QoS. For elastic
traffic, subjective satisfactions have been shown to be more
sensitive to small variations at low throughputs than at high
throughputs. Enderlé and Lagrange proposed in [17] to model

the customer satisfaction as a negative exponential function of
the throughput:

Ht(Xt, C) = e−β/Qt(Xt,C).

For example,β can be chosen asβ = log(2) ·q1/2, whereq1/2
is the throughput value ensuring a satisfaction of50%.
For voice service, QoS is an access rate (probability of not
being blocked), so users that have access to the service are
fully satisfied, while the others are completely unhappy. Let
a(Xt, C) be the access rate when the traffic intensity is equal
toXt and the cell capacity isC, the satisfaction is thus directly
equal to this access rate:Ht(Xt, C) = a(Xt, C).

Finally, the operator’s profit can be calculated. Ifδ is the
transfer price (say in $/Mbit for elastic traffic or in $/Erlang
for real-time traffic), the gross daily profit per cell is given by:

πgross = δXt, (1)

However the gross profit should be weighed by the customer
satisfaction to account for the quality of the communications.
The net profit is thus calculated as the product ofπgross by
Ht:

πt(Xt) = δXtHt(Xt, C)

C. Upgrading Investment

When traffic increases, QoS will surely degrade, and so
the satisfactionHt. If no upgrading action is taken, the profit
will progressively tend to zero. Once the operator decides to
upgrade, he can install additional equipments offering higher
capacity (e.g., by adding transmitters operating on different
frequency bands). In such a case we obtain a higher valueC ′

of the capacity. The profit becomes:

π′
t(Xt) = δXtHt(Xt, C

′)

On the other hand, the upgrading (equipment) cost is a
decreasing function of time (due, for instance, to the R&D
progress or the serialization in the manufacturing chain).In
this paper we assume it decreases exponentially (K(t) =
K0e−ǫt), whereǫ is the depreciation rate.

D. Total Profit

Let us introduce dateT , at which the investment becomes
obsolete (in other words, the proposed investment cannot be
undertaken afterT ). If we denote the investment date byt0
(0 < t0 < T ), the total profitΠT (t0) actualized att = T is:

ΠT (t0) =

t0−1
∑

t=0

eζ(T−t)πt +

T
∑

t=t0

eζ(T−t)π′
t, (2)

whereζ is the actualization rate. For simplicity, we assume
that ζ is constant during the period[0, T ].
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Fig. 1. Peak data rate versus distance to the base station. The system is
HSDPA in a dense urban environment.

E. Application to Beyond 3G networks

In this section, we show how to calculate the QoS and
the profit for elastic traffic in beyond 3G systems, including
HSDPA, 3GL LTE and WiMAX systems. These systems are
characterized by a throughput that depends on the position of
the users in the cell: Cell edge users have lower throughputs
than cell center ones, as illustrated in Figure 1. As far as weare
considering elastic services, users with degraded throughput
will stay longer in the cell and contribute more to the cell
load. It has thus been shown in [14] that the maximal capacity
of the cell is equal to the harmonic mean of the throughput.
Let C be this maximal capacity.

The load of the cell is thus equal to the ratio between the
offered traffic and the capacity:ρt =

Xt

C . Using simple pro-
cessor sharing arguments, it can be shown [14] that, provided
that the load is less than 1, the average flow throughput is:

Qt(Xt, C) = C(1− ρt) = C(1− Xt

C
) = C −Xt (3)

However, when the load exceeds one, the throughput of all
users falls to 0. The

Qt(Xt, C) = (C −Xt)
+, (4)

wherex+ = max(x, 0).
The satisfaction is thus calculated by:

Ht = e−β/(C−Xt)
+

.

and the gross daily profit per cell is given by:

πgross = δmin(Xt, C), (5)

whereδ is the transfer price (say in $/Mbit). Finally, the net
profit is calculated as the product ofπgross by Ht:

πnet = δmin(Xt, C)e
−β/(C−Xt)

+

.
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Fig. 2. Daily Profit generated by demand.C = 2 Mbits/sec/cell,
δ = 0.1 $/Mbit,µ = 14000 sec. Two values ofβ are considered, corresponding
to target throughputsγ1/2 = 1 Mbit/sec and 0.5 Mbit/s. It can be observed
that the profit is better when users are satisfied with a smallerthroughput, but
it always collapses when the traffic approaches the maximal capacity.

