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4 VARIATIONS ON KURATOWSKI’S 14-SET THEOREM

DAVID SHERMAN

Abstract. Kuratowski’s 14-set theorem says that in a topological space, 14
is the maximum possible number of distinct sets which can be generated from
a fixed set by taking closures and complements. In this article we consider the
analogous questions for any possible subcollection of the operations {closure,
complement, interior, intersection, union}, and any number of initially given
sets. We use the algebraic “topological calculus” to full advantage.

1. Introduction

The following well-known result, from Kuratowski’s 1920 dissertation, is known
as the 14-set theorem.

Theorem 1.1. [7] Let E ⊂ X be subset of a topological space. The number of
distinct sets which can be obtained from E by successively taking closures and com-
plements (in any order) is at most 14. Moreover, 14 can be achieved if X contains
a subset homeomorphic to the Euclidean line.

The main goal of this article is to see what happens when “closure” and “com-
plement” are replaced or supplemented with other basic topological operations.

Question 1.2. Let I be a subcollection of

{closure, interior, complement, intersection, union}.

What is the maximum number of distinct sets which can be generated from a single
set in a topological space by successive applications of members of I?

Apparently Question 1.2 will require us to answer 25 = 32 different questions...
well, not really. Many of these are redundant, either because different choices
of I allow us to perform the same operations, or because different choices of I
raise algebraically isomorphic questions. (This is explained at the end of Section
4.) Theorem 1.1 answers at least one case, and certainly many others are trivial.
Finally, an example of Kuratowski shows that if we allow all five operations, we
may obtain infinitely many sets. After a full reckoning, there remain only two new
questions to be answered.

Question 1.3.

(1) What is the maximum number of distinct sets that can be generated from
a fixed set in a topological space by successively taking closures, interiors,
and intersections (in any order)?

(2) Same question, but with closures, interiors, intersections, and unions.

With a little additional work, we will finally answer
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2 DAVID SHERMAN

Question 1.4. Same question as Question 1.2, with n ≥ 2 sets initially given.

Our approach to this topic, like Kuratowski’s, is almost entirely algebraic. The
basic language is the “topological calculus” which was developed by the Polish
school during the first half of the twentieth century. Prominent figures such as
Birkhoff, Stone, Halmos, and Tarski kept this program dynamic, intertwining topol-
ogy with the related fields of set theory, logic, and lattice theory. (And the incor-
poration of Hilbert spaces opened up new realms of noncommutative analysis, with
von Neumann at the center.) In the present article, the topological calculus that
we need is the type of universal algebra known as “closure algebra,” which reduces
the questions above to the calculation of certain algebras generated by a specific
partially ordered set. So while our subject is apparently point-set topology, points
and sets play a very minor role!

Theorem 1.1 is actually easy to prove, and almost certainly has acquired some
cachet from the unusual presence of the number 14. Many people have extended
Kuratowski’s result by abstracting the algebraic content or isolating the specific
conditions which allow a topological space and subset to generate 14 sets. Some
of their papers are mentioned in Section 6 and the References. The investigation
closest to our own is due to Zarycki [13], who proved some results analogous to
Theorem 1.1 by replacing “closure” with other unary topological operations. The
ideas of allowing the binary operations of intersection and/or union (but not all
three Boolean operations), and subsequently permitting n ≥ 2 initial sets, seem
to be new. It turns out that our approach, unlike Zarycki’s, produces some other
“unusual” numbers.

The paper is intended for the nonspecialist in universal algebra - indeed, it was
written by one. Thus we define even basic terms, and do not always give the most
general formulations. It is hoped that many readers will find the methods at least
as interesting as the answers.

2. Monoids, posets, and the proof of Theorem 1.1

We start with the basics. Let X be an arbitrary set, and let P(X) be the set of
subsets of X . To endow X with a topology means to choose a distinguished subset
of P(X), called the open sets, which is closed under arbitrary unions and finite
intersections, and contains both X and the empty set. The complement of an open
set is a closed set. The (topological) closure of E ∈ P(X) is the smallest closed set
containing E; the interior of E is the largest open set contained in E. Therefore
the three functions “closure of,” “interior of,” and “complement of” can naturally
be viewed as operations on P(X). We will denote them by k, i, c, respectively, and
write them to the left of the set, as is usual for operators (or English sentences). We
also denote the collection of maps P(X) → P(X) as End(P(X)). Thus kiE should
be read as “the closure of the interior of E.” The reader should be aware that some
authors place topological operations to the right of the set (with an opposite rule
for composition), and the letters k and c are sometimes switched. With regard to
the latter, our choice was made with Kuratowski closure operators in mind.

