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Suppose that on election day a TV news network of questionable morality
wants to increase their viewership as polling results come in. While the reporters
cannot control the outcome of the election, they can control the order in which
votes are reported to the public. If one candidate is ahead in the tally throughout
the entire day, viewership will wane since it is clear that she will win the election.
On the other hand, a more riveting broadcast occurs when one candidate is
ahead at certain times and the other candidate is ahead at others. In fact, the
network employs a group of psychologists and market analysts who have worked
out certain margins they would like to achieve at certain points in the tally. The
director of programming needs to know the number of ways this can be done.

1 THE BALLOT PROBLEM.

We will work up to the general question by first examining the special (low rat-
ings) case when one candidate has at least as many votes as the other throughout
the tally. This is the classical “ballot problem”, in which candidate E and can-
didate N are competing for a public office. Candidate E wins the election with n
votes. How many ways are there to report the votes so that at all times during
the tally N is not ahead of E?

We may represent the state of the tally at any moment by the pair (x, y),
where the coordinates x and y count the votes received by E and N respectively.
Then a tally consists of a sequence of points on the integer lattice in the plane
made in steps of E = 〈1, 0〉 and N = 〈0, 1〉. Such a sequence is called a northeast
lattice path.

We say that the lattice path q is restricted by the lattice path p if no part of
q lies directly above p. For example, Figure 1 shows two northeast lattice paths
from (0, 0) to (n, n) that are restricted by the “staircase” p = ENEN · · ·EN ,
or, equivalently, that do not go above the line y = x. The ballot problem asks
for the number Cn of these paths. (Note that if the tally ends at (n, m), we
may uniquely continue it to a northeast lattice path ending at (n, n).)

The ballot problem can be solved by constructing a simple recurrence. Let
q be a northeast lattice path restricted by the staircase p. Consider the point
on q where it first revisits the line y = x, and let i be the x-coordinate of this
point. (This point exists since q ends at (n, n).) For the upper path in Figure 1,
i = 3; for the lower path, i = 7.

Notice that since q does not go above y = x and begins at (0, 0) its first step
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Figure 1: Two northeast lattice paths from (0, 0) to (7, 7) restricted by (EN)7.

is E; further, its last step before reaching the point (i, i) is N . Therefore we
may delete these steps to obtain a northeast lattice path from (1, 0) to (i, i− 1)
that does not go above the line y = x − 1. There are Ci−1 ways to form such
a path, and there are Cn−i ways to continue this path from (i, i) to (n, n), so
we have that Cn = Σn

i=1Ci−1Cn−i. This we recognize as the familiar recurrence
satisfied by the Catalan numbers Cn =

(
2n
n

)
/(n + 1) [8, Exercise 6.19(h)], so we

simply check that the initial condition C0 = 1 agrees.

2 NOTATION AND THEOREM.

We now consider a generalization of the ballot problem. Let LP(p) be the
number of northeast lattice paths restricted by an arbitrary northeast lattice
path p from (0, 0) to (n, m). The path p represents the network’s predetermined
restrictions on the tally. It was known by MacMahon [5, p. 242] that the sum
of LP(p) over all such paths is∑

p

LP(p) =
(m + n)!(m + n + 1)!
m!n!(m + 1)!(n + 1)!

.

However, we are interested in computing LP(p) for specific p.
First we develop notation for lattice paths.
It is possible to represent a northeast lattice path as a word on {E,N}, such

as
q = EENENNEENENNEN

for the upper path in Figure 1. However, this representation is redundant,
because the location of each E step determines the path uniquely.

Therefore, we may represent a northeast lattice path by the sequence of
heights qi of the path along each interval from x = i− 1 to x = i. For example,
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for the upper path in Figure 1 we have q = (0, 0, 1, 3, 3, 4, 6). This representation
is always a nondecreasing tuple of integers, and it is our primary representation
of lattice paths in this note. A lattice path q = (q1, q2, . . . , qn) is restricted by
the lattice path p = (p1, p2, . . . , pn) precisely when q ≤ p componentwise, i.e.,
qi ≤ pi whenever 1 ≤ i ≤ n.

To write the main result, however, it turns out to be more natural to use still
another representation of a northeast lattice path p — its difference sequence

∆p = (p1, p2 − p1, . . . , pn − pn−1).

