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Abstract—The Internet has moved to content broadcasting
and one might anticipate future evolutions of the supported
applications. Meanwhile, the Internet business model remains
the same from the early-days. While, on the technological
side, many discussions assess the ossification of the Internet,
the Internet traded good is still reachability. Some authors
argue that the technical ossification is a consequence of the
economic one. But adopting a clean-slate economic model is
as challenging as adopting a clean-slate architecture. The new
system must meet requirements on profitability and stability
while tackling complex issues. In this paper, we focus on the
proposal of enriching Service Level Agreements (SLAs), which
are contracts among Network Service Providers (NSPs) with
Quality of Service (QoS) information. We propose a game model
of the SLA negotiation among NSPs in order to study how
some learning algorithms converge to stable conditions, which
are mixed Nash Equilibria in this case. Computing a mixed Nash
equilibrium is PPAD-complete; the corresponding algorithms are
thus quite complex. In previous works, some authors studied
the convergence of Reinforcement Learning techniques to pure
and mixed Nash Equilibria. Learning mixed Nash Equilibria
seems harder. Hence, we rather experimentally observe how such
algorithms can, according to different policies, converge to mixed
Nash Equilibria, and also how profitable they are for the NSPs.

I. INTRODUCTION

In the recent years, the Internet has moved from a
reachability-centric network to content broadcasting one [1].
This evolution led many authors to reconsider the business
relations among Internet Network Service Providers (NSPs,
also known as Autonomous Systems, ASes): in [2], Barth & al.
proposed a learning scheme to capture optimal transit pricing,
in [3], Ma & al. plead for the use of Shapley-value mechanisms
to increase efficiency in revenue sharing, Valancius & al[4]
argue for an open transit market.

The emergence of real-time applications (Cloud Computing,
Gaming, etc.) and the anticipation of reliability-requiring one
(e.g. telemedicine) demand Quality of Services (QoS) guaran-
tees (e.g. delay ≤ 100 ms) that caching solutions (i.e. proposed
by Content Delivery Networks, CDNs) cannot handle because
of the best-effort nature of the Internet. Hence, to support
QoS-guaranteed traffic new economic agreements must be
considered. Existing business relationships in the Internet are
numerous but derive from two kinds of relationships: public

peering (i.e. two ASes interconnect without compensations)
and transit (i.e. one AS pays the other). And the Internet’s
traded good is host reachability. Hence, to support inter-
NSPs QoS based service, the agreements should move to
Service Level Agreements (SLAs) embedding QoS promises
(i.e. thresholds over various QoS parameters) and economic
information (price, penalties, etc.).

From a game theory perspective, in the existing Internet,
NSPs are large, independent and selfish agents, competing for
resource usages (either end-user or content provider traffic).
Enlarging this game to QoS, namely the inter-NSP SLA
negotiation game, the NSPs would compete on the QoS they
are able to propose and on the prices. In [5], the relationship
with the customers is handled by a neutral third-party but
in the general case, such relation could also be handled in
a distributed manner. In both cases, the goal is to build an
SLA chain which meets the customer utility based on his QoS
requirements and willingness to pay.

In the SLA negotiation game, pure Nash Equilibria might
not exist. Hence, to converge to mixed Nash Equilibria and
to maximize both the customer and NSP welfare, we aim
to experimentally investigate the convergence properties of
various learning techniques in order to further analyze which
one would fit the best the problem of SLA negotiation.

The paper is organized as follows: section II provided a
summarized analysis of the existing Internet’s business model
and why it should evolve; section III gives a formulation of
the SLA negotiation problem as a game; section IV focuses on
Reinforcement Learning techniques and provides a description
of the studied algorithms whose experimentation results are
reported in section V.

II. FROM BEST-EFFORT TO QOS, CHALLENGES OF THE
FUTURE INTERNET

The Internet has been built upon the end-to-end design
principle, which means that the control of flows operates at
the end-points and thus that intermediate network nodes do
not intervene. This lies to the set-up of best-effort policies in
networks: the packets are routed according to the best that the
network capacity can offer.
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A. The limit of the existing model

As argued by Ben Houidi & al [6], the Internet traded
good, namely the reachability is a legacy from the early-days
Internet and suffers today from its vagueness. The reachability
is solely defined as the capacity to reach a certain number of
hosts. Under the major evolution of the Internet to content
broadcasting [1], it is becoming more and more inadequate as
contents move while end-users (early-day’s Internet hosts) do
not.

Furthermore, reachability is not charged in the same manner
among NSPs and among NSPs and end-users. Among NSPs,
the charging is volume-based while among NSPs and end-
users it is flat-rate. This led to an unbalanced situation where
end-users perceive incentives to consume more and more [7]
while NSPs do not perceive incentives to invest in the network
capacity.