If Ht = 0, i.e. if the cell is saturated, the net profit is null.
If the satisfaction is maximal, i.e.,Ht = 1, the net profit is
equal to the gross profit (1). To sum up we have:

πt = δXte−β/(C−Xt) if Xt < C
πt = 0 otherwise.

Intuitively, as the demand rises,Xt will increase as will
the profit (Fig. 2). Then, the profit will decrease because the
unsatisfaction effect becomes dominant.

III. R ISK-HEDGING USING AN AMERICAN OPTION

A. Externalizing the financial risk

As shown above, there is a trade off between the growth
of the demand (encouraging to invest) and the depreciation
of the equipment cost (encouraging to wait). Then the risk is
to be led to invest while the equipment is still expensive. In
this section we show how to hedge against this risk using an
American option. This option, acquired from a third party like
a bank, gives us the right to buy the equipment at priceK⋆

instead ofK(t), until datet⋆ = t(K⋆). Let us recall that the
operator has the right but not the obligation to exercise this
option, but has to pay in return apremiumto the bank, denoted
by P . If he has to invest before datet⋆, he will exercise the
option, giveK⋆ to the equipment provider and the bank will
pay the difference. Otherwise, he will not exercise the option
and he will lose the premium, but he still can invest. In this
section we will try to answer the two following questions:

• when is this option going to be exercised ?
• how much does it cost (i.e. calculateP ) ?



B. Introducing the American option

When is the option going to be exercised ? It depends on
the additional profit expected from investing to upgrade the
network: at least, this additional profit has to be greater than
K⋆. At datet, it can be expressed as follows:

St = E

[

∫ T

t

e−ζ(s−t)(π′(s,Ws)− π(s,Ws)) ds

∣

∣

∣

∣

∣

Ft

]

. (6)

Facing the decision to invest or not, the operator’s strategy
is to compare the profit realized if investing with the value
of waiting, typically to check that the traffic is not going
to decrease unexpectedly which would make the upgrading
expenditure a sunk cost. This appears to be the classical
problem of finding the exercise strategy for an American
option, with the following features:

• t⋆ as the option’s maturity
• K⋆ as the exercise price or strike
• St as the underlying asset
• (St −K⋆)+ as the option’s payoff, denoted byZ(t):

Z(t) = max{St −K⋆, 0} (7)

C. Pricing of the American option

The resolution of this problem appeals to classical stochastic
theory and the risk-neutralization approach ([19][15]).

1) Preliminaries: to detail this approach, let us introduce
two progressively measurable processesµt and κt, respec-
tively the expected total return on the asset and its volatility:

dSt/St = µt dt+ κt dWt (8)

along with the market price of risk:

θt = κ−1
t (µt − ζ).

We obtain expressions ofµt, κt andθt in the appendices VII-A
to VII-C, where we show that:

θt = −π
′(t,Wt)− π(t,Wt)

∂v
∂x (t,Wt)

,

with:

v(t, x) =

∫ T

t

E

[

e−ζ(s−t)(π′(s,Ws)− π(s,Ws))|Wt = x
]

ds.

(9)
Note that applying the risk-neutralization approach will also

require Novikov’s condition (see [16], page 65), stating that:

E

[

exp

(

1

2

∫ T

0

θ2t dt

)]

< +∞. (10)

In the appendix VII-D, we show that Novikov’s condition
is verified in our specific case.

2) The risk-neutralization approach:under this condition,
let S([t, t⋆]) be the set of stopping times with values in[t, t⋆]
and define the following process known as the Snell envelope:

Yt = sup
τ∈S([t,t⋆])

EQ⋆

[

e−ζτZ(τ)
∣

∣Ft

]

. (11)

Here,Q⋆ is the risk-neutral probability, whose density w.r.t.
P, the historical probability, is:

dQ⋆

dP
= exp

(

−1

2

∫ t⋆

0

θ2s ds−
∫ t⋆

0

θs dWs

)

.

In fact, since we will have to simulate trajectories of the
asset beyond datet⋆ (until date T ), we will rather choose
the probabilityQ, whose density w.r.t.P is:

dQ

dP
= LT = exp

(

−1

2

∫ T

0

θ2s ds−
∫ T

0

θs dWs

)

. (12)

Note that Q is indeed a probability measure, since
EP[LT ] = 1, asθt verifies Novikov’s condition (see previous
paragraph). Note also thatQ⋆ is the restriction ofQ to Ft⋆

(see [15], Theorem 9.1.2.), so that (11) still holds withQ if
t ≤ t⋆. Then the premium of the option at any timet ∈ [0, t⋆]
is given by [19]:

Πt = EQ

[

e−ζ(τ(t)−t)Z(τ(t))
∣

∣

∣
Ft

]

, (13)

whereτ(t) is the solution of the maximization in (11).τ(t)
is interpreted as the optimal exercise strategy of the option
calculated at datet1.