Definition 2.1. [7] A Kuratowski closure operator on a set X is a map k ∈
End(P(X)) which satisfies, for any E,F ∈ P(X),

(1) k∅ = ∅;
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(2) kkE = kE;
(3) kE ⊇ E;
(4) kE ∪ kF = k(E ∪ F ).

A Kuratowski closure operator k on X is exactly the topological closure operator
for the topology on X whose open sets are {ckE | E ⊆ X}. So the choice of k is
equivalent to the choice of topology on X , while c is independent of topology. We
write I ∈ End(P(X)) for the identity map and record the following identities and
their consequences:

(2.1) k2 = k, c2 = I, i = ckc ⇒ i2 = i, ic = ck, kc = ci.

Now we recall some definitions from algebra. A monoid is a set with an asso-
ciative binary operation and a unit. (So a monoid is a “group without inverses.”)
A partial order on a set is a reflexive antisymmetic transitive relation. A standard
example is ≤ on R, but it is not necessary that any two elements be comparable:
P(X) is a partially ordered set - a poset - with partial order given by inclusion.
One notices that k and i preserve the ordering, while c reverses it. (This means,
for example, that E ⊇ F ⇒ kE ⊇ kF - use Definition 2.1(4).) Now the class of
functions from any set into a poset can also be made into a poset, where one func-
tion dominates another iff this is true pointwise. Thus we have an induced partial
order on End(P(X)): for ϕ, ψ ∈ End(P(X)),

ϕ ≥ ψ ⇐⇒ ϕ(E) ⊇ ψ(E), ∀E ∈ P(X).

Then item (3) of Definition 2.1 can be rewritten as k ≥ I, and apparently i ≤ I.
Note that order is preserved by an arbitrary right-composition:

ϕ ≥ ψ ⇒ ϕσ ≥ ψσ, ϕ, ψ, σ ∈ End(P(X)).

Order is also preserved by left-composition with k or i, but reversed by left-
composition with c.

“Ordered monoid” sounds frighteningly abstract, but we will only be concerned
here with subsets of End(P(X)), with the binary operation of composition and the
ordering ≤ as above. The advantage in the situation at hand is that we may invoke
a familiar friend from group theory (or universal algebra, to those in the know):
presentations. This just means that we will describe sets of operations in terms of
generators and relations, as demonstrated in

Lemma 2.2.

(1) Let k, i ∈ End(P(X)) be the closure and interior operators of a topological
space. Then the cardinality of the monoid generated by k and i is at most
7.

(2) For a subset of a topological space, the number of distinct sets which can be
obtained by successively taking closures and interiors (in any order) is at
most 7.

Proof. Composing k ≥ I on the left and right with i gives iki ≥ i. Composing
i ≤ I on the left and right with k gives kik ≤ k. We use both of these to calculate

(i)k ≤ (iki)k = i(kik) ≤ i(k) ⇒ ik = ikik.

k(i) ≤ k(iki) = (kik)i ≤ (k)i⇒ ki = kiki.

Since k2 = k and i2 = i, the monoid generated by k and i contains exactly

{I, i, ik, iki, k, ki, kik}
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(which may not all be distinct). This proves the first part, and the second part is
a direct consequence. �

We will use parentheses for “the monoid generated by,” so the second sentence
of Lemma 2.2(1) can be rewritten as |(k, i)| ≤ 7.

Proof of Theorem 1.1. It follows from (2.1) that any word in k, i, c can be reduced
to a form in which c appears either as the leftmost element only, or not at all. So
by the previous lemma

(2.2) (k, c) = (k, i, c) = {I, i, ik, iki, k, ki, kik, c, ci, cik, ciki, ck, cki, ckik}.

Thus 14 is an upper bound. To conclude the proof, it suffices to exhibit a so-called
(Kuratowski) 14-set : a subset of a topological space for which all of these operations
produce distinct sets. One example is S = {0}∪ (1, 2)∪ (2, 3)∪ [Q∩ (4, 5)]⊂ R. �

We now investigate the order structure of (k, i) a little further. Using our basic
rules for order we find that

i ≤ I ≤ k; i ≤ iki ≤ [either of ki, ik] ≤ kik ≤ k.

