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Abstract. The Tower of Hanoi problem with k pegs and n disks
has been much studied via its associated graph, Hk

n, of legal states
and moves. This has led naturally to structural questions about
Hk

n itself. For example, what is its group of symmetries, G(Hk
n)?

In this note, we prove for all k ≥ 3 and n ≥ 1 that G(Hk
n) ∼= Sk,

the group of permutations of k elements.

1. Introduction

The classical Tower of Hanoi problem consists of 3 wooden pegs and
n disks with pairwise different diameters. The n disks are initially
stacked on a single peg in order of decreasing size, from the largest at
the bottom to the smallest at the top. (See Figure 1.) The goal is to
move the tower of disks to another peg, moving one topmost disk at
a time while never stacking a disk on a smaller one, by the minimal
number of moves possible. The problem can be extended to the case
with k ≥ 3 pegs and n disks under the same set of rules.

Figure 1. Convention for labeling k pegs and n disks
in the Tower of Hanoi game.

One can construct a graph modeling the Tower of Hanoi problem
with k pegs and n disks, commonly called the Hanoi graph and denoted
Hk
n. The Hanoi graph consists of vertices, or legal states, connected by
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Figure 2. An example of a legal state.

Figure 3. A legal state that can be reached from Fig-
ure 2 by moving the topmost disk of peg 1 to peg 0.

Figure 4. An example of a perfect state.

edges between certain pairs of vertices. A legal state is any configu-
ration of the n disks stacked on the k pegs so that no disk rests on a
smaller disk. (See Figure 2.) A legal move connecting two legal states
corresponds to taking the top disk off of any peg and moving it to
another peg which contains no smaller disk. (See Figure 3.) Hence, if
there exists a legal move between two legal states (or vertices), an edge
is drawn between the two corresponding vertices in Hk

n. Moreover, a
perfect state refers to any configuration where all n disks are stacked on
a single peg. (See Figure 4.) Thus, we can restate the goal of the Tower
of Hanoi game as passing from one perfect state to another through the
shortest possible sequence of legal moves. The question about finding
shortest paths has a well-known solution for k = 3 and the main open
question in this subject is to find the length of the shortest paths for
k > 3.
H3
n has a particularly beautiful and simple recursive structure (see

Figure 5), with fascinating connections to other seemingly-unrelated
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mathematical objects, like Pascal’s triangle [P94] or Sierpinski triangle.
(See Figure 6.) It is therefore quite natural to ask whether various
properties of H3

n hold for general Hk
n. Moreover, by learning about the

structure of H4
n in particular, we hope to shed light on the question of

shortest paths for k = 4.

Figure 5. The Hanoi graph with 3 pegs and 3 disks.
Each 3-bit ternary string describes a legal state, as de-
tailed in Definition 2.5.

Figure 6. The recursive pattern of the Sierpinski triangle.

For example, let G(Hk
n) denote the group of automorphisms of Hk

n.
It is straightforward to prove that G(H3

n) ∼= S3, the group of permuta-
tions of 3 elements. This can be done by using the fact that geodesics
(shortest paths with respect to the standard graph metric) between
perfect states are unique in H3

n. This implies that any automorphism
mapping the perfect states to themselves must also map each perfect
state of every recursive substructure to itself. Therefore, by a simple
inductive argument, any automorphism fixing perfect states must be
the identity, restricting G(Hk

n) to the group of permutations of the
perfect states, i.e., S3.

This argument fails when k > 3, since it is a well known result that
geodesics are no longer unique. The purpose of this note is to provide
the following extension to k ≥ 3.

Main Theorem. G(Hk
n) ∼= Sk for all k ≥ 3 and all n ≥ 1.
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2. Definitions and Notations

A graph, Γ, consists of vertices and edges. We denote the set of
vertices of Γ by V (Γ). If there exists at least one edge whose boundary
consists of a pair, v1, v2 ∈ V (Γ), then v1 and v2 are said to be adjacent.
We will also need the following standard definitions.

Definition 2.1. (Edge Matrix) Let Γ be a graph with |V (Γ)| = N <
∞, and a fixed ordering, β = v1, . . . , vN , of V (Γ). Then we can as-
sociate to Γ an N × N edge matrix, [E(Γ)]β (written with respect to
the basis β), defined as follows. The entry eij in the ith row and jth
column of [E(Γ)]β is the number of edges between vi and vj.

Definition 2.2. (Degree) The degree of a vertex, v ∈ V (Γ), is the
number of edges one of whose endpoints is v. Denote the degree of
each vertex vi ∈ V (Γ) by deg(vi). In terms of the edge matrix [E(Γ)]β,

we have deg(vi) =
∑N

j=1 eij.