To figure out this issue, many authors argued to change
the Internet traded good using Quality of Service according
to the congestion [8], [9], or application-based charging [10].
As noticed by Ben Houidi & al [6], changing the traded
good is a partial action to “de-ossify” the Internet business
model. Another key dimension lies in the bilateral nature of
the agreements among NSPs. In this paper, we do not address
this later issue. We focus on the exchange of new QoS goods
among NSPs and intend to observe how learning algorithm
can meet some of the corresponding challenges.

B. Challenges in SLA negotiation

The Internet routing protocol, called the Border Gateway
Protocol (BGP) and standardized by the Internet Engineering
Task Force (IETF), is also a legacy of the early-days Inter-
net. Each NSP configures its BGP policy according to the
existing agreements. This explains why the many standardiza-
tion proposals to extend BGP with further information than
reachability failed to convinced the IETF. Another important
property of BGP lies in the stability of its guidelines with
central coordination as defined by Gao & Rexford [11].

Hence, to be adopted by the NSPs, a new system must
demonstrate the same abilities as BGP and even more:
• Implementability: It is not sufficient to solely provide

models anticipating future economics and have some
analytical conclusions on the model properties; NSPs
expect to have a system that can run over models, this
means that the computability of the solution must be
considered and demonstrated by the authors.

• Stability: The proposed system must converge to a stable
state with at least some assessed guidance policies, such
as the ones defined in [11], or using existing well-known
ones as the ones studied in this paper.

• Profitability: Replacing existing systems by new ones
has a huge cost. The new system must demonstrate that
it will provide short-term return over investment.

These requirements oriented our research to learning algo-
rithms, which are, compared to optimization ones, able to fix
long-term objectives and thus are adapted to anticipate future

agreements. Meanwhile, the convergence properties of these
algorithms have been demonstrated in restricted cases. Hence,
we oriented our research to game theory modeling in order
to analytically fix the stable conditions of the problem and,
through experimentations, observe how learning algorithms,
under various policies, can reach such conditions.

III. THE SLA NEGOTIATION GAME

A. Inter-NSP SLA negotiation game

Before defining the SLA negotiation as a game, we recall
some definitions of game theory. A game in a normal form is
a tuple 〈n,A1, . . . , An, R1, . . . , Rn〉 where n is the number of
players, Ai(i = 1, . . . , n) is the set of available actions of the
player i and Ri : A1 × · · · × An → < is the payoff function
of the player i.

Game theory is a tool allowing to define the stability
conditions in a competitions. Let ai denote the action chosen
by the player i, a = (a1, . . . , an) denotes an action profile
and a−i = (a1, . . . , ai−1, ai+1, . . . , an) denotes the actions
chosen by all the players except i. A pure Nash equilibrium
is defined as an action profile a∗ = (a1

∗, . . . , a
n
∗ ) such that

∀i = 1, . . . , n, ∀ai ∈ Ai, , Ri(ai∗, a−i∗ ) ≥ Ri(ai, a−i∗ ).
Mixed Nash Equilibria. Let π = (π1, . . . , πn) be a

strategy profile where πi is the strategy of the player i, s.t.∑
ai∈Ai π

i(ai) = 1, πi(ai) being the probability of the player
i to select the action ai. A strategy profile π∗ = (π1

∗, . . . , π
n
∗ )

is a mixed Nash equilibrium if: ∀i = 1, . . . , n and ∀πi,∑
a1∈A1

· · ·
∑

an∈An
πi∗(a

i)π−i∗ (a−i)Ri(ai, a−i) ≥

∑
a1∈A1

· · ·
∑

an∈An
πi(ai)π−i∗ (a−i)Ri(ai, a−i)

where:

π−i(a−i) =
∏
j 6=i

πj(aj)

SLA Negotiation as a game. Fig. 1 illustrates an SLA
negotiation game: 4 NSP networks are interconnected, one
NSP is the customer of a service (e.g. a pipe for gaming),
another one is the target and both are linked through 2 interme-
diate networks. For the demanded service, each intermediate
NSP proposes three equivalent SLAs defined by a QoS level
and a price. The first SLA (denoted by Pa) has a weak
QoS level (e.g. high delay, low bandwidth) and a low price.
The second SLA (denoted by Sc) has a medium QoS level
(e.g. medium delay, medium bandwidth) and a middle price.
Finally, the third SLA (denoted by Ro) guarantees a high QoS
(e.g. low delay, high bandwidth) but at an expensive price. The
customer prefers SLA Sc (resp. SLA Ro) to SLA Pa (resp.
SLA Sc) because the price difference is low compared to the
QoS one. However, the customer prefers SLA Pa to SLA
Ro because in this situation, it estimates that the third SLA
proposes expensive services comparatively to the first one. If
both NSPs propose the same SLA, then no significant gain
is obtained since under several service demands customers



Fig. 1. SLA negotiation game

Player 2

Paper Scissors Rock

Player 1

Paper 0,0 0,1 1,0

Scissors 1,0 0,0 0,1

Rock 0,1 1,0 0,0

TABLE I
INTER-NSP SLA PAYOFFS.

arbitrarily select one. Table I represents the utility of the
intermediate NSPs.