Let (v1, v2, . . . , vn) = v = ∆p. Since p is a northeast lattice path, the entries
of v are nonnegative integers. The entry vi is the number of N steps taken
along the line x = i − 1, so we can think of this representation as determining
a path by the location of each N step. The operator ∆ has an inverse Σ, which
produces the sequence of partial sums:

p = Σv = (v1, v1 + v2, . . . , v1 + v2 + · · ·+ vn).

The relationship between p and v = ∆p can be interpreted in another way.
If v = (v1, v2, . . . , vn) is a tuple of nonnegative integers, the Pitman–Stanley
polytope [7] defined by v is

Πn(v) :=
{
x ∈ Rn

≥0 : Σx ≤ Σv componentwise
}

.

Thus a tuple x = (x1, x2, . . . , xn) of nonnegative integers is a lattice point inside
Πn(v) precisely when the northeast lattice path Σx is restricted by Σv. In other
words, ∆ provides a bijection from the northeast lattice paths restricted by p
to the lattice points in Πn(∆p).

We now return to the question at hand: How many northeast lattice paths
are restricted by the path p = (p1, p2, . . . , pn−1, pn)? Equivalently, how many
lattice points lie inside Πn(∆p)? One answer to this question is the following
determinant enumeration. Let A = (aij) be the n × n matrix with entries
aij =

(
pi+1

j−i+1

)
. Then the number of northeast lattice paths restricted by p is

LP(p) = det A, as given by Kreweras [3] and Mohanty [6, Theorem 2.1]. This
fact can be obtained from the triangular system of equations

j+1∑
i=1

(−1)j−i+1

(
pi + 1

j − i + 1

)
LP((p1, p2, . . . , pi−1)) =

{
1 if j = 0
0 if j ≥ 1

for 0 ≤ j ≤ n (where LP(()) = 1), which comes from an inclusion–exclusion ar-
gument; solve for LP((p1, p2, . . . , pn)) using Cramer’s rule, and in the numerator
expand by minors along the last column.

The following theorem presents a formula for LP(p) in which the lattice
points in Πn((1, 1, . . . , 1, 1)) play a central role. This gives a non-determinantal
formula for the number of northeast lattice paths restricted by p. A gener-
alization of the formula has been independently discovered by Gessel and by
Pitman and Stanley [7, Equation (33)] in more advanced contexts. Our proof
uses elementary combinatorial methods.
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Theorem. Let p be a northeast lattice path from (0, 0) to (n, m), and let v = ∆p.
The number of northeast lattice paths restricted by p is

LP(p) =
∑

x

n∏
i=1

(
vn+1−i + xi − 1

xi

)
, (1)

where the sum is over all Cn+1 lattice points x in Πn((1, 1, . . . , 1, 1)).

We immediately obtain two well-known results as special cases. For p =
(m, m, . . . , m, m) we see that v = ∆p = (m, 0, . . . , 0, 0), which gives

LP((m, m, . . . , m, m)) =
∑

x

(
m + xn − 1

xn

) n−1∏
i=1

(
xi − 1

xi

)
.

Since (
xi − 1

xi

)
=

{
1 if xi = 0
0 if xi ≥ 1

(from the generalization of the binomial theorem (a + b)m =
∑∞

j=0

(
m
j

)
ajbm−j

to m = −1), the only nonzero terms in the sum come from lattice points of the
form (0, 0, . . . , 0, xn), and therefore

LP((m, m, . . . , m, m)) =
n∑

xn=0

(
m + xn − 1

xn

)
=
(

m + n

n

)
as expected.

For p = (1, 2, . . . , n−1, n) we recover the ballot problem. Namely, v = ∆p =
(1, 1, . . . , 1, 1), so

LP((1, 2, . . . , n− 1, n)) =
∑

x

n∏
i=1

(
xi

xi

)
=
∑

x

1 = Cn+1.