Definition 2.3. (Automorphism) An automorphism of a graph, Γ, is
an adjacency-preserving bijection g : V (Γ) → V (Γ). More precisely, if
β = v1, . . . , vN is a chosen labeling of V (Γ), and [E(Γ)]β is the corre-
sponding edge matrix, then we denote by [g(E(Γ))]g(β) the edge matrix
induced by g (written with respect to the labeling, g(β), induced by g).
Then g is a graph automorphism if and only if [g(E(Γ))]g(β) = [E(Γ)]β.
It is clear that the set of automorphisms of any graph, Γ, form a group
under composition. We denote by G(Γ) the group of automorphisms of
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the graph, Γ. Since an automorphism gives a symmetry of the graph,
this group is sometimes called the group of symmetries.

Definition 2.4. A path, γ, between two vertices, v, v′ ∈ V (Γ) is a
sequence of vertices v0, . . . , vk satisfying the following properties.

(1) v0 = v, vk = v′

(2) vj, vj+1 are connected by an edge for all j = 0, . . . , k − 1.

Then the length of such a path, γ, denoted by l(γ), will be k. Define
the distance d between v and v′ by

d(v, v′) = min
γ
{l(γ)}

where γ ranges over all paths between v and v′. For every connected
graph, Γ, d is well-defined, giving Γ the structure of a metric space.
Moreover, one easily checks that any automorphism of Γ is an isometry
of V (Γ) with respect to this metric d.

Now we are ready to explicitly define the Tower of Hanoi graph, Hk
n,

for k pegs and n disks.

Definition 2.5. (Legal States and Vertices) A vertex v ∈ V (Hk
n) is

an n-bit k-ary string, an−1an−2 . . . a0 with ai ∈ {0, . . . , k − 1}. Such a
vertex corresponds to the legal state that has disk i on peg ai, where
disks are labeled from 0 to k−1, from smallest to largest. (See Figure 1.)

Remark 2.6. For a given n-bit k-ary string, all digits with the same
ai have to be stacked on peg ai in a unique way, hence every n-bit
k-ary string uniquely defines a legal state, and all legal states can be
represented in this way. Hence, |V (Hk

n)| = kn.

Definition 2.7. (Legal Moves) We denote by Lij the legal move be-
tween peg i and j, from a vertex an−1an−2 . . . a0. More precisely, con-
sider the smallest disk of an−1an−2 . . . a0 that is either on peg i or j
(That is, the right-most occurrence of either i or j in an−1an−2 . . . a0.)
Call this term ak. Then, al /∈ {i, j} for l < k. Let ak = i if ak = j,
j if ak = i. Then the legal move Lij from the vertex an−1an−2 . . . a0

between peg i and j is to the vertex given by an−1 . . . ak+1akak−1 . . . a0.
(I.e., Figure 2 and Figure 3 are connected by a legal move, L01.)

Definition 2.8. (Edges and Edge Matrix) An edge is said to exist
between vertices v1, v2 ∈ V (Hk

n) if the corresponding legal states can
be connected by a legal move. One easily finds that if a legal move
exists between two vertices, it has to be unique. Therefore, every pair
of adjacent vertices in Hk

n is connected by at most one edge. This
implies that the entries of [E(Hk

n)]β are in {0, 1}.
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Remark 2.9. To prove that Hk
n is connected (and, hence, that d(v1, v2)

is well-defined for all v1, v2 ∈ V (Hk
n)), it suffices to show that there

exists a path between a perfect state and an arbitrary state. It is well-
known that this is true for k = 3. We sketch the argument for general
k ≥ 3, assuming the result for k = 3. Without loss of generality,
assume that we want to move a perfect state, 0n, to an arbitrary state
v = an−1an−2 . . . a0 ∈ V (Hk

n). First, by considering only the first 3
pegs (peg 0, 1, 2), we can distribute the tower of n disks on peg 0 to
the pegs 0, 1, and 2 so that the disks on pegs 0 and 1 match those
corresponding to the vertex v; and the disks on peg 2 are all the other
ones. More precisely, 0n has been transferred to an intermediate vertex
v0,1,2 = bn−1bn−2 . . . b0 where bi = ai if ai ∈ {0, 1} and bi = 2 otherwise.
Repeat this process for pegs 1, 2, and 3 so that we can have disks on peg
1, 2 and 3 where the disks on peg 1 and 2 match those corresponding
to the vertex v; and remaining disks (now other than the ones on
peg 0, 1, 2) are all on peg 3. Therefore, 0n has been transferred again
from v0,1,2 to another intermediate vertex v0,1,2,3 = cn−1cn−2 . . . c0 where
ci = ai if ai ∈ {0, 1, 2} and ci = 3 otherwise. By repeating this process
a finite number of times, we obtain v in a finite number of legal moves.