Table I is equivalent to the well-known Rock-Paper-
Scissors’ game (RPS game) as in [12]. In this game, the
player 1 picks a row and the player 2 picks a column.
The intersection shows the payoff of the two players. This
game has one mixed Nash equilibrium π∗ = (π1

∗, π
2
∗) with

πi∗(Paper) = πi∗(Scissors) = πi∗(rock) = 1
3 , i = 1, 2 but

has not pure Nash equilibrium[13].
Hence, as the SLA negotiation game can be modeled as a

RPS game, the desirable stability conditions are probabilistic.
In order to converge to such stable state, we thus opt for
studying the properties of convergence of existing algorithms
to such kind of state.

B. Related work

It is well-known that computing pure Nash Equilibria for 2-
player zero-sum games can be reduced to a linear programing
problem. To compute Nash Equilibria for 2-player general-
sum games, the Lemke-Howson algorithm, inspired by the
Simplex algorithm, uses pivot techniques. The authors of
[14] generalized it for n-player general-sum games. Such
algorithms, and exact ones in general, have an exponential
complexity in the worst case. Hence, other authors, like Scarf
& al.[15], designed and studied approximation algorithms to
compute Nash Equilibria. However, it appears that computing
an approximation of a Nash equilibrium is also exponential.

In order to reduce the computation time to find or ap-
proximate Nash Equilibria on the one hand, and distribute
the computation process on the other hand, other authors
focused on learning schemes. Sastry & al.[16] provided a

decentralized version of the Learning Reward Inaction (LRI)
algorithm and adapted it to the problem of computing mixed or
pure Nash Equilibria in a game. Littman & al.[17] applied the
Q-Learning algorithm for 2-player zero-sum stochastic games.
Hu & al. [18] extended this work proposing an adaptation of
the algorithm for 2-player general-sum stochastic games and
proving its convergence to pure and mixed Nash equilibria but
under specific assumptions: the Nash equilibrium is optimal
(each player has his optimal payoff in the Nash equilibrium) or
saddle (if a player deviates the other one improves his payoff).
These results were generalized to multi-player general-sum
stochastic games (i.e games whose state changes according to a
probabilistic transition) by [19] but with the same assumptions.

Nanduri & al.[20] proposed a version of the Q-Learning
algorithm for computing pure and mixed Nash Equilibria
in matrix and stochastic games. They provided empirical
results illustrating good convergence properties to pure Nash
Equilibria. However, the algorithm does not seem to converge
to mixed Nash Equilibria.

In the field of networking, Koutsoupias & al.[21] studied
learning algorithms for the load balancing problem in networks
and provides a ratio between optimal balancing and balancing
obtained in Nash Equilibria. Barth & al.[22] proposed a
distributed learning algorithm for inter-AS rooting games and
proves its convergence to Wardrop Equilibria.

These works applied Reinforcement Learning algorithms to
Game Theory. However, few of them focused on learning
mixed Nash Equilibria for which the convergence of these
algorithms remains an active research area.

C. Complexity of Computing Nash Equilibria
The Nash Equilibria are stable states in non-cooperative

games in the meaning that each player has no interest in
changing his strategy if the other players do not. A n-player
game is a configuration in which each player chooses an action
according to a strategy and expects a payoff. A pure Nash
equilibrium is a configuration where there is no incentive for
any player to unilaterally change its strategy: each player’s
action is the best response to the other players’ actions. Pure
Nash equilibria do not always exist. But mixed Nash Equilibria
always exist if the game is finite.

Computing mixed Nash equilibria is difficult because it re-
quires to explore mixed strategies in continuous domains under
several constraints. All the known algorithms for computing
Nash equilibria are exponential. In Algorithmic Game Theory,
computing a Nash equilibrium is an important problem : “If an
equilibrium concept is not efficiently computable, much of its
credibility as a prediction of the behavior of rational agents is
lost” [23]. In general, this computational problem corresponds
to find a fixed point (see the Nash’s proof [24]) known to be
a hard problem [25]. Computing a mixed Nash equilibrium in
an asymmetric 2-player game is PPAD-Complete [26] while
computing a pure in a symmetric game is NP-Complete [27].