Equation (1) allows one to compute LP(p) not only for explicit integer paths
but for symbolic paths, and the resulting expressions have the pleasant property
that they are written in the basis of rising factorials a(m) = a(a+1) · · · (a+m−1).
For example, LP((v1)) = v

(0)
1 + v

(1)
1 = 1 + v1. For a general path of length 2,

we have

LP((v1, v1 + v2)) = v
(0)
2 v

(0)
1 + v

(0)
2 v

(1)
1 +

1
2
v
(0)
2 v

(2)
1 + v

(1)
2 v

(0)
1 + v

(1)
2 v

(1)
1

= 1 + v1 +
1
2
v1(v1 + 1) + v2 + v2v1,
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and LP((v1, v1 + v2, v1 + v2 + v3)) is

v
(0)
3 v

(0)
2 v

(0)
1 + v

(0)
3 v

(0)
2 v

(1)
1

+
1
2
v
(0)
3 v

(0)
2 v

(2)
1 +

1
6
v
(0)
3 v

(0)
2 v

(3)
1 + v

(0)
3 v

(1)
2 v

(0)
1 + v

(0)
3 v

(1)
2 v

(1)
1 +

1
2
v
(0)
3 v

(1)
2 v

(2)
1

+
1
2
v
(0)
3 v

(2)
2 v

(0)
1 +

1
2
v
(0)
3 v

(2)
2 v

(1)
1 + v

(1)
3 v

(0)
2 v

(0)
1 + v

(1)
3 v

(0)
2 v

(1)
1 +

1
2
v
(1)
3 v

(0)
2 v

(2)
1

+ v
(1)
3 v

(1)
2 v

(0)
1 + v

(1)
3 v

(1)
2 v

(1)
1 .

Putting equation (1) together with the determinantal formula for LP(p), we
obtain a formula for a certain symbolic determinant in the same basis:

det
(

pi + 1
j − i + 1

)
n×n

=
∑

x

n∏
i=1

1
xi!

v
(xi)
n+1−i,

where again v = ∆p.
We note that Amdeberhan and Stanley [1, Corollary 4.7] show that LP(p)

also gives the number of monomials in the expanded form of the multivariate
polynomial

n∏
i=1

pi+1∑
j=1

aj

in the variables aj . Moreover, LP(p) is the number of noncrossing matchings of
a certain type [1, Corollary 4.9].

3 PROOF OF THE THEOREM.

Let lp(v) be the number of lattice points in Πn(v), where v = (v1, v2, . . . , vn−1, vn).
That is, lp(v) = LP(Σv). The following recurrence will be used.

Proposition. We have

lp(v) =

{
1 if n = 0∑v1

j=0 lp((v1 + v2 − j, v3, . . . , vn−1, vn)) if n ≥ 1.

Proof. The only lattice point in Πn(()) is (); hence lp(()) = 1.
For n ≥ 1, we partition the lattice points w in Πn(v) according to the first

entry j = w1. Since w is a lattice point in Πn(v), then w1 + w2 ≤ v1 + v2, so
w2 ≤ v1 + v2 − j. Therefore, lattice points w = (j, w2, . . . , wn−1, wn) in Πn(v)
are in bijection (by deleting the first entry j) with lattice points in Πn−1((v1 +
v2 − j, v3, . . . , vn−1, vn)). Thus lp((v1 + v2 − j, v3, . . . , vn−1, vn)) is the number
of lattice points in Πn(v) with first entry j, giving the recurrence.

To prove the theorem, then, it suffices to show that equation (1) satisfies this
recurrence. The base case n = 0 is easily checked, since the product is empty;
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we have ∑
x

n∏
i=1

(
vn+1−i + xi − 1

xi

)
=
∑

x

1 = 1

since again Πn(()) has only one lattice point.
The remainder of this note is devoted to showing that for n ≥ 1

∑
x

n∏
i=1

(
vn+1−i + xi − 1

xi

)
=

v1∑
j=0

∑
y

(
v1 + v2 − j + yn−1 − 1

yn−1

) n−2∏
i=1

(
vn+1−i + yi − 1

yi

)
, (2)

where the left sum is over all Cn+1 lattice points x in Πn((1, 1, . . . , 1, 1)) and the
right sum is over all Cn lattice points y in Πn−1((1, 1, . . . , 1)). We proceed by
simplifying this equation until it becomes a statement about sums of binomial
coefficients, given in the lemma below.

First interchange the two summations on the right side of equation (2).
Next, fix y = (y1, y2, . . . , yn−1) on the right side, and break up the sum on
the left according to the choice of y in the following way. The children of
y = (y1, y2, . . . , yn−1) are the elements of the set

{ (y1, y2, . . . , yn−2, yn−1, 0) }∪{ (y1, y2, . . . , yn−2, yn−1−i, i+1) : 0 ≤ i ≤ yn−1 }.