By considering the set S we see that these (and the consequences from transitivity)
are the only order relations, at least when X contains a copy of R. Then the order
structure of (k, i) is depicted in Figure 1. Here a segment from ϕ up to ψ means
that ϕ < ψ and there is no σ satisfying ϕ < σ < ψ. (We write ϕ < ψ for ϕ ≤ ψ
and ϕ 6= ψ.)

Since left composition with c reverses order, and generically there are no relations
between the first seven and last seven elements of (2.2), the order structure of
(k, i, c) consists of two disjoint copies of Figure 1. It was first drawn by Kuratowski
[7]; in essence all of the arguments in this section go back to his dissertation.

3. Lattices and freeness

We have already mentioned that P(X) is a poset. Now we want to take advantage
of its much richer structure as a Boolean lattice.
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Figure 1. The order structure of (k, i).
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Recall that a lattice is a poset in which any two elements have a least upper
bound and a greatest lower bound. We write these binary operations as ∨ and ∧,
respectively, and refer to them as join and meet. A lattice L is distributive if it
satisfies the equality

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z), x, y, z ∈ L

(or equivalently, the same equality with ∨ and ∧ everywhere interchanged). A
lattice L is complemented if it contains a least element 0, a greatest element 1, and

∀a ∈ L, ∃b ∈ L a ∨ b = 1, a ∧ b = 0.

The element b is called a complement of a. A Boolean lattice, finally, is a comple-
mented distributive lattice.

It should be clear that P(X) is a Boolean lattice with the operations of union,
intersection, and set complementation. As the class of all functions from P(X) into
the Boolean lattice P(X), End(P(X)) also inherits structure as a Boolean lattice,
with pointwise operations. It will be sufficient here to note the definitions of meet
and join: for ϕ, ψ ∈ End(P(X)), E ∈ P(X), we define

(ϕ ∧ ψ)E = (ϕE) ∩ (ψE), (ϕ ∨ ψ)E = (ϕE) ∪ (ψE).

We will be interested in Boolean lattices which are equipped with a closure
operator k satisfying the lattice version of Definition 2.1. Such an object is called
a closure algebra, and by [10, Theorem 2.4] it is always isomorphic to a Boolean
sublattice of some P(X), where X is a topological space and k the associated
closure operator. (In broad generality a (universal) algebra is a set equipped with
operations [4].) We define i = ckc and note in particular Definition 2.1(4), which
says that k distributes over ∨ (and i distributes over ∧). So a closure algebra is a
set equipped with the three unary operations k, i, c and two binary operations ∧,∨,
satisfying a certain small list of relations. Any meaningful composition of these
operations, for example (E,F ) 7→ kE∧ i(kcF ∨E), will also be called an operation.
We do not introduce the partial order relation formally but instead view ϕ ≤ ψ as
shorthand for ϕ ∧ ψ = ϕ.

In the situation at hand we can specialize further to singly-generated closure
algebras. That is, we suppose that every element can be obtained from a certain
fixed generator (corresponding to the initial set of Question 1.3) by some unary
operation. Of particular interest is the unique (up to isomorphism) free singly-
generated closure algebra [10, Theorem 5.1], referred to here as F . Freeness means,
roughly, that the set of relations is minimal. In other words, if two unary operations
agree on the generator of F , they agree on every element of every closure algebra.
This has the convenient consequence that inside F , we need not distinguish between
elements and unary operations.

Although not essential to the sequel, we pause to mention some striking facts
about F and the logical structure of the theory of closure algebra. They are taken
from a highly-recommended 1944 article of McKinsey and Tarski [10, Theorem 5.10,
Theorem 5.17, Appendix IV].

• F is isomorphic to a sub-closure algebra of the closure algebra of the Eu-
clidean line, so that a certain subset of the line distinguishes all unequal
unary operations of closure algebra.

• There is an algorithm (guaranteed to terminate in finitely many steps) for
deciding whether two operations of closure algebra are equal.
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• When two operations of closure algebra are equal, there is a formal proof.

Logicians also know closure algebra as a metamathematical object, since it can be
used as a framework for intuitionistic logic [11, Chapter III].

From all this it follows that Question 1.3 is equivalent to

Question 3.1.

(1) What is the cardinality of (k, i,∧)F , the subalgebra of F generated by
{k, i,∧}?