IV. T HE DYNAMIC PROGRAMMING SOLUTION

As stated above, the problem is to find the stopping time
maximizing the option’s payoff under risk neutrality (Eqn.
(11)). However, it is impossible to computeZ(t) analytically,
so we make use of a dynamic programming approach, as in
[20]. We recall that it consists in dividing the problem into
two binary decisions at the final datet⋆: the ”immediate”
one and its generated value, and the ”delaying” one and its
continuation value. Then moving backward, and repeating the
same binary decision, we obtain the expected optimal time
which lies in an expected interval in which the investment
should be undertaken [8]. We must then, at each moment, find
two different values: the option’s payoff in case of investment
and the continuation value in case of waiting.

A. Monte-Carlo simulations to generate the underlying asset

CalculatingSt involves a complex integration (Eqn. (6)) that
cannot be performed analytically. We then use Monte-Carlo
simulations as follows:

1Note that if the option were a European option, the price at date t would
be:

Πt = EQ

[

e−ζ(t⋆−t)Z(t⋆)
∣

∣

∣
Ft

]

(see [15] page 65). But here, our option is an American option,so we have
to generalize this result and to use the Snell envelope.



• first we computev(t, x) with Eqn. (9) fort ∈ [0, t⋆] and
x ∈ [wmin, wmax]

2.
• we then make time discrete:t = t0 . . . tN with t0 = 0 and
tN = t⋆ = N δt. After that we simulateJ trajectories
of St underQ: the j-th trajectory is denoted by(Sj) and
has the valueSj

n at time tn = n δt. More precisely,
we simulate (underQ) J trajectories of the historical
Brownian(W j)3, and then we computeSj

n = v(tn,W
j
n)

by interpolatingv(t, x). This is far more efficient than
computing directly the integral, especially if we want to
simulate a large number of trajectories, since we do not
have to computev each time again.

B. Continuation value and decision tree algorithm

At time t⋆, the operator invests ifZN > 0. More generally,
at a timetn < t⋆, the operator has two alternative choices:
either invest now and getZn, or wait and get the expected
continuation value, denoted byCn. The generated cash-flow
is then given by:

Fn = max{Zn, Cn}.

We already knowZn by (7). As for Cn, we use the Least
Squares Monte-Carlo (LSM) approach defined by Longstaff
and Schwartz [20]. This approach consists in writing the
expected continuation valueCn as a general function ofSn

(in our case we took a 2-degree polynom), taking information
from theJ cash-flows attn+1 and using the fact that:

Cn(S) = e−ζδtE[Fn+1|Sn = S],

whereFn+1 is the (random) cash-flow of the option attn+1. To
obtain recursivelyCn, we can write the following algorithm:

• at tN , for each trajectoryj = 1 . . . J , calculate the cash-
flow F j

N = Zj
N .

• move one period back totN−1. For each(Sj), check if
the option is ”in the money”, i.e. ifZj

N−1 > 0. If it is
the case, calculate the continuation valueCj

N−1 using the
cash-flow if investment is delayed:Cj

N−1 = e−ζδtF j
N .

Estimate then the general expression ofCN−1(S) by the
LSM algorithm. This consists in regressing the found
valuesCj

N−1 on a constant,S and S2, as in [20] (see
appendix VII-E). Let us denote the estimated expression
by ĈN−1(S). The estimated cash-flow atN − 1 is then
given by:

F j
N−1 = max{Zj

N−1, ĈN−1(S
j
N−1)}. (14)

If it is optimal to exercise attN−1, then by convention
F j
N becomes0 (because the option can only be exercised

once).
• for each timetn, repeat the same process untiln = 0.

2to bind efficiently the Brownian motion, see Appendix VII-D.
3to perform that, assuming that the probability of our random generator is

Q, we simulate a standard Brownian motion(WQ
t ), and then using Girsanov’s

theorem (see [15], Theorem 9.4.5.), we build by recursion a new Brownian
motion (Wt) underP, such thatWt = WQ

t −
∫

0≤s<t θ(s,Ws) ds.