IV. LEARNING ALGORITHMS

The Reinforcement Learning algorithms are an alternative to
the hardness of computing Nash equilibria. In Reinforcement



Learning, an agent interacts with his environment by perform-
ing actions and observing the environment feedback. The feed-
back is modeled by a reward and a new state observed by the
agent. In order to improve his expected reward and learn which
action to perform at each state, the agent adapts his behavior
according to this feedback. The environment is thus modeled
as a Markov Decision Process (MDP)[28], which is defined by
a set of states, a set of available actions at each state, a reward
function and a Markovian probability function to reach the
next state depending upon the previous state and the previous
action. This transition probability function represents the non-
deterministic part of the environment, i.e., the change of state
do not entirely depend upon the agent’s choices. In this paper,
we focus on the Q-Learning, SARSA and the LRI algorithms
because they are model-free algorithms, i.e., they do not need
a model of the transition function.

A. Markov Decision Processes

Formally, an MDP is a tuple 〈S,A,R(., .),P(., ., .)〉 where:
• S is a finite set of states modeling the system states.
• A =

⋃
s∈S As is a finite set of actions representing the

decisions the agent can take. We denote As the set of
actions available at the state s ∈ S , which is the set of
possible decisions when the environment is at the state s.

• R(s, a), s ∈ S, a ∈ A is a reward function representing
the reward the agent obtains when applying the action a
and being in the state s.

• P(s, a, s′) is a conditional transition probability function
to reach the state s′ when performing the action a at the
state s, which verifies the Markov property.

The decisions are periodically performed at “decision
epochs”. If the number of epochs is bounded, the MDP is
a said to be a “finite horizon” MDP. Most MDP properties are
preserved at an infinite horizon. For simplification purpose,
we consider further in this paper finite horizon MDPs. At each
epoch t, the agent is in a state denoted st and selects an action
denoted at. Thus, an instantaneous reward rt = R(st, at) is
received by the agent and the next state st+1 is reached with
probability P(st, at, st+1).

The objective of the Reinforcement Learning algorithms is
to learn the policy Π∗ that specifies the way the learning agent
behaves by establishing a mapping between the states and the
actions, and which maximizes the expected discounted sum of
rewards over a finite horizon:

T∑
t=0

γtRt(st, at) · P(st, at, st+1) (1)

where γ denotes the discount rate (i.e. weighting future
rewards) and satisfies 0 < γ < 1. Formally, a stochastic policy
Π (also called mixed policy) is a tuple < Πs1 , . . . ,Πs|S| >
where each Πsi(i = 1, . . . , |S|) is a probability distribution
over Asi ⊂ A. A policy Π is deterministic – and corre-
sponds to a pure strategy in game theory terminology – if
∀i = 1, . . . , |S|, ∃ai ∈ Asi s.t. Πsi(ai) = 1. i.e., Π associates
always the same action to each state.

We denote:

vΠ
γ = EΠ(

T∑
t=0

γt(rt))

the expected discounted total reward with respect to Π.
We consider further that a strategy Π∗ is optimal1 for the
discounted total reward if it maximizes v.

Puterman [29] demonstrates that if the reward function R
is deterministic (if st = st′ and at = at′ then rt = rt′ ) then
an optimal deterministic policy always exists

B. Generic algorithm

This section details the learning algorithms that we in-
vestigate: the Linear-Reward Inaction (LRI) algorithm and
two Reinforcement Learning algorithms, the Q-learning and
SARSA algorithms. These algorithms were chosen among
others as they are “model-free”, so they do not need a model
of the probabilistic transition function.

Even if they differ in some formulas, the LRI and Rein-
forcement Learning algorithms obey to a common framework
detailed by the algorithm 1. The learning scheme 1 has three
main steps within a finite or infinite loop (depending on
whether the MDP is at finite horizon or not).

Algorithm 1 Learning scheme
Initialization
loop

at each decision epoch t
Select an action at according to a policy
Observe reward rtand new state st
Update learning data according to an update formula

end loop

C. Linear Reward Inaction (LRI) algorithm

The LRI algorithm learns which action maximizes the
expected reward. It builds a vector of probabilities, denoted
pAt . At each decision epoch t, an action is selected according
to the probability distribution of pAt . The actualization of pAt
is performed after the observation phase, as follows:

pt+1(a) = pt(a) + b · rt(1− pt(a)) , where a = at

pt+1(a′) = pt(a
′)(1− b · rt) ∀a′ 6= at

where 0 ≤ rt ≤ 1 and 0 < b ≤ 1. The learning rate b
determines the speed of learning. The LRI algorithm always
converges to a distribution corresponding to a pure strategy
[30](or a deterministic policy in the MDP terminology) but not
always for the optimal strategy (or a pure Nash equilibrium).
The probability to converge to a wrong action decreases as the
parameter b decreases.

