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Abstract. Approximate dictionary matching is a classic string match-
ing problem (checking if a query string occurs in a collection of strings)
with applications in, e.g., spellchecking, online catalogs, geolocation, and
web searchers. We present a surprisingly simple solution called a split in-
dex, which is based on the Dirichlet principle, for matching a keyword
with few mismatches, and experimentally show that it offers competi-
tive space-time tradeoffs. Our implementation in the C++ language is
focused mostly on data compaction, which is beneficial for the search
speed (e.g., by being cache friendly). We compare our solution with other
algorithms and we show that it performs better for the Hamming dis-
tance. Query times in the order of 1 microsecond were reported for one
mismatch for the dictionary size of a few megabytes on a medium-end
PC. We also demonstrate that a basic compression technique consisting
in g-gram substitution can significantly reduce the index size (up to 50%
of the input text size for the DNA), while still keeping the query time
relatively low.

1 Introduction

Dictionary string matching (keyword matching, matching in dictionaries), de-
fined as the task of checking if a query string occurs in a collection of strings
given beforehand, is a classic research topic. In recent years, increased inter-
est in approzrimate dictionary matching can be observed, where the query and
one of the strings from the dictionary may only be similar in a specified sense
rather than equal. Approximate dictionary matching is considered a hard prob-
lem, since most useful string similarity measures are non-transitive. On the other
hand, matching with mismatches (i.e. using a Hamming distance) is also a very
desired functionality with applications in, i.a., bioinformatics [21, 22|, biomet-
rics [13], cheminformatics [16], circuit design [19], and web crawling [25].

As indexes supporting approximate matching tend to grow exponentially in
k, the maximum number of allowed errors, it is also a worthwhile goal to design
efficient indexes supporting only a small k. In this paper, we focus on the problem
of dictionary matching with few mismatches (especially one mismatch). Formally,
for a collection D = {dy,...,dn} of |D| strings (words) d; of total length n over



a given alphabet X (where o = |X|), I(D) is an approximate dictionary index
supporting matching with mismatches, if for any query pattern P it returns all
strings d; from D such that Ham(P,d;) < k (Hamming distance). As regards
the substrings, they are denoted as S[ig, 1] (an inclusive range), and indexes are
0-based.

2 Related work

Solutions for approximate dictionary matching can be basically divided into two
classes: worst-case space and query time oriented, and heuristical ones. Notable
results from the first class include the k-errata trie by Cole et al. [11] which
is based on the suffix tree and the longest common prefix structure. It can
be used in various contexts, including full-text and keyword indexing, as well
as wildcard matching. For the Hamming distance and dictionary matching, it
uses O(n + \D|%) space and offers O(m + % loglogn + occ) query
time (this also holds for the edit distance but with larger constants). This was
extended by Tsur [29] who described a structure similar to the one from Cole et
al. with time complexity O(m-+loglog n+occ) (for constant k) and O(n'*¢) space
for a constant € > 0. For full-text searching with the Hamming distance, Gabriele
et al. [17] provided an index with average search time O(m+occ) and O(n log' n)
space (for some ). Another theoretical work describing the algorithm which is
similar to our split index was given by Shi and Widmayer [28], who obtained
O(n) preprocessing time and space complexity and O(n) expected search time
if k is bounded by O(m/logm). They introduce the notion of home strings for
a given g-gram, which is the set of strings in D that contain the ¢-gram in the
exact form (the value of ¢ is set to |P|/(k+1). In the search phase, they partition
P into k + 1 disjoint ¢-grams and use a candidate inspection order to speed up
finding the matches with up to k edit distance errors.