1. simulate J trajectories(Sj) underQ

2. for j = 1 . . . J , put F j
N = Zj

N

3. for n = (N − 1) . . . 1, 0 :

3.1. for j = 1 . . . J , calculateZj
n:

- if Zj
n = 0, j ∈ On

- if Zj
n > 0, j ∈ In

3.2. processOn andIn separately:

∀j ∈ On: ∀j ∈ In:

put F j
n = e−ζδtF j

n+1 - regressCj
n = e−ζδtF j

n+1 on 1,
S andS2 to obtain a 2-degree
polynom Ĉn(S)

- put F j
n = max{Zj

n, Ĉn(S)}

- if Zj
n > Ĉn(S), thenn is the

new investment date, so put
F j
m = 0 ∀m > n

TABLE I
DECISION TREE ALGORITHM

Let us denote byOn the set of thej such thatZj
n = 0, and

by In the set of thej such thatZj
n > 0. A summary of the

whole algorithm is presented in Table I.

C. Option premium

Averaging theF j
0 , and using (13) and the law of large

numbers, we obtain the premiumΠ0 of the option:

Π0 ≈ 1

N

J
∑

j=1

F j
0 .

D. Expected investing time

Investigating our decision tree, it can happen that for some
j we do not decide to invest beforet⋆. Then we will be lead
to invest betweent⋆ andT 4. For such trajectories, we do not
know when the investment takes place. Furthermore, even for
the other trajectories, additional information betweent⋆ and
T can be useful to adjust the value of the investment date.
For these two reasons, we decide to simulateSt further until
T 5. Thus we perform one more time a backward dynamic
algorithm, that time between0 andT , using:

{

Z(t) = (St −K(t))+ if t > t⋆

Z(t) = (St −K⋆)+ otherwise
. (15)

Finally, we obtain for each of theJ trajectories a best
investment dateT j

inv. If T j
inv > t⋆, it means that we have

invested without exercising the original option, whereas if
T j

inv ≤ t⋆, it means that we have exercised the option.
Averaging theT j

inv, we obtain the expected investing time

4Note that in theory, it could happen that we never decide to invest, even
after T . However, given the deterministic trend of the demand, this would
mean thatWt remains extremely low. Considerations on the Brownian motion
(see appendix VII-D) ensure that in practice it will not happen.

5That is the reason why we choseQ instead ofQ⋆.



under the risk-neutral probabilityEQ[Tinv]. But for us, it is
more relevant to calculateEP[Tinv]. Using (12), we obtain:

EP[Tinv] = EQ

[

Tinv

LT

]

≈ 1

N

J
∑

j=1

T j
inv

Lj
T

. (16)

V. NUMERICAL RESULTS

In order to illustrate our algorithm, we applied it using the
free simulator Scilab (see [18]). We considered a HSDPA pure
data network with a random growing demand, as described
in section II-A. We used the following parameters for our
computation:

• the investment can take place untilT = 150 days.
• the equipment can be purchased at the initial price
K0 = 300000 $, and its price decreases with a rateǫ
of 50% per year.

• the actualization rateζ is fixed to 5% per year.
• the traffic demand starts atx0 = 1.2 Mbit/sec/cell, and

increases with a drift fixed toα = 0.54% per day. Its
volatility is fixed to 0.01 day−1/2. Its maximal value is
fixed to Xmax = 3 Mbit/sec/cell before the investment,
and toX ′

max = 8 Mbit/sec/cell after the investment.
• the data transfer price is fixed toδ = 0.1 $/Mbit.
• we take a satisfaction parameter ofβ = 0.7 Mbit/sec/cell.
• we simulate 10000 different trajectories of the asset.

A. Option’s price

On Figure (3), we represent the price of the option versust⋆.
Recall that the price is obtained with equation (13), wheret⋆

implicitly appears in functionZ (see equation (7)). It appears
that the price increases witht⋆. This was expected, since the
longer the option’s maturity is, the higher the risk for the bank
is, and then the more expensive the option is.

Fig. 3. Price of the option.

B. Investment date

On Figure (4), we represent the investment date versust⋆.
Recall that the date is obtained with equation (16), wheret⋆

appears in generalized functionZ (see equation (15)), and may
be prior to the investment’s date. It appears that the investment
date is very low for higher values oft⋆. This happens because
K⋆ is very low, thus it is all the more interesting to invest

Fig. 4. Investment date.

early. AsK⋆ decreases slowly toward 0, the investment date
decreases accordingly until reaching 0 fort⋆ = ∞.