1An average total reward can also be defined. The optimal policies for
average and discounted total reward are different in general. But, if the
expected rewards are independent at each decision epoch, the optimal policies
for the average and the discounted total reward are the same. We further
consider only the discounted total reward and call optimal policies the optimal
policies for it.



D. Reinforcement Learning algorithms: Q-Learning and
SARSA

As mentioned in Sec. III-B, Reinforcement Learning al-
gorithms have been recently studied in the context of game
theory. We focus on the Q-learning and Sarsa algorithms be-
cause of their model-free ability which make them particularly
adapted to the application of game theory in the inter-domain
SLA negotiation.

Q-Learning algorithm. The Watkins’ Q learning algorithm
[31] learns the optimal Q-values of each pair (state, action) at
each decision epoch t. The Q-value of a pair (state, action) at
decision epoch t with respect to the policy Π is defined as

QΠ
t (s, a) = EΠ[Rt|st = s, at = a]

where Rt =
∑T
k=0 γ

krt+k. An optimal policy Π∗ is derived
from the optimal Q-values, Q∗(s, a):

Π∗(s) = arg max
a∈As

Q∗(s, a) (2)

Several optimal policies Π∗ can exist, but the Q-values of the
actions with respect to these policies are the same.

The learning is therefore related to the Q-value function
which is updated according to formula (3). This equation can
be obtained using the recursive properties of the definition
above. Thus, a Q-value indicates the potential gain of choosing
an action when being in a given state.

Qt+1(s, a) = (1− αt)Qt(s, a) + αt(rt + γ max
a′∈As′

Qt(s
′, a′)) (3)

Hence, the Q-Learning algorithm builds a “Q-table” for any
state-action pair and maintains this table according to 3 using
the observed reward rt and next state s′, a discount factor
γ and a “learning-rate” denoted α. This latter also evolves
at each decision epoch. As discussed below, the way α is
actualized particularly impacts the convergence properties of
the algorithm.

The actions are chosen at each decision epoch following
a policy based on the Q-values. Various kinds of “Q-based”
policies permit to explore the state/action space in order
to learn the optimal policy. They are further described in
Sec. IV-E. In fact, Equation 2 allows the system to reach a
deterministic optimal policy. But if the considered MDP is a
model of a game that has a mixed Nash equilibrium, there
is necessarily another optimal policy, which is mixed. This
policy corresponds to the mixed Nash equilibrium strategy of
the agent.

Convergence. The Q-Learning algorithm is proven to con-
verge to optimal Q-values under two assumptions, as demon-
strated in [32]:
• All the pairs (state, action) must be visited infinitely,
•

∑∞
t=0 αt =∞ and

∑∞
t=0 α

2
t <∞.

This suggests that, in a finite-horizon MDP, the algorithm has
been “trained” prior to its execution. The convergence proof
of the Q-learning algorithm has been refined by the authors
of [33], who demonstrated the existence of an upper bound
according to how the learning rate α is updated. If the learning

rate α is polynomial (αt = 1
(t+1)ω , with 1

2 < ω < 1) then the
convergence time is polynomial in 1

1−γ . If ω = 1 then the
convergence time is exponential in 1

1−γ . If it converges to the
optimal Q-values, and if all others players play their mixed
Nash equilibrium strategies, then the problem is to know how
using this values to find an optimal policy. This problem is
closely related to the choice of a Q-based policy for which
different schemes have been proposed as discussed in Sec.
IV-E.

SARSA algorithm. The SARSA (State-Action-Reward-
State-Action) algorithm also uses the state-action (Q) function
described above. It differs from the Q-Learning algorithm
in the update of the Q-values, and more specifically in the
consideration of the future action. The Q-values are updated
as follows:

Qt+1(s, a) = (1− αt)Qt(s, a) + αt(rt + γQt(s
′, a′))

where a = at and a′ = at+1. Hence, the value used for the
actualization is not the one of the action maximizing the future
reward but the one of the “real” next action. This suggests
some smooth modifications in Algorithm 1 to keep in memory
the past action and reward when the update is performed.

The authors of [34] provided a proof of convergence of the
SARSA algorithm under the following assumptions:
• All pairs (state, action) must be visited infinitely,
• The Q-based policy to choose the actions is greedy at the

limit (when t→ +∞).