On the practical front, Bocek et al. [3] provided a generalization of the Mor—
Fraenkel [26] algorithm for & > 1 which is called FastSS. To check if two strings
S1 and So match with up to k errors, we first delete all possible ordered subsets
of k' symbols for all 0 < k' < k from S; and S5. Then we conclude that S;
and Sy may be in edit distance at most k if and only if the intersection of the
resulting lists of strings is non-empty (explicit verification is still required). For
instance, if S; = abbac and k = 2, then its neighborhood is as follows: abbac,
bbac, abac, abac, abbc, abba, abb, aba, abc, aba, abc, aac, bba, bbc, bac and
bac (some of the resulting strings are repeated and they may be removed). If
So = baxcy, then its respective neighborhood for k£ = 2 will contain, e.g., the
string bac, but the following verification will show that S7 and Ss are in edit dis-
tance greater than 2. If, however, Lev(S1, S2) < 2 (Levenshtein distance), then
it is impossible not to have in the neighborhood of S; at least one string from
the neighborhood of S7, hence we will never miss a match. The lookup requires
O(km* log(nm*)) time (where m is the average dictionary word length) and the
index occupies O(nm*) space. Another practical filter was presented by Karch et
al. [20] and it improved on the FastSS method. They reduced space requirements



and the query time by splitting long words (similarly to FastBlockSS which is
a variant of the original method) and storing the neighborhood implicitly with
indexes and pointers to original dictionary entries. They claimed to be faster
than other approaches such as the aforementioned FastSS and a BK-tree [6].
Recently, Chegrane and Belazzougui [9] described another practical index and
they reported better results when compared to Karch et al. Their structure is
based on the dictionary by Belazzougui for the edit distance of 1 (see the follow-
ing subsection). An approximate (in the mathematical sense) data structure for
approximate matching which is based on the Bloom filter was also described [24].

A permuterm index is a keyword index which supports queries with one
wildcard symbol [18]. The idea is store all rotations of a given word appended
with the terminating character, for instance for the word text, the index would
consist of the following permuterm vocabulary: text$, ext$t, xt$te, t$tex,
$text. When it comes to searching, the query is first rotated so that the wildcard
appears at the end, and subsequently its prefix is searched for using the index.
This could be for example a trie or any other data structure which supports a
prefix lookup. The main problem with the standard permuterm index is its space
usage, as the number of strings inserted into the data structure is the number
of words multiplied by the average string length. Ferragina and Venturini [15]
proposed a compressed permuterm index in order to overcome the limitations of
the original structure with respect to space. They explored the relation between
the permuterm index and the Burrows—Wheeler Transform [7], which is applied
to a concatenation of all strings from the input dictionary. They provided a
modification of the LF-mapping known from FM-indexes [14] in order to support
the functionality of the permuterm index.

2.1 The 1-error problem

It is important to consider methods for detecting a single error, since over
80% of errors (even up to roughly 95%) are within & = 1 for the edit dis-
tance with transpositions [12,27]. Belazzougui and Venturini [2] presented a
compressed index whose space is bounded in terms of the k-th order empiri-
cal entropy of the indexed dictionary. It can be based either on perfect hash-
ing, having O(m + occ) query time or on a compressed permuterm index with
O(mmin(m,log, nloglogn) + occ) time (when o = log®n for some constant
¢) but improved space requirements. The former is a compressed variant of a
dictionary presented by Belazzougui [1| which is based on neighborhood gen-
eration and occupies O(nlogo) space and can answer queries in O(m) time.
Chung et al. [10] showed a theoretical work where external memory is used,
and their focus is on I/O operations. They limited the number of these oper-
ations to O(1 + m/(wB) + occ/B), where w is the size of the machine word
and B is the number of words within a block (a basic unit of I/O), with the
space of the proposed structure of O(n/B) blocks. In the category of filters,
Mor and Fraenkel [26] described a method which is based on the deletion-only
1-neighborhood.



For the 1-mismatch problem, Yao and Yao [30] described the data struc-
ture for binary strings with fixed length m with O(mloglog|D|) query time
and O(|D|mlogm) space requirements. This was later improved by Brodal and
Gasieniec [4] with a data structure with O(m) query time which occupies O(n)
space. This was in turn extended with a structure with O(1) query time and
O(|D|logm) space in a cell probe model (where only memory accesses are
counted) [5]. Another notable example is a recent theoretical work of Chan
and Lewenstein [§], who introduced the index with optimal query time (i.e.
O(m/w+ occ), where occ is the number of pattern occurrences) which uses addi-
tional O(wdlog' ¢ d) bits of space (beyond the dictionary of d strings), assuming
a constant-size alphabet.