However, the lower the option’s maturity is, the later the
investment takes place. The investment date may even be
later thant⋆, and the option is never exercised. This can be
explained as follows: whent⋆ is low, K⋆, the equipment’s
exercise price, is quite high. Thus, the option is not really
interesting. Rapidly the equipment’s real price will sink under
K⋆, and within that short period it is better to take the risk of
waiting.

VI. CONCLUSION

In this work, we proposed a model for risk hedging when
dealing with investment under uncertainty in telecommunica-
tion networks. In such a case, the risk comes from the random
evolution of the demand, possibly resulting in unexpected
explosions of the traffic leading to network saturation. To
hedge against this risk, the operator would buy an option
from some financial parts that gives him the right but not
the obligation of buying equipments at a given price, until
a maturity date. We calculate, using backward dynamic pro-
gramming and a least square approach, the premium of the
option and the expected investment date. Our results show
that the option price increases with the exercise date, whereas
the mean investment date sinks. As a future work, we aim at
considering the case where multiple investments are possible
(in a telecommunication context, the multiple options may be
adding more than one band, or implementing a more efficient
technology, e.g. forthcoming 3G LTE systems).

VII. A PPENDIX

The purpose of this technical appendix is to prove that
the mathematical conditions for applying a risk neutralization
approach to price the American option are fulfilled. Precisely,
there will be three main steps: 1- study the regularity of the
function v(t, x) from which the underlying asset is derived,
and give a differential equation checked by its derivatives, 2-
deduce from It̄o’s lemma applied tov the expression of the
market price of riskθt, and 3- verify Novikov condition onθt
thanks to numerical simulations.



A. An explicit expression forv(t, x)

Expression (6) of the underlying asset can be re-stated as
follows:

St = v(t,Wt),

where we have introduced the function:

v(t, x) = E

[

∫ T

t

φ(t, s,Ws) ds

∣

∣

∣

∣

∣

Wt = x

]

with:

φ(t, s, w) = e−ζ(s−t)(π′(s, w)− π(s, w)).

In this section, we aim at giving a fully explicit expression
for the functionv(t, x), in order to study its properties in the
following of the annexe. For this purpose, let us first swap
sum and expectation in the expression ofv 6. We obtain:

v(t, x) =

∫ T

t

E [φ(t, s, x+Ws −Wt)|Wt = x] ds,

and, since the increments ofWs are independent:

v(t, x) =

∫ T

t

E [φ(t, s, x+Ws −Wt)] ds

=

∫ T−t

0

E [φ(t, t+ s, x+Wt+s −Wt)] ds.

Let us introduce another two functions:

f(t, s, w) = φ(t, t+ s, w)

and:
u(t, s, x) =

∫

R

f(t, s, w)g(x, s, w) dw, (17)

where g(x, s, .) is the Gaussian density with meanx and
variances. We finally get:

v(t, x) =

∫ T−t

0

u(t, s, x) ds. (18)

B. Regularity and differential equation forv

Let us first recall that:






f(t, s, w) = e−ζs(π′(t+ s, w)− π(t+ s, w))

g(x, s, w) = 1√
2πs

e−
(w−x)2

2s

Lemma 1: π(s, w) and π′(s, w) are C∞(]0,+∞[×R),
bounded, with bounded derivatives

Proof: let us prove the property withπ1 for example.
• First we prove thatπ is C∞(]0,+∞[×R). For all
s0 ∈]0,+∞[, let us introducew0 = h(s0), the number
such thatX(s0, w0) = Xmax:

σw0 = log(Xmax/x0)− (α− σ2/2)s0

The points(s0, w0) define a line∆ (see Fig. 5). Let us
also introduce the two subsets of]0,+∞[×R:

{

Ω1 = {(s, w)/w < h(s)}
Ω2 = {(s, w)/w ≥ h(s)}

6This is possible becauseφ is positive, since0 ≤ π ≤ π′

Fig. 5. Partition of the plane into two subsetsΩ1 andΩ2.