Definition 2.10. (Corner vertices) A corner vertex of Hk
n is a vertex

whose n-bit string corresponds to a perfect state. Denote the corner
vertex corresponding to the ith peg by in.

Definition 2.11. (Substructures) A substructure, [i], is the set of ver-
tices of Hk

n whose n-bit strings correspond to legal states whose largest
disk lies on peg i. In particular, if v ∈ [i], then v = ian−2 . . . a0.

Notation 2.12. Let Sk denote the group of permutations of the k-
element set, {0, 1, . . . , k − 1}. For each σ ∈ Sk, define the map

gσ : V (Hk
n)→ V (Hk

n)

by

gσ(an−1 · · · a1a0) := σ(an−1) · · · σ(a1)σ(a0)

for an−1 · · · a1a0 ∈ V (Hk
n). Denote by G(Sk) the set {gσ | σ ∈ Sk}. As

will be shown in the next section, G(Sk) is actually a group and it is
isomorphic to Sk.

3. Proof of Main Theorem

We prove the main theorem by showing that G(Sk) ≤ G(Hk
n) and

G(Hk
n) ≤ G(Sk), which implies that G(Hk

n) ∼= G(Sk) ∼= Sk.
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Step 1: G(Sk) ≤ G(Hk
n).

Proposition 3.1. For each σ ∈ Sk, gσ is an automorphism of Hk
n.

Hence, G(Sk) ≤ G(Hk
n).

Proof. For each σ ∈ Sk, we must show that gσ is a bijection which
preserves adjacency. To see that it is injective, we must show that
gσ(an−1 . . . a1a0) = gσ(an−1′ . . . a1′a0′) implies an−1 . . . a1a0 = an−1′ . . . a1′a0′ .
For a given σ ∈ Sk, if gσ(an−1 . . . a1a0) = gσ(an−1′ . . . a1′a0′), then
σ(an−1) . . . σ(a1)σ(a0) = σ(an−1′) . . . σ(a1′)σ(a0′), which implies σ(ai) =
σ(ai′) for every 0 ≤ i ≤ n−1. Moreover, since every v = an−1 . . . a1a0 ∈
V (Hk

n) has a corresponding v′ = gσ−1(an−1) . . . gσ−1(a1)gσ−1(a0) ∈ V (Hk
n)

such that gσ(v′) = v, it is clear that gσ is surjective. Hence, gσ is bi-
jective.

To prove that it preserves adjacency, we must show that [E(Hk
n)]β =

[gσ(E(Hk
n))]gσ(β) where β is the fixed basis of matrix E(Hk

n) as in Def-
inition 2.1. By Notation 2.8, eij = 1 implies that

vi = an−1 . . . ak+1akak−1 . . . a0

vj = an−1 . . . ak+1akak−1 . . . a0

where al /∈ {ak, ak}, ∀l < k. Since gσ is bijective, this is exactly
equivalent to

gσ(vi) = σ(an−1) . . . σ(ak+1)σ(ak)σ(ak−1) . . . σ(a0)

gσ(vj) = σ(an−1) . . . σ(ak+1)σ(ak)σ(ak−1) . . . σ(a0)

where σ(al) /∈ {σ(ak), σ(ak)}, ∀l < k. Hence, gσ(eij) = 1 iff eij = 1.
Therefore, ∀ σ ∈ Sk, gσ is an automorphism. �

Step 2: G(Hk
n) ≤ G(Sk).

We begin with a useful lemma.

Lemma 3.2. Every automorphism in G(Hk
n) permutes the corner ver-

tices, {0n, 1n, . . . , (k − 1)n}. That is, for all g ∈ G(Hk
n) and i ∈

{0, . . . , k − 1}, there exists a unique j ∈ {0, . . . , k − 1} such that
g(in) = (jn).

Proof. We use the fact that the degree of the corner vertices is strictly
smaller than that of non-corner vertices. Since a graph automorphism
preserves degree, it must therefore send corner vertices to corner ver-
tices.