3 Our algorithm

The algorithm that we are going to present is uncomplicated and based on the
Dirichlet principle, ubiquitous in approximate string matching techniques. We
partition each word d into k£ + 1 disjoint pieces p1, ..., pr+1, of average length
|d|/(k 4+ 1) (hence the name “split index”), and each such piece acts as a key in
a hash table Hp. The size of each piece p; of word d is determined using the
following formula: |p;| = [|d|/(k +1)] and |pg+1] = |d| — Zle |pil, i.e. the piece
size is rounded to the nearest integer and the last piece covers the characters
which are not in other pieces. This means that the pieces might be in fact unequal
in length, e.g., 3 and 2 for |d| = 5 and k = 1. The values in Hr are the lists
of words which have one of their pieces as the corresponding key. In this way,
every word occurs on exactly k + 1 lists. This seemingly bloats the space usage,
still, in the case of small k the occupied space is acceptable. Moreover, instead
of storing full words on the respective lists, we only store their “missing” prefix
or suffix. For instance for the word table and k = 1, we would have a relation
tab — le on one list (i.e. tab would be the key and 1e would be the value) and
le — tab on the other.

In the case of £ = 1, we first populate each list with the pieces without
their prefix and then with the pieces without the suffix; additionally we store
the position on the list (as a 16-bit index) where the latter part begins. In this
way, we traverse only a half of a list on average during the search. We can also
support k larger than 1 — in this case, we ignore the piece order on a list, and
we store [log,(k + 1)] bits with each piece that indicate which piece of the word
(i.e. where is the missing piece) is the list key. Let us note that this approach
would also work for k = 1, however, it turned out to be less efficient.

As regards the implementation, our focus was on data compactness. In the
hash table, we store the buckets which contain word pieces as keys (e.g., 1le)
and pointers to the lists which store the missing pieces of the word (e.g., tab,
ft). These pointers are always located right next to the keys, which means that
unless we are very unlucky, a specific pointer should already be present in the
CPU cache during the traversal. The memory layouts of these substructures are
fully contiguous. Successive strings are represented by multiple characters with



a prepended 8-bit counter which specifies the length, and the counter with the
value 0 indicates the end of the list. During the traversal, each length can be
compared with the length of the piece of the pattern. As mentioned before, the
words are partitioned into pieces of fixed length. This means that on average we
calculate the Hamming distance for only a half of the pieces on the list, since
the rest can be ignored based on their length. Any hash function for strings
can be used, and two important considerations are the speed and the number
of collisions, since a high number of collisions results in longer buckets, which
may in turn have a negative effect on the query time (see Section 4 for further
discussion). Figure 1 illustrates the layout of the split index.
The preprocessing stage proceeds as follows:

1. Duplicate keywords are removed from the dictionary D.
The following steps refer to each word d; from D.

2. The word d; is split into k + 1 pieces.

3. For each piece p;: if p; ¢ Hr, we create a new list L,, containing the missing
pieces P = {p; : j € [1,k+ 1] Aj # i} and add it to the hash table (we
append p; and the pointer to L,, to the bucket). Otherwise, if p; € Ty, we
append the missing pieces P to the already existing list L;.

As regards the search:

1. The pattern P is split into k& + 1 pieces.

2. We search for each piece p; (the prefix and the suffix if & = 1): the list L;
is retrieved from the hash table or we continue if p; ¢ Hp. Otherwise, we
traverse each missing piece p; from L;. If |p;| = |P| — |pi|, the verification
is performed and the result is returned if Ham(p;j, P — p;) < k (where the
subtraction sign indicates substring removal).