These two subsets are situated respectively under and
above∆. On Ω1, X(s, w) < Xmax and we have:

π(s, w) = δx0e(α−
σ
2

2 )s+σwe−β/(Xmax−x0e(α−
σ
2

2
)s+σw),

and onΩ2, X(s, w) ≥ Xmax andπ = 0.
On Ω1, since:

{

∂
∂sX = (α− σ2

/2)X
∂
∂wX = σX

,

one can show by recursion overn = p + q that the
derivatives ofπ can be written:

∂n

∂sp∂wq
π =

Pp,q(X)

(Xmax −X)2n
e−β/(Xmax−X) (19)

where Pp,q is a polynom. Hence the denominator is
counterbalanced by the second exponential term in the
expression of the derivative ofπ, so that the derivatives
all tend to 0 in the neighborhood of∆ and the transition
betweenΩ1 andΩ2 is C∞.

• Secondly we prove that each derivative ofπ is bounded.
Expression (19) is a continuous function ofX on
[0, Xmax[, and is also continuous atXmax. Hence, it is
bounded forX ∈ [0, Xmax]. Since:

X(Ω1) =]0, Xmax] ⊂ [0, Xmax],

this achieves the proof.

Lemma 2: for any two compact setsC ⊂]0,+∞[, C ′ ⊂ R,
we have the following upper bounds:

∀s ∈ C,
∣

∣

∣

∂ig
∂si

∣

∣

∣ ≤ ϕi
x,C(w)

∀x ∈ C ′,
∣

∣

∣

∂ig
∂xi

∣

∣

∣
≤ ψi

s,C′(w)

whereϕi
x,C andψi

s,C′ are summable overR.
Proof: we only prove the first upper bound, the second one

is exactly similar. One can show by recursion that∂ig
∂si can be



written:
∂ig

∂si
= g(x, s, w)

di
∑

k=0

ai,k(s)w
k, (20)

where eachai,k varies continuously withs. We want to bound
(20) whens varies within a compact setC = [a, b] ⊂]0,+∞[.
Since:

∣

∣

∣

∣

∂ig

∂si

∣

∣

∣

∣

≤ g(x, s, w)

di
∑

k=0

|ai,k(s)||w|k,

we deduce:
∣

∣

∣

∣

∂ig

∂si

∣

∣

∣

∣

≤ 1√
2πa

e−
(w−x)2

2b

di
∑

k=0

(

max
s∈[a,b]

|ai,k(s)|
)

|w|k,

from which the first upper bound is immediate.
Lemma 3: f is C∞ w.r.t. each of its variablest ∈ [0, T [,

s ∈]0, T − t[, w ∈ R, and its derivatives are bounded.
Proof: this comes directly from Lemma 1. In particular,

there exist constantsKi andK ′
i so that:

∣

∣

∣

∣

∂if

∂ti

∣

∣

∣

∣

≤ Ki ,

∣

∣

∣

∣

∂if

∂si

∣

∣

∣

∣

≤ K ′
i

Lemma 4: u is C∞ w.r.t. each of its variablest ∈ [0, T [,
s ∈]0, T − t[, x ∈ R. For any compact setC ′ ⊂ R:

∣

∣

∣

∂iu
∂ti

∣

∣

∣
≤ Ki

∣

∣

∣

∂iu
∂xi

∣

∣

∣ ≤ Ki,C′ , ∀x ∈ C ′

and the following differential equation is verified byu:

u′′xx = 2(u′s −
∫

R

f ′sg)

Proof: using Lemma 3, we obtain:
∣

∣

∣

∣

∂i

∂ti
(fg)

∣

∣

∣

∣

=

∣

∣

∣

∣

∂if

∂ti
g

∣

∣

∣

∣

≤ Kig

Then, the derivability ofu w.r.t. t and the first upper bound
immediately come from expression (17) and the differentiation
under the integral sign theorem.

Using Lemmas 2 and 3, we obtain (for anyx ∈ C ′):
∣

∣

∣

∣

∂i

∂xi
(fg)

∣

∣

∣

∣

=

∣

∣

∣

∣

f
∂ig

∂xi

∣

∣

∣

∣

≤ K0ψ
i
s,C′(w)

Sinceψi
s,C′ is summable overR, we deduce the derivability

of u w.r.t. x, along with the second upper bound, taking:

Ki,C′ = K0

∫

R

ψi
s,C′(w) dw.