To see that the degree of each corner vertex is strictly smaller than
the degree of each non-corner vertex, we compute the degree of a vertex
in terms of the number of “topmost disks” of each vertex. For a given
vertex, the topmost disk on each peg i is defined to be the smallest disk
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among those stacked on peg i. Therefore, the degree of a vertex is the
sum of the number of legal moves each of its topmost disks can make.
Since a corner vertex has only one topmost disk, which is disk 0, its
degree is k − 1, the number of legal moves disk 0 can make. Now we
must show that degree of each non-corner vertex is strictly larger than
k − 1. If a vertex, v, is not a corner vertex, it has n disks distributed
on at least 2 pegs. Hence, it has at least 2 topmost disks. Label the
smallest and second smallest of those topmost disks, respectively b0
and b1. Then b0 can be moved to any other k − 1 pegs and b1 to any
other except where b0 is stacked on, since b0 is the only topmost disk
that is smaller than b1. Therefore, every non-corner vertex has degree
of at least (k− 1) + (k− 2) = 2k− 3, which is strictly larger than k− 1
for every k ≥ 3. �

To prove G(Hk
n) ≤ G(Sk) (and, hence, the main theorem), it suffices

to prove the following proposition.

Proposition 3.3. If g ∈ G(Hk
n) satisfies

g(in) = in ∀ i ∈ {0, . . . , k − 1},

then g is the identity automorphism. In other words, the only auto-
morphism in G(Hk

n) that fixes the corner vertices is the identity.

Proposition 3.3 implies G(Hk
n) ≤ G(Sk) because, by Lemma 3.2, ev-

ery g ∈ G(Hk
n) induces a permutation of the corner vertices, hence

of the set {0, . . . , k − 1}. Therefore, there exists a σ ∈ Sk that in-
duces the same permutation of the set {0, . . . , k − 1} as g does. Then,
gσ−1 ◦ g(0n, 1n, . . . , (k − 1)n) = (0n, 1n, . . . , (k − 1)n). Hence, as soon
as Proposition 3.3 holds, gσ−1 ◦ g has to be the identity automorphism,
making g = gσ ∈ G(Sk). Hence G(Hk

n) ≤ G(Sk).

Proof of Proposition 3.3. We proceed by induction on n, fixing k.
Base case: n = 1. Trivial, since all vertices of Hk

1 are corner vertices
and the vertices are connected to one another by a single edge. Hence,
any automorphism which fixes all the corner vertices fixes all vertices
as well as edges, thereby inducing the identity automorphism.
Inductive Step: Assume that the proposition holds for n − 1. To
prove that this implies that the proposition holds for n, we will need
three lemmas, each helping prove the subsequent one. The argument
for the first lemma was told to us by Michael Rand.

Lemma 3.4. [R08] Any shortest path between a corner vertex, in, and
an arbitrary vertex, v, involves moving the largest disk zero times if
v ∈ [i]; once otherwise.
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Proof. It is clear that if in and v are in the same substructure, [i], the
shortest path between them does not need to move the largest disk at
all. To show that the largest disk moves exactly once when v /∈ [i], we
prove that any path which moves the largest disk twice can be made
strictly shorter by instead moving the largest disk once. Since any
shortest path between in and v /∈ [i] that moves the largest disk more
than twice necessarily contains a shortest path between an intermediate
vertex and in that involves moving the largest disk exactly twice, the
argument that it can’t be moved twice therefore implies that it can’t
be moved more than twice as well.

We will prove by contradiction that no shortest path between in and
v involves moving the largest disk twice. Without loss of generality,
assume that there is a shortest path from 0n to v /∈ [0] moving the
largest disk exactly twice—first to peg 1 and then to peg 2. Then we
can write the path as a sequence of steps:

(1) Move the n − 1 smallest disks off of peg 0 (leaving peg 1 clear
at the end).

(2) Move the largest disk from 0 to 1.
(3) Some number of moves on the n− 1 smallest disks (may be 0)

which leave peg 2 empty and peg 1 containing only the largest
disk.

(4) Move the largest disk from 1 to 2.
(5) Some number of moves (maybe 0) to get to the vertex v.

We claimed that this is the shortest path from 0n to v, but we can
create an even shorter path as follows.

(1) Do the same moves as in (1), but with the roles of pegs 1 and
2 switched.

(2) Move the largest disk from 0 to 2.
(3) Do the same moves as in (3), but with the roles of pegs 1 and

2 switched.
(4) Repeat step (5) above.

The second sequence of steps is one legal move shorter than the initial
sequence, hence contradicts the assumption. Therefore, if v /∈ [0], the
shortest path between 0n to v involves moving the largest disk exactly
once. �

Lemma 3.5. For all v ∈ [i], d(v, in) < d(v, jn) ∀ j 6= i.