For example, the children of the lattice point (0, 3, 2) are (0, 3, 2, 0), (0, 3, 2, 1),
(0, 3, 1, 2), and (0, 3, 0, 3). It is immediate that each lattice point x has a unique
parent y.

This definition is central to the proof. The reason for defining children in
this way is that x is a lattice point in Πn((1, 1, . . . , 1, 1)) if and only if x’s parent
is a lattice point in Πn−1((1, 1, . . . , 1)). This property provides a many-to-one
correspondence between the n-dimensional lattice points in Πn((1, 1, . . . , 1, 1))
and the (n − 1)-dimensional lattice points in Πn−1((1, 1, . . . , 1)). Using this
correspondence to break up equation (2), we obtain

∑
x

n∏
i=1

(
vn+1−i + xi − 1

xi

)
=

v1∑
j=0

(
v1 + v2 − j + yn−1 − 1

yn−1

) n−2∏
i=1

(
vn+1−i + yi − 1

yi

)
(3)

for each y, where the left sum is over all children x = (x1, x2, . . . , xn−1, xn)
of y. It now suffices to prove equation (3) for a fixed y, since summing both
sides of equation (3) over all Cn lattice points y in Πn−1((1, 1, . . . , 1)) produces
equation (2).

6



Note that if x is a child of y then xi = yi for 1 ≤ i ≤ n−2, so we may divide
both sides of equation (3) by the product

n−2∏
i=1

(
vn+1−i + yi − 1

yi

)
to obtain∑

x

(
v2 + xn−1 − 1

xn−1

)(
v1 + xn − 1

xn

)
=

v1∑
j=0

(
v1 + v2 − j + yn−1 − 1

yn−1

)
. (4)

We know what the children of y look like, so the sum on the left side can be
written as(

v2 + yn−1 − 1
yn−1

)(
v1 + 0− 1

0

)
+

yn−1∑
i=0

(
v2 + (yn−1 − i)− 1

yn−1 − i

)(
v1 + (i + 1)− 1

i + 1

)
.

The first term in this expression, which corresponds to the child (y1, y2, . . . , yn−1, 0)
of y, is equal to the j = v1 term on the right side of equation (4). Removing
this term from both sides leaves

yn−1∑
i=0

(
v2 + yn−1 − i− 1

yn−1 − i

)(
v1 + i

i + 1

)
=

v1−1∑
j=0

(
v1 + v2 − j + yn−1 − 1

yn−1

)
,

which is proved in the following lemma under the substitution a = v1, b = v2,
and c = yn−1.

Lemma. Let a, b, and c be nonnegative integers. Then

c∑
i=0

(
b + c− i− 1

c− i

)(
a + i

i + 1

)
=

a−1∑
j=0

(
a + b + c− j − 1

c

)
.

Proof. We show that both sides of the equation are equal to(
a + b + c

c + 1

)
−
(

b + c

c + 1

)
.

The right side is a telescoping sum:

a−1∑
j=0

(
a + b + c− j − 1

c

)
=

a−1∑
j=0

((
a + b + c− j

c + 1

)
−
(

a + b + c− j − 1
c + 1

))

=
(

a + b + c

c + 1

)
−
(

b + c

c + 1

)
.

The result for the left side follows from a generalization of the Vandermonde
identity, namely

f∑
k=0

(
d + k

k

)(
e− k

f − k

)
=
(

d + e + 1
f

)
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[4, Problem 1.42(i)]. The summand on the left side of this equation counts the
(d + e + 1− f)-element subsets of {1, 2, . . . , d + e + 1} whose (d + 1)st element
is d + k + 1 by choosing k of the first d + k elements to be not in the set and
f − k of the last e − k elements to be not in the set. The right side counts all
(d + e + 1− f)-element subsets of {1, 2, . . . , d + e + 1} by selecting the elements
not in the set.

Subtract
(

e
f

)
from both sides of this equation and substitute d = a − 1,

e = b + c, f = c + 1, and k = i + 1 to obtain

c∑
i=0

(
b + c− i− 1

c− i

)(
a + i

i + 1

)
=
(

a + b + c

c + 1

)
−
(

b + c

c + 1

)
.

Thus the director of programming may, for example, determine the likelihood
that a random tally of votes will satisfy the network’s needs.
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