E. Q-based policies

A Q-based policy is the way to select an action based
on the Q-values. This policy must allow exploration of the
environment (trying several actions to learn Q-values) but
also exploitation (choosing frequently actions that maximize
the expected reward). Initially, the agent has to learn, so the
exploitation has priority. After convergence, the Q-values are
precise enough to be exploited, so exploitation has priority.
We focus on the four must used Q-based policies and discuss
their capacity to reach a mixed optimal policy.

Greedy policy. The greedy policy selects always the action
having the highest Q-value, such as at = argmax

a∈As
Qt(s, a).

ε-greedy policy. The ε-greedy policy selects the action
having the highest Q-value with probability 1−ε, and a random
action with probability ε. ε is initialized to a high value in order
to encourage exploration. It decreases as the Q-values become
more precise. The policy is greedy at the limit.

Softmax policy. The softmax policy, defined as P (at =

a) = Qt(s,a)∑
a′∈As Qt(s,a

′) , selects an action with proportional
probability to its Q-value. This policy is not necessarily greedy
at the limit.

Boltzmann policy. The Boltzmann policy selects an action
using the formula P (at = a) = eQt(s,a)/τ∑

a′∈As e
Qt(s,a

′)/τ , where
τ ∈ <∗+ governs the lag between action probabilities. When
τ → ∞, the lags between the probabilities tend to 0 and
the policy is nearly random and uniform. When τ → 0, the
lags between the probabilities increase and the policy is nearly



greedy. Usually, τ is initialized to a high value to encourage
exploration, then it is decreased to tend to a greedy policy.

Policies and convergence. The greedy policy may not
satisfy the convergence requirements (each action must be
selected infinitely) previously mentioned. In addition, if the
algorithm converges to the optimal Q-values then the action
selection will be deterministic, which corresponds to a pure
strategy (unless there are several actions that share the same
highest Q-value).

If the chosen Q-based policy is ε-greedy, then the SARSA
Algorithm convergence requires that ε → 0 when t → +∞,
which gives a deterministic policy and therefore a pure strat-
egy. The convergence of the Q-Learning algorithm does not
require that. But the action with the highest Q-value is selected
with probability 1 − ε + ε

|As| . The other actions are selected
with probability ε

|As| . These probabilities do not necessary
correspond to a mixed Nash Equilibrium.

A softmax policy allows to have a mixed strategy if there
is more than one action that has a nonzero Q-value. However,
if the opponent players play their mixed Nash equilibrium
strategies, E(rt|at = a) are the same ∀a s.t. πi∗(a) 6= 0
(see the Nash’s proof for the support theorem [24]). Thus,
their Q-values are also the same. If the learning algorithm
converges to the correct Q-values, then softmax policy leads
to a uniform probability distribution strategy over supp(πi∗) =
{a | πi∗(a) 6= 0}, which is not necessarily a mixed Nash
equilibrium strategy.

The same problem arises if Boltzmann policy is used. If the
Q-values are strictly the same then Boltzmann policy leads to
a uniform random strategy. However, the convergence after a
finite computation time may be not complete. The Q-values
may be close but not strictly identical. With Boltzmann policy,
even if Q∗(s, a) is very close to Q∗(s, a′), the difference
between p(a) and p(a′) can be high. If τ → +∞, this policy
becomes greedy at the limit. A good value of τ can provide
a mixed Nash equilibrium strategy. But this value depends
on the differences between the Q-values of the actions, and
these differences (when the convergence is not complete)
strongly depend on the initialization and are also random
(due to the randomness of the used policy). In [35], the
authors demonstrated that under symmetric conditions of τ ,
the Boltzmann policy converges to a sub-set of mixed Nash
Equilibria. However, the quality of these equilibria remains to
be considered.

V. EXPERIMENTAL OBSERVATIONS

This section relates the results of the simulation we con-
duced on the RPS game modeled by Table I. A RPS game is
run several times (called ”rounds”) - ca. 10000 are illustrated
in most figures on the X axis, and the number of simulations
performed for each round was set at 100.

An opponent player, able to play pure or mixed strategies,
plays against the observed player, which uses one of the
mentioned algorithms (either LRI, Q-learning or SARSA) with
various policies. Our goal is to experimentally evaluate the
performances of these algorithms, i.e. their ability to converge,

to learn against a player implementing specific strategies (e.g.
a pure or a mixed strategy), including when the player applies
also a learning scheme. Our study complements the one of
[36] where the authors presented results opposing two players
using an adapted Q-Learning algorithm (called individual Q-
learning) with player-dependent learning rates (PDLR). In the
specific case of a Boltzmann policy and particular games, the
authors demonstrated the convergence to Nash distributions
(i.e. approximation of mixed Nash equilibria).

Each learning algorithm has been evaluated using different
policies:
• LRI algorithm: two versions was considered, one with a

static learning rate, titled ”LRI” on the figures, another
with a decreasing learning rate, titled ”LRI b decreasing”
on the figures.