Each derivative ∂i

∂si (fg) is a sum of terms which can be
written:

∂pf

∂sp
· ∂

qg

∂sq
(p+ q = i)

From Lemma 2 (takingC = [0, T ]) and Lemma 3, we get:
∣

∣

∣

∣

∂pf

∂sp
· ∂

qg

∂sq

∣

∣

∣

∣

≤ K ′
pϕ

q
x,[0,T ](w),

which is integrable overR. Hence,u is C∞ w.r.t. s.
By deriving under the integral sign, we have:

u′′xx(t, s, x) =
∫

R
f(t, s, w)g′′xx(x, s, w) dw

u′s(t, s, x) =
∫

R
f(t, s, w)g′s(x, s, w) dw

+
∫

R
f ′s(t, s, w)g(x, s, w) dw,

(splitting into two sums is allowed sincef ′s g is summable).
Thanks to the heat equation verified by the Gaussian kernel:

g′s =
1

2
g′′xx

we finally get third assertion of Lemma 4:

u′′xx = 2

∫

R

f(t, s, w)g′s(x, s, w) dw

= 2

(

u′s −
∫

R

f ′s(t, s, w)g(x, s, w) dw

)

.

Lemma 5: v is C∞ w.r.t. each of its variables,t ∈ [0,+∞[
andx ∈ R, andv′t +

1
2v

′′
xx = −φ(t, t, x) + ζv.

Proof: the regularity of v is a direct consequence of
equation (18) and Lemma 4. The differential equation checked
by v is obtained as follows:

v′t =

∫ T−t

0

u′

t ds− u(t, T − t, x)

=

∫ T−t

0

∫

R

f ′t g dw ds− u(t, T − t, x)

=

∫ T−t

0

∫

R

(f ′s g + ζf g) dw ds− u(t, T − t, x)

=

∫ T−t

0

(

u′s −
1

2
u′′xx

)

ds+ ζv − u(t, T − t, x)

= u(t, T − t, x)− lim
s→0

u− 1

2
v′′xx + ζv − u(t, T − t, x).

f(t, ., w) being continuous at points = 0, we have
lims→0 u(t, s, x) =

∫

R
φ(t, t, w)g(x, 0, w) dw where the term

g(x, 0, w) has to be understood as the Dirac distribution atx.
Therefore:

v′t = −φ(t, t, x)− 1

2
v′′xx + ζv.

Lemma 6: ∂v
∂x (t,x) is null only on a curvex = x(t).

Proof: this lemma will not be rigorously proved, but
instead inferred from numerical simulation of the surface
∂v
∂x (t, x), t ∈ [0, T [, x ∈ R. Fig. 6 shows this surface. Clearly,
one can observe that on the left side of the red line,∂v

∂x goes
to zero only on a curvex(t). What can be proved analytically
is that ∂v

∂x (t, x) < 0 on the right side of the line, where
paradoxically the surface is very close to zero. Let us write
∂v
∂x in a new way:



Fig. 6. The surface∂v/∂x (we kept the previous parameters). On the right
of the red line, we show in Lemma 6 that it is non null. On the left,we see
that it is null only on the green line.

∂v

∂x
(t, x) =

∫ T−t

0

∫

R

f(t, s, w)
∂g

∂x
(x, s, w) dw ds

=

∫ T−t

0

∫

R

f(t, s, w)
w − x

s
g(x, s, w) dw ds

=

∫ T−t

0

E

[

φ(t, t+ s, x+W s)
W s

s

]

ds,

whereW s is a standard Brownian motion.φ(t, t+s, x+W s)
is always positive, and nulliff t+ s ≥ a(x+W s) + b, where
we have introduced two coefficients:

a = − σ

α− σ2
/2

, b =
log(X

′

max/x0)

α− σ2
/2

.

Hence:

∂v
∂x

(t, x)=
∫ T−t

0
E

[

φ(t, t+ s, x+W s)
Ws

s
1{t+s<a(x+Ws)+b}

]

ds

=
∫ T−t

0
E

[

φ(t, t+ s, x+W s)
Ws

s

∣

∣

∣
W s < t+s−b

a
− x

]

×P
(

t+ s < a(x+W s) + b
)

ds

If t−b
a − x ≤ 0, it is immediate to obtain∂v∂x (t, x) < 0. The

line t−b
a − x = 0 being precisely the red line of Fig. 6, we

have the result.