(2) Same question for (k, i,∧,∨)F .

4. Answers to Questions 1.2 and 1.3

We first determine the two algebras of Question 3.1. Our strategy is simply to
begin with the seven-element poset (k, i) and add all meaningful compositions.

1. Closures, interiors, intersections:

We need to add all irredundant meets to Figure 1. First we add ki ∧ ik. Now
notice that the meet of any two elements, both different from I, is already in our
poset. It suffices to add the meet of each element with I, and since k ∧ I = I
and i ∧ I = i, this gives five more elements. The resulting structure is the meet
semi-lattice generated by the poset (k, i), since it has ∧ but not ∨. In fact it is the
same as the poset of all hereditary subsets of Figure 1, ordered by inclusion. (A
subset H of a poset is hereditary if x ∈ H, x ≥ y ⇒ y ∈ H .)

A diagram of this 13-element poset is given in Figure 2. By construction it
is closed under ∧, and since i distributes across ∧ it is closed under i. Perhaps
surprisingly, it is also closed under k. To prove this, we need to show that for each
element ϕ in Figure 2, kϕ already appears in Figure 2.

This is clear for the seven elements from Figure 1. For the remaining elements,
we start with an easy observation. Since k preserves order, for any E,F ∈ P(X)
we have

k(E ∩ F ) ⊆ kE, k(E ∩ F ) ⊆ kF ⇒ k(E ∩ F ) ⊆ kE ∩ kF.

This means that

(4.1) k(ϕ ∧ ψ) ≤ kϕ ∧ kψ, ϕ, ψ ∈ End(P(X)).

Now let σ be any of ki ∧ ik, I ∧ iki, I ∧ ki ∧ ik, I ∧ ki. Applying (4.1) to σ and
reducing gives kσ ≤ ki. But σ ≥ i, so kσ ≥ ki. We conclude that kσ = ki.

It is left to consider the two elements (I∧ik) and (I∧kik). Applying (4.1) shows
that the closure of each is ≤ kik. We claim that k(I ∧ ik) = kik, whence the larger
element k(I ∧ kik) is kik as well. We calculate as follows:

ik = ik ∧ k(I)

= ik ∧ k[(I ∧ ik) ∨ (I ∧ cik)]

= ik ∧ [k(I ∧ ik) ∨ k(I ∧ cik)]

= [ik ∧ k(I ∧ ik)] ∨ [ik ∧ k(I ∧ cik)].

Inspecting the last term,

ik ∧ k(I ∧ cik) ≤ ik ∧ k(cik) = ik ∧ cik = 0.
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Figure 2. The order structure of (k, i,∧)F .

(Here 0 ∈ End(P(X)) is the map which sends every set to the empty set.) We may
therefore omit this term from the previous equation, which gives

ik = ik ∧ k(I ∧ ik) ⇒ ik ≤ k(I ∧ ik) ⇒ kik ≤ k(I ∧ ik).

Since the opposite inequality was already established, the claim is proved.
It follows that (k, i,∧)F has at most thirteen elements, and it can be checked

that each of these operations produces a distinct set when applied to the set

T =

[

⋃

n∈N

{

1

n

}

]

∪

[

[2, 4]−
⋃

n∈N

{

3 +
1

n

}

]

(4.2)

∪

[

(5, 7] ∩

(

Q ∪
⋃

n∈N

(

6 +
1

2nπ
, 6 +

1

(2n− 1)π

]

)]

.

So the answer to Question 1.3(1) is thirteen. The set T also shows that there are
no order relations in (k, i,∧)F other than those of Figure 2, which is important for
the next question.

2. Closures, interiors, intersections, unions:

Our first task here is to add all irredundant joins to Figure 2. We will consider
expressions of the form

(4.3) x1 ∨ x2 · · · ∨ xn, xj ∈ (k, i,∧)F .

Since F is distributive, the resulting set will be closed under joins and meets: it is
in fact the distributive lattice generated by Figure 1.

Let us add in the two elements ki ∨ ik and (I ∧ ki) ∨ (I ∧ ik), and partition our
poset into four classes:
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(1) i, k;
(2) I;
(3) iki, ki ∧ ik, ik, ki, ki∨ ik, kik;
(4) I ∧ iki, I ∧ ki ∧ ik, I ∧ ik, I ∧ ki, (I ∧ ki) ∨ (I ∧ ik), I ∧ kik.