• Q-Learning algorithm: the Q-Learning algorithm were
applied with an ε-greedy, a Softmax and a Boltzmann
policies. For the ε-greedy policy, the ε value was set to
0.01 and decreased until stabilization during the first half
of the experiment duration. For the Boltzmann policy, the
τ value was set to 0.9. The learning rate was initialized
at 0.6 and updated as recommended by [33]. Different
experiments was conduced with different discount factor
values.

• SARSA algorithm: the SARSA algorithm was applied
with the same policies and parameters than the Q-
Learning algorithm.

A. Reward convergence

Fig. 2 shows the gains obtained by the observed player
when using the different learning algorithms facing different
Opponent player strategies. On the Y axis of these figures
is represented the reward obtained each 100 round, which is
accordingly to Table I 100 in the best case. Fig. 2 exhibits
that most algorithms bring more gain than the mixed Nash
equilibrium, except the Q-learning algorithm with a Boltz-
mann policy when the opponent player plays the mixed Nash
equilibrium or a pure strategy, and the SARSA algorithm
with a Boltzmann policy when the opponent player plays a
mixed strategy. However, as illustrated by Fig. 2(a), 2(b) and
2(c), the Q-Learning algorithm with a Boltzmann policy is the
Reinforcement Learning algorithm providing the highest gains
when the opponent player plays the other strategies.

All the results also validate that the LRI algorithm is the
one bringing the highest gains whatever the strategy of the op-
ponent player is, and that the policy used in the Reinforcement
Learning algorithm affects a lot the obtained results. Note also,
that using a decreasing learning rate with the LRI algorithm
does not significantly improve or damage the obtained gains.

Finally, Fig. 2(b) exposes the results obtained when the
Reinforcement Learning algorithms use a discount factor set
at 0. This makes their behavior closer to the LRI algorithm
where only instantaneous gain is optimized. It is also better
adapted to the RPS game where future gains are totally
independent from past the ones. Fig. 2(b) shows that when the
discount factor is set at 0, most of the Reinforcement Learning



algorithms present higher gain results but are still less efficient
than the LRI algorithm.

B. Learning Strategy

In order to evaluate the ability of the algorithms to learn
facing up various kind of strategies, we conduced experiments
where the Opponent player applies a pure strategy, the “Rock”
strategy, and when he plays his mixed Nash equilibrium
strategy. Fig. 3 illustrates the simulation results when the
opponent player plays the “Rock” strategy.

If the opponent player applies the pure strategy, we observed
how the learning schemes learn that “scissors” is the strategy
to avoid (cf. Fig. 3(a)) and “paper” the strategy to win (cf. Fig.
3(b)). Fig. 3(b) exhibits that the LRI algorithms learn rapidly to
apply the “paper” strategy while the Reinforcement Learning
algorithms converge slower. The softmax policy seems to
allow a faster convergence than the other Reinforcement
Learning policies, especially than the Boltzmann policy, which
almost stabilizes. The ε-policy provides in-between results.
Both softmax and ε-greedy policies are still learning at 10000
rounds. Hence, tuning the parameters of these policies could
speed up the convergence. We let such simulation studies for
future work.

We conduced similar experiments when the opponent player
applies the mixed Nash equilibrium. However, the results were
not significant enough to be presented here: most algorithms
converge to a - different at each simulation - pure strategy
except the LRI with a decreasing factor, which converges to
a mixed strategy (but not the mixed Nash equilibrium one).

C. Opponent player applies a learning scheme

In order to complement this study, we evaluated the learning
algorithms when the opponent player uses also a learning
algorithm. Fig. 4 illustrates these results. On the Y-axis of
these figures is represented the reward obtained each 100
round, which is of 100 in the best case according to table
I.

On Fig.4(a), one might observes that the algorithms obtain-
ing the highest reward against the LRI are the Q-Learning and
the SARSA algorithms associated to ε-greedy policy. Fig. 4(b)
shows that the Q-learning algorithm associated to Boltzmann
policy obtains the highest rewards.

Figures 4(c) and 4(d) show the simulation results when the
opponent player uses the Q-Learning algorithm with different
policies. The algorithms obtaining the highest reward against
ε-greedy policy are the Q-learning with the same policy
and the SARSA algorithm with Boltzmann policy. The latter
also performs the best against the softmax policy. And the
algorithm obtaining the highest reward against the Boltzmann
policy is the Q-Learning with Boltzmann policy. Only the LRI
opposed to a softmax policy is represented on Fig. 4(c) since,
against other policies, the LRI does not bring any reward. The
LRI with a decreasing learning rate performs a bit better but
still only against a softmax policy and not so significantly.