C. Expression of the risk premiumθt

In this section, we justify the existence of the market price
of risk θt and deduce its expression from Itō’s lemma and the
differential equation checked byv. Itō’s lemma holds sincev
is regular. It gives:

dSt =

[

∂v

∂t
(t,Wt) +

1

2

∂2v

∂x2
(t,Wt)

]

dt+
∂v

∂x
(t,Wt) dWt

Fig. 7. Repartition of the peaks ofθ(t, w). They all lie on the green line
represented on Fig. 6. Normally, they should form a continuous crest, but due
to discretization they show an uneven behavior.

ProvidedX ′
max > Xmax, we havev(t, x) > 0 for any (t, x).

HenceSt > 0 and we can write:

dSt

St
=

1

v

(

∂v

∂t
+

1

2

∂2v

∂x2

)

dt+
1

v

∂v

∂x
dWt.

By identifying this equation with the dynamics of the under-
lying asset (8), we get the expression of the expected total
return on the assetµt and the volatilityκt:

{

µt =
1
v

(

∂v
∂t +

1
2
∂2v
∂x2

)

κt =
1
v
∂v
∂x

.

Lemma 6 ensures thatκt 6= 0 a.s., therefore the market
price of riskθt is well defined, and:

θt =

(

∂v

∂x

)−1(
∂v

∂t
+

1

2

∂2v

∂x2
− ζv

)

.

The final expression forθt is a consequence of Lemma 5:

θt = −φ(t, t,Wt)
∂v
∂x (t,Wt)

= −π
2(t,Wt)− π1(t,Wt)

∂v
∂x (t,Wt)

.

D. Novikov’s condition

Now we have to prove that:

E

[

exp

(

1

2

∫ T

0

θ2t dt

)]

< +∞.

Actually, is
∫ T

0
θ2t dt even finite ? The question is relevant,

because Lemma 6 shows that on a certain line,∂v
∂x is null, and

so θ(t, w) is infinite (see Fig. 7).
Now, could a trajectory(Wt) come close to this line during

a time long enough so that:

E

[

exp

(

1

2

∫ T

0

θ2t dt

)]

= +∞ ?



Here we use a result of El Karoui and Gobet (see [15],
Proposition 1.3.8.):

P

(

sup
t≤T

|Wt| ≥ c

)

≤ 2 P(|WT | ≥ c),

which tends to 0 extremely rapidly whenc → ∞. Hence,
if we choose correctly our parameters so that the critic line
lies far enough from the linew = 0, the probability to reach it
during the experiment will be extremely low. Then, in practice,
we will consider thatθt remains almost surely bounded by a
constant̂θ; anda fortiori, Novikov’s condition will be verified,
since we will have:

E

[

exp

(

1

2

∫ T

0

θ2t dt

)]

≤ eT θ̂2/2.

E. Regressing a set of points on a 2-degree polynom

Given a set of points(xi, yi)1≤i≤n in R2, the aim of the
section is to find three real numbersa, b, c, such that

n
∑

i=1

|yi − Pa,b,c(xi)|2

is minimal, where:

Pa,b,c(x) = ax2 + bx+ c.

After deriving w.r.t.a, b andc, we obtain respectively:










a
∑

x4i + b
∑

x3i + c
∑

x2i =
∑

x2i yi

a
∑

x3i + b
∑

x2i + c
∑

xi =
∑

xiyi

a
∑

x2i + b
∑

xi + c =
∑

yi.

(21)

Has (21) a solution? Let us consider the 4 vectors ofRn:

x2 =







x21
...
x2n






x =







x1
...
xn






1 =







1
...
1






y =







y1
...
yn






,

then we can re-write the system as:





(x2|x2) (x2|x) (x2|1)
(x|x2) (x|x) (x|1)
(1|x2) (1|x) (1|1)









a
b
c



 =





(x2|y)
(x|y)
(1|y)



 .

It is equivalent to say that the vectory − ax2 − bx − c is
orthogonal to1, x andx2. In other words,ax2+ bx+ c is the
orthogonal projection ofy on Vect(1,x,x2), and thus we are
sure that (21) has a solution.
Is this solution unique ? If1, x andx2 were not independent,
there would be three real numbersu, v andw such that:

∀i, u+ vxi + wx2i = 0.

• as soon as there are more than two different values ofxi,
this is impossible, and so there is a unique solution.

• if xi takes only two different values, then the solution
is not unique any more, but (1,x,x2) has rank 2. So
we choose to regressy on 1 and x for example (and

we find a line which intersects the centroids of the two
corresponding subsets).

• if xi takes only one value, then (1,x,x2) has rank 1. So
we choose to regressy on 1 (and we find the mean of
the yis).
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