Proof. To simplify notation we re-index the pegs; doing this, we assume
for the rest of the argument that i = 0 and j = 1. By Lemma 3.4, the
shortest path, γ, from v ∈ [0] to 1n involves moving the largest disk
exactly once. Therefore we can further assume that γ can be split into
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Figure 7. The sketch of proof for Lemma 3.5. l(γ2) =
d(v1, 1n) = d(v0, 0n) and triangle inequality is applied to
find d(v, 0n) < d(v, 1n).

three parts: γ1, an intermediate legal move, and γ2. More precisely, γ1

is the path from v to v0 = 0an−2 . . . a1a0, ai /∈ {0, 1}; an intermediate
legal move is from v0 = 0an−2 . . . a1a0 to v1 = 1an−2 . . . a1a0; finally,
γ2 is from v1 = 1an−2 . . . a1a0 to 1n. (See Figure 7.) We can easily
observe that l(γ2) = d(v1, 1n) = d(v0, 0n) since the relationship between
configurations v1 and 1n, and that of v0 and 0n are exactly symmetric.
Hence,

d(v, 0n) ≤ d(v, v0) + d(v0, 0n) (by the triangle inequality)

< d(v, v0) + 1 + d(v0, 0n)

= d(v, v0) + 1 + d(v1, 1n)

= d(v, 1n).

�

Lemma 3.6. If g ∈ G(Hk
n) satisfies g(in) = in, then g(v) ∈ [i] for all

v ∈ [i]. I.e., g([i]) = [i] as a set.

Proof. For concreteness we assume that 0n is the vertex which is fixed
by hypothesis. Now assume, aiming for a contradiction, that there
exists v ∈ [0] such that g(v) ∈ [i], i 6= 0. By Lemma 3.2, there exists a
unique j 6= 0 such that g(jn) = in. Thus, both g(v) and g(jn) are in
[i]. Thus, since g(jn) = in, by Lemma 3.6 we have

d(g(v), g(jn)) < d(g(v), g(kn))

∀k 6= j. Since ∀g ∈ G(Hk
n) is an isometry, the previous statement

implies d(v, jn) < d(v, kn), ∀k 6= j. Since 0 6= j, it follows that
d(v, jn) < d(v, 0n) with v ∈ [0], which contradicts Lemma 3.5. �

Now assume that Proposition 3.3 holds for G(Hk
n−1) for all k ≥ 3,

and let g ∈ G(Hk
n) satisfy g(in) = in for all i ∈ {0, . . . , k−1}. We have

to show that this implies that g is the identity automorphism of Hk
n.
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By Lemma 3.6, g(in) = in for all i ∈ {0, . . . , k − 1} implies g([i]) = [i]
for all i ∈ {0, . . . , k − 1}. Thus, for all i, g|[i] is an automorphism of

iV (Hk
n−1) := {ian−2 · · · a1a0 | an−2 · · · a1a0 ∈ V (Hk

n−1)}
Since the leading entry, i, is fixed, the automorphism g restricted to
[i] is an automorphism which we denote gi : V (Hk

n−1) → V (Hk
n−1).

Moreover, gi satisfies gi(in−1) = in−1.
By Lemma 3.2, for all j 6= i, there exists a unique l 6= i such that

gi(jn−1) = ln−1, hence g(ijn−1) = iln−1. We will now show that j = l,
hence g(ijn−1) = ijn−1 for all j. We note the observation that ijn−1

is never adjacent to any vertex in [j], but on the other hand, has an
adjacent vertex, ljn−1, in any other substructure [l], ∀l 6= j. Since g is
an automorphism it preserves adjacency, hence the above observation
implies that g(ijn−1) is still never adjacent to any vertex in g([j]) = [j],
but has an adjacent vertex in any other substructure g([l]) = [l], ∀l 6= j.
Hence g(ijn−1) = ijn−1 since otherwise it must be adjacent to a vertex
in [j]. Thus, g(ijn−1) = ijn−1 for all j. This implies that for all i,
gi ∈ G(Hk

n−1) satisfies the assumption of Proposition 3.3. Hence, by
the inductive hypothesis, gi is the identity for all i, implying that g
fixes all the vertices of Hk

n. Thus, since there is at most one edge
between any pair of vertices, any automorphism which fixes all the
vertices must fix all the edges as well. Thus, we have shown g is the
identity automorphism. �

Step 1 and Step 2 are now proved. Hence, G(Hk
n) ∼= G(Sk) ∼= Sk,

as desired.
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