Figures 4(e) and 4(f) exhibit results when the opponent
player uses the SARSA algorithm with various policies. The

algorithm performing the best against the SARSA algorithm
with ε-greedy policy is the Q-Learning with Boltzmann policy.
It is also the one getting the highest gains against the softmax
policy, together with the SARSA algorithm with Boltzmann
policy. As for the comparison with the Q-Learning, only partial
results of the LRI algorithm are represented on Fig. 4(e). In
the case of an opponent player using the SARSA algorithm,
the LRI algorithms perform a bit better against both softmax
and ε-greedy policies.

Hence, Boltzmann policy can be considered as the most
suitable for Reinforcement Learning algorithms when the
opponent uses also a Reinforcement Learning algorithm. When
the opponent uses the LRI algorithm, ε-greedy policy should
be preferred.

VI. CONCLUSION

In the context of inter-NSP SLA negotiation, ensuring fair
revenues and stability is the key challenge for the adoption
of new business models. Reaching Nash Equilibria is the
best way to ensure this stability but pure Nash equilibria
do not always exist and some equilibria are more profitable
than others. Recently, several works focused on Reinforcement
Learning algorithms to solve the Inter-NSP SLA negotiation
problem. In this paper, we investigated the capacity of Rein-
forcement Learning algorithms to learn mixed Nash equilibria.
We experimented model-free learning algorithms to solve
the Rock-Paper-Scissors’ game, to which an inter-NSP SLA
Negotiation can be reduced. This game is known to have a
mixed Nash equilibrium. We observed that all these algorithms
fail to converge to the unique mixed Nash equilibrium of
the game even though they provide high gains to the NSPs.
We also observed that the Boltzman policy used with the Q-
learning solutions seems to be the most stable and profitable
solution in this modeling of the SLA negotiation problem.

In future work, we aim to investigate the theoretical assess-
ment of the observations detailed in this paper. In particular,
we aim to focus on the Boltzman policy, which according to
our experiments seems the most suitable for this problem. As
we developed in the motivation of this paper, this theoretical
assessment is crucial to demonstrate the relevance of the
approach. We will also study how the learning algorithms
behave in the case of the existence of equilibria having
different profitability properties.

VII. ACKNOWLEDGMENTS

We are grateful to Johanne Cohen for her feedback on
earlier versions of this paper. This work has been partially
supported by the ETICS-project (Grant agreement no.: FP7-
248567, Contract Number: INFSO-ICT-248567), granted by
the European Commission.

REFERENCES

[1] Craig Labovitz, Scott Iekel-Johnson, Danny McPherson, Jon Oberheide,
and Farnam Jahanian. Internet inter-domain traffic. In SIGCOMM, pages
75–86, 2010.

[2] D. Barth, L. Echabbi, and C. Hamlaoui. Optimal transit price ne-
gotiation: The distributed learning perspective. Journal of Universal
Computer Science, 14:745–765, 2008.



(a) Opponent plays mixed NE strategy (b) Opponent plays mixed NE strategy, γ = 0

(c) Opponent plays pure strategy (d) Opponent plays mixed strategy

Fig. 2. Simulation results: obtained gains

(a) Agent plays scissor (b) Agent plays paper

Fig. 3. Opponent player applies a pure “Rock” strategy

[3] R. Ma, D. Chiu, J. Lui, V. Misra, and D. Rubenstein. Internet Economics:
The use of Shapley value for ISP settlement. In CoNEXT, 2007.

[4] Vytautas Valancius, Nick Feamster, Ramesh Johari, and Vijay V. Vazi-
rani. MINT: a Market for INternet Transit. In CoNEXT, page 70, 2008.

[5] H. Pouyllau and R. Douville. End-to-end QoS negotiation in network
federations. In IEEE NOMS Bandwidth on Demand (BoD) Workshop,
2010.

[6] Zied Ben Houidi and Helia Pouyllau. The price of tussles: bankrupt in
cyberspace ? In ACM SIGMETRICS/Performance Workshop on Pricing
and Incentives in Networks, 2012.

[7] Andrew Odlyzko. Internet pricing and the history of communications,
2001.

[8] I.Ch. Paschalidis and J.N. Tsitsiklis. Congestion-dependent pricing of
network services. IEEE/ACM Transactions on Networking, 8(2):171 –
184, apr 2000.

[9] S. Kunniyur and R. Srikant. End-to-end congestion control schemes:
utility functions, random losses and ecn marks. Networking, IEEE/ACM

Transactions on, 11(5):689 – 702, oct. 2003.
[10] Zhi-Li Zhang, Papak Nabipay, Andrew M. Odlyzko, and Roch Guérin.
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