3. The pieces are combined into one word in order to present the answer.

3.1 Complexity

Let us consider the average word length |d|, where |d| = ( ‘11:)‘1 |di])/|D|. Average
time complexity of the preprocessing stage is O(kn), where k is the allowed
number of errors, and n is the total input dictionary size (i.e. the length of the
concatenation of all words from D, n = Z‘Zzll |d;]). This is because for each word
and for each piece p; we can either add the missing pieces to a new list or append
them to the already existing one in O(|d|) time (if optimized; let us note that
|D||d| = n). We assume that adding a new element to the bucket takes constant
time on average, and that the calculation of all hashes takes O(n) time in total.
This is true irrespective of which list layout is used (there are two layouts for
k =1 and k > 1, see the preceding paragraphs). The occupied space is equal to
O(kn), because each part appears on exactly k lists and in exactly 1 bucket.
The average search complexity is O(kt), where ¢ is the average length of the
list. We search for each of k+1 pieces of the pattern of length m, and when the list
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Fig. 1. Split index for keyword indexing which shows the insertion of the word
table for k = 1. The index also stores the words left and tablet (only selected
lists containing pieces of these two words are shown), and L1 and L2 indicate
pointers to the respective lists. The first cell of each list indicates a 1-based
word position (i.e. the word count from the left) where the missing prefixes
begin (k = 1, hence we deal with two parts, namely prefixes and suffixes), and 0
means that the list has only missing suffixes. Adapted from Wikimedia Commons
(author: Jorge Stolfi; available at http://en.wikipedia.org/wiki/File:Hash_

corresponding to the piece p; is found, it is traversed and at most ¢ verifications
are performed. Each verification takes at most O(min(m, |dpmqz|)) time where
dmaz is the longest word in the dictionary®, but O(1) time on average. Again, we
assume that determining a location of the specific list, that is iterating a bucket,
takes O(1) time on average. As regards the list, its average length ¢ is higher when
there is a higher probability that two words d; and ds from D have two parts of
the same length [ which match exactly, i.e. Pr(dy[i1,i1+1—1] = dafia, ta+1—1]).

! Or O(k) time, in theory, using the old longest common extension (LCE) based tech-
nique from Landau and Vishkin [23], after O(n log o)-time preprocessing.
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Since all words are sampled from the same alphabet X', t depends on the alphabet
size, that is ¢ = f(o). Still, the dependence is rather indirect; in real-world
dictionaries which store words from a given language, ¢ will be rather dependent
on the k-th order entropy of the language.

3.2 Compression

In order to reduce storage requirements, we apply a basic compression technique.
We find the most frequent g-grams in the word collection and replace their
occurrences on the lists with unused symbols, e.g., byte values 128, ...,255. The
values of ¢ can be specified at the preprocessing stage, for instance ¢ = 2 and
q = 4 are reasonable for the English alphabet and DNA, respectively. Different
q values can be also combined depending on the distribution of g-grams in the
input text, i.e. we may try all possible combinations of g-grams up to a certain
q value and select ones which provide the best compression. In such a case,
longer g-grams should be encoded before shorter ones. For example, a word
compression could be encoded as #p*s\ using the following substitution list:
com — #,re — *,co — $,om — &, sion — \ (note that not all ¢g-grams from the
substitution list are used). Possibly even a recursive approach could be applied,
although this would certainly have a substantial impact on the query time.

The space usage could be further reduced by the use of a different character
encoding. For the DNA (assuming 4 symbols only) it would be sufficient to use
2 bits per character, and for the basic English alphabet 5 bits. In the latter
case there are 26 letters, which in a simplified text can be augmented only with
a space character, a few punctuation marks, and a capital letter flag. Such an
approach would be also beneficial for space compaction, and it could have a
further positive impact on cache usage. The compression naturally reduces the
space while increasing the search time, and a sort of a middle ground can be
achieved by deciding which additional information to store in the index. This
can be for instance the length of an encoded (compressed) piece after decoding,
which could eliminate some pieces based on their size without performing the
decompression and explicit verification.