It may help to notice that the third class is the right-hand five of Figure 2, plus
ki∨ ik, while the fourth class is the middle five of Figure 2, plus (I ∧ ki)∨ (I ∧ ik).

Each class above is already a sublattice of F , so an irredundant join of the form
(4.3) can contain at most one xj from each class. Elements in the first class occur
in no irredundant joins. I cannot be involved in an irredundant join except with
elements of the third class, which produces six more elements. It is left to consider
joins of the third and fourth classes. Using the distributive law, this turns up 14
more elements:

(I ∧ kik) ∨ ki ∨ ik, (I ∧ kik) ∨ ki, (I ∧ kik) ∨ ik,

(I ∧ kik) ∨ (ki ∧ ik), (I ∧ kik) ∨ iki,

(I ∧ ki) ∨ (I ∧ ik) ∨ (ki ∧ ik), (I ∧ ki) ∨ (I ∧ ik) ∨ iki,

(I ∧ ki) ∨ ik, (I ∧ ki) ∨ (ki ∧ ik), (I ∧ ki) ∨ iki,

(I ∧ ik) ∨ ki, (I ∧ ik) ∨ (ki ∧ ik), (I ∧ ik) ∨ iki,

(I ∧ ki ∧ ik) ∨ iki.

We conclude that the distributive lattice generated by the poset (k, i) has at most
35 elements, each of which is a join of elements from Figure 2. Since k distributes
across joins, this set is closed under k. The roles of k and i are dual (see below for
explanation) in the distributive lattice generated by (k, i), so it is also closed under
i. Finally, one can check that the 35 operations are distinguished by the set T from
(4.2). Therefore the answer to Question 1.3(2) is thirty-five.

A complete answer to Question 1.2 is given in Table 1. All of the numbers ≤ 4 in
Table 1 are trivial to verify, and some of the repetition is due to the fact that in the
presence of c, the inclusion of k or i (resp. ∧ or ∨) is equivalent to the inclusion of
k and i (resp. ∧ and ∨). Other repetition is due to duality, which we now describe.

The dual of a poset is the same underlying set, with the ordering reversed. (So
the diagram is turned upside-down.) The Boolean lattice P(X) is isomorphic with
its own dual, via the complementation map c. So any operation ϕ on P(X) has a
dual operation, ϕ̄ = cϕcn, where by cn we mean the application of c to each of the
n arguments of ϕ. One pictures ϕ̄ as a vertical reflection of ϕ; k and i are dual, as

Operations {I} {∧} {∨} {∧,∨}
{I} 1 1 1 1
{i} 2 2 2 2
{k} 2 2 2 2
{c} 2 4 4 4
{i, k} 7 13 13 35
{i, c} = {k, c} = {i, k, c} 14 ∞ ∞ ∞

Table 1. Solution to Question 1.2. Each number is the cardinality
of the subalgebra of F generated by the operations in its row and
column.
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are ∧ and ∨. The duality mapping ϕ 7→ ϕ̄ commutes with composition and so is an
automorphism of End(P(X)). It restricts to an automorphism of F (which is closed
under duality, as is any subalgebra which contains c). In particular it preserves the
cardinality of subsets. This explains, for example, why |(k, i,∧)F | = |(k, i,∨)F |.

Finally we give a simplified version of Kuratowski’s example [7] showing that
F = (k, c,∧)F is infinite. Define a closure operator k on P(N) by

(4.4) k(A) =

{

∅, A = ∅;

[minA,∞) = {minA, 1 + minA, . . . }, otherwise;

for any A ∈ P(N). It is easy to see that k satisfies Definition 2.1 and so determines
a topology on N. Let ϕ = I ∧ [k(k ∧ c)], and let E ⊂ N be the even numbers.
The reader can easily check that ϕj(E) = E ∩ [2j + 2,∞). Since these sets are all
distinct, the operations ϕj are distinct, and |F| = ∞.

5. Answers to Question 1.4

Now we alter our hypotheses by supposing that n ≥ 2 sets are initially given.
The theorems of McKinsey and Tarski apply to this case as well, so that we may
consider the free closure algebra generated by n elements. We will denote it as Fn,
and the generators as {Fn}. Remarkably, Fn also embeds in the closure algebra of
the Euclidean line.