4 Experimental results

Experimental results were obtained on the machine equipped with the Intel i5-
3230M processor running at 2.6 GHz and 8 GB DDR3 memory, and the C+-+
code was compiled with clang version 3.4-1 and run on the Ubuntu 14.04 OS.
One of the crucial components of the split index is a hash function. Ideally,
we would like to minimize the average length of the bucket (let us recall that we
use chaining for collision resolution), however, the hash function should be also
relatively fast because it has to be calculated for each of the k + 1 parts of the
pattern (of total length m). We investigated various hash functions, and it turned
out that the differences in query times are not negligible, although the average
length of the bucket was almost the same in all cases (relative differences were



smaller than 1%). We can see in Table 1 that the fastest function was the xxhash
(available on the Internet under the following link: https://code.google.com/
p/xxhash/), and for this reason it was used for the calculation of other results.

Hash function|Query time (us)

xxhash 0.93
sdbm 0.95
FNV1 0.95
FNVla 0.95
SuperFast 0.96
Murmur3 0.97
City 0.99
FARSH 1.00
SpookyV2 1.04
Farm 1.04

Table 1. Evaluated hash functions and search times per query for the English
dictionary of size 2.67 MB and k£ = 1. A list of common English misspellings was
used as queries, max LF = 2.0.

Decreasing the value of the load factor (LF) did not strictly provide a speedup
in terms of the query time, as demonstrated in Figure 2. This can be explained
by the fact that even though the relative reduction in the number of collisions
was substantial, the absolute difference was equal to at most a few collisions per
list. Moreover, when the LF was higher, pointers to the lists could be possibly
closer to each other, which might have had a positive effect on cache utilization.
The best query time was reported for the maximum LF value of 2.0, hence this
value was used for the calculation of other results.

In Table 2 we can see a linear increase in the index size and an exponential
increase in query time with growing k. Even though we concentrate on k = 1 and
the most promising results are reported for this case, our index might remain
competitive also for higher k values.

k|Query time (ps) Index size (KB)
1 0.51 1,715
2 11.49 2,248
3 62.85 3,078

Table 2. Query time and index size vs the error value k for the English language
dictionary of size 0.79 MB. A list of common English misspellings was used as
queries.
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Fig. 2. Query time and index size vs the load factor for the English dictionary
of size 2.67MB and k = 1. A list of common English misspellings was used as
queries. The value of LF can be higher than 1.0 because we use chaining for
collision resolution.

(QQ-gram substitution coding provided a reduction in the index size, at the cost
of increased query time. Q-grams were generated separately for each dictionary
D as a list of 100 g-grams which provided the best compression for D, i.e. they
minimized the size of all encoded words, Sg = Z‘Zzll |Enc(d;)]. For the English
language dictionaries, we also considered using only 2-grams or only 3-grams,
and for the DNA only 2-grams (a maximum of 25 2-grams) and 4-grams, since
mixing the g-grams of various sizes has a further negative impact on the query
time. For the DNA, the queries were generated randomly by introducing noise
into words sampled from dictionary, and their length was equal to the length of
the particular word. Up to 3 errors were inserted, each with a 50% probability.
For the English dictionaries we opted for the list of common misspellings, and
the results were similar to the case of randomly generated queries.

We can see the speed-to-space relation for the English dictionaries in Figure 3
and for the DNA in Figure 4. In the case of English, using the optimal (from
the compression point of view, i.e. minimizing the index size) combination of
mixed ¢-grams provided almost the same index size as using only 2-grams. Sub-
stitution coding methods performed better for the DNA (where o = 5) because
the sequences are more repetitive. Let us note that the compression provided a
higher relative decrease in index size with respect to the original text as the size



of the dictionary increased. For instance, for the dictionary of size 627.8 MB the
compression ratio was equal to 1.93 and the query time was still around 100 ps.
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Fig. 3. Query time and index size vs dictionary size for k = 1, with and with-
out g-gram coding. Mixed g-grams refer to the combination of g-grams which
provided the best compression, and for the three dictionaries these were equal
to ([2-, 3-, 4] grams): [88, 8, 4], [96, 2, 2|, and [94, 4, 2], respectively. English
language dictionaries and the list of common English misspellings were used.

Tested on the English language dictionaries, promising results were reported
when compared to methods proposed by other authors. Others consider the Lev-
enshtein distance as the edit distance, whereas we use the Hamming distance,
which puts us at the advantageous position. Still, the provided speedup is signifi-
cant, and we believe that the more restrictive Hamming distance is also an impor-
tant measure of practical use. The implementations of other authors are available
on the Internet (http://searchivarius.org/personal/software; https://
code.google.com/p/compact-approximate-string-dictionary/, from Boytsov
and Chegrane and Belazzougui, respectively). As regards the results reported for
the MF method and Boytsov’s Reduced alphabet neighborhood generation, it
was not possible to accurately calculate the size of the index (both implementa-
tions by Boytsov), and for this reason we used rough ratios based on index sizes
reported by Boytsov for similar dictionary sizes. Let us note that we compare
our algorithm with Chegrane and Belazzougui, who report better results when
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Fig. 4. Query time and index size vs dictionary size for kK = 1, with and without
g-gram coding. Mixed g-grams refer to the combination of g-grams which pro-
vided the best compression, and these were equal to ([2-, 3-, 4-] grams): [16, 66,
18] (due to computational constraints, they were calculated only for the first dic-
tionary, but used for all four dictionaries). DNA dictionaries and the randomly
generated queries were used.

compared to Karch et al., who in turned claimed to be faster than other state-of-
the-art methods [9,20]. We have not managed to identify any practice-oriented
indexes for matching in dictionaries over any fixed alphabet X dedicated for
the Hamming distance, which could be directly compared to our split index.
The times for the brute-force algorithm are not listed, since they were roughly 3
orders of magnitude higher than the ones presented. Consult Figure 5 for details.

We also evaluated different word splitting schemes. For instance for k =
1, one could split the word into two parts of different sizes, e.g., 6 — (2,4)
instead of 6 — (3, 3), however, unequal splitting methods caused slower queries
when compared the the regular one. As regards Hamming distance calculation,
it turned out that a naive implementation (i.e. simply iterating and comparing
each character) was the fastest one. The compiler with automatic optimization
was simply more efficient than other implementations (e.g., ones based directly
on SSE instructions) that we have investigated.
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Fig. 5. Query time vs index size for different methods. The method with com-
pression encoded mixed g-grams. We used the Hamming distance, and the other
authors used the Levenshtein distance for & = 1. English language dictionaries
of size 0.79 MB, 2.67 MB, and 5.8 MB were used as input, and the list of common
misspellings was used for queries.

5 Conclusions

We have presented an index for dictionary matching with mismatches, which
performed best for the Hamming distance of one. Its functionality could be
extended by storing additional information in the lists that contain the missing
parts of the words. This could be for instance a mapping of words to positions
in the document, which would create an inverted index supporting approximate
matching.

The algorithm can be sped up by means of parallelization, since access to
the index during the search procedure is read-only. In the most straightforward
approach we could simply distribute individual words between multiple threads.
A more fine-grained variation would be to concurrently operate on parts of the
word after it has been split up (the number of parts depending on the k param-
eter), or we could even access in parallel lists which contain candidate prefixes
and suffixes. If we had a sufficient amount of threads at our disposal, these
approaches could be combined.



Appendix A

The following data sets were used in order to obtain the experimental results:

— iamerican — 0.79 MB, English, available from Linux packages

— foster — 2.67 MB, English, available at: http://www.math.sjsu.edu/ " foster/
dictionary.txt

— iamerican-insane — 5.8 MB, English, available from Linux packages

— DNA — 20-mers extracted from the genome of Drosophila melanogaster
(available at: http://flybase.org/), sizes: 6.01 MB, 135.89 MB, 262.78 MB,
and 627.80 MB

— A list of common English misspellings — 44.2 KB (4,261 words), available at:
http://en.wikipedia.org/wiki/Wikipedia:Lists_of_common_misspellings/
For_machines
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