At first glance Question 1.4 may seem intractable or at least extremely tedious.
In the presence of ∧ or ∨ the cardinalities grow at least exponentially: for example,
the two sets T × R,R × T ⊂ R2 obviously generate more than 132 = 169 distinct
subsets under k, i,∧. It turns out, however, that all of the hard work is done, and
the situation stabilizes nicely for n ≥ 2. A complete solution to Question 1.4 is
given in Table 2; below we explain the key points.

We first claim that |(k,∧)F2
| = ∞, proved in almost the same way as |F| = ∞.

Let k be the closure operator on P(N) of equation (4.4), and let E = E0 and O
be the even and odd positive integers, respectively. For j ≥ 1, define inductively
elements of the closure algebra generated by E and O by

Ej = Ej−1 ∩ k(kEj−1 ∩O).

Then the Ej = E ∩ [2j + 2,∞) are all distinct, establishing the claim. By duality
and inclusions, this justifies every occurrence of ∞ in Table 2.

The first column of Table 2 consists of algebras with unary operations only, so
the results of Table 1 can be applied to one generator at a time. For the last

Operations {I} {∧} {∨} {∧,∨}
{I} n 2n − 1 2n − 1 Dn

{i} 2n 3n − 1 ∞ ∞
{k} 2n ∞ 3n − 1 ∞

{c} 2n 22
n

22
n

22
n

{i, k} 7n ∞ ∞ ∞
{i, c} = {k, c} = {i, k, c} 14n ∞ ∞ ∞

Table 2. Solution to Question 1.4. Each number is the cardinality
of the subalgebra of Fn generated by the operations in its row and
column.
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three entries in the fourth row of Table 2, the algebra under consideration is the
free Boolean algebra with n generators. It is well-known to have 22

n

elements [3,
Theorem II.2.2(iii)].

The elements of (∧)Fn
have the form Fj1 ∧Fj2 · · ·∧Fjk , where 1 ≤ k ≤ n and the

jk ∈ {1, 2, . . . n} are distinct. Apparently they are in 1-1 correspondence with the
2n − 1 nonempty subsets of the n generators. The situation for (i,∧)Fn

is similar;
now any element is a meet in which for each Fj , one of three possibilities holds: Fj

is present, iFj is present, or both are absent. (Recall that i distributes across ∧.)
Since we do not admit the empty meet, this allows 3n − 1 possibilities. The other
occurrences of 2n − 1 and 3n − 1 in Table 2 follow from duality.

Finally, (∧,∨)Fn
is the free distributive lattice on n generators; determining its

cardinality Dn is sometimes known as Dedekind’s problem. No explicit formula for
Dn is known, but there has been much work on its asymptotics. For the curious
reader, we recall Kleitman’s result [6]: log2Dn ∼ C(n, ⌊n

2
⌋), where C(n, k) denotes

the binomial coefficient and ⌊x⌋ the greatest integer ≤ x.
Notice that each of the finite formulas of Table 2 extends to the case n = 1.

6. Remarks and related questions

Our approach suggests many other questions related to Kuratowski’s 14-set the-
orem. For example, one can consider different subalgebras of F , in which the
generating operations include other topological operations built out of {k,∧, c}.
This need not be too abstract – for example, the operation “boundary of” is k∧kc.
Some cases are discussed by Zarycki [13].

Other basic topological operations arise which do not belong to closure algebra.
We briefly mention the operation “accumulation points of,” which sends E ∈ P(X)
to its derived set DE. The operator D is not expressible in terms of k,∧, c, as con-
sideration of the set {0} ∪ {1/n} shows. This observation goes back to Kuratowski
[7].

It is also possible to generalize Definition 2.1 by relaxing the postulates and/or
replacing P(X) with non-Boolean lattices. Among the sizable research in this di-
rection, we point out [5], which deals specifically with Kuratowski’s 14-set theorem.

The present article is about the algebraic content of Kuratowski’s 14-set theorem,
but there are also investigations into its topological content. We have seen that
a topological space X contains 14-sets when it is sufficiently rich, in particular
when it contains a copy of the Euclidean line. One can ask for characterizations
of topological spaces in which certain limitations occur, and a classification along
these lines was given by Aull [1]. For a specific subset E ⊆ X , Chapman [2] gave
an exhaustive description of all possible degeneracies of the poset in Figure 1, and
Langford [9] and Shum [12] gave necessary and sufficient conditions for E to be a
14-set. It might be interesting (or it might not) to consider this kind of question in
the setup of the questions considered above.
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