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SOLVING A GENERALIZED HERON PROBLEM

BY MEANS OF CONVEX ANALYSIS

BORIS S. MORDUKHOVICH1, NGUYEN MAU NAM2 and JUAN SALINAS3

Abstract The classical Heron problem states: on a given straight line in the plane, find a point C

such that the sum of the distances from C to the given points A and B is minimal. This problem can

be solved using standard geometry or differential calculus. In the light of modern convex analysis,

we are able to investigate more general versions of this problem. In this paper we propose and solve

the following problem: on a given nonempty closed convex subset of IRs, find a point such that the

sum of the distances from that point to n given nonempty closed convex subsets of IRs is minimal.

1 Problem Formulation

Heron from Alexandria (10–75 AD) was “a Greek geometer and inventor whose writings

preserved for posterity a knowledge of the mathematics and engineering of Babylonia, an-

cient Egypt, and the Greco-Roman world” (from the Encyclopedia Britannica). One of the

geometric problems he proposed in his Catroptica was as follows: find a point on a straight

line in the plane such that the sum of the distances from it to two given points is minimal.

Recall that a subset Ω of IRs is called convex if λx + (1 − λ)y ∈ Ω whenever x and y

are in Ω and 0 ≤ λ ≤ 1. Our idea now is to consider a much broader situation, where two

given points in the classical Heron problem are replaced by finitely many closed and convex

subsets Ωi, i = 1, . . . , n, and the given line is replaced by a given closed and convex subset

Ω of IRs. We are looking for a point on the set Ω such that the sum of the distances from

that point to Ωi, i = 1, . . . , n, is minimal.

The distance from a point x to a nonempty set Ω is understood in the conventional way

d(x; Ω) = inf
{
||x− y||

∣∣ y ∈ Ω
}
, (1.1)

where || · || is the Euclidean norm in IRs. The new generalized Heron problem is formulated

as follows:

minimize D(x) :=
n∑

i=1

d(x; Ωi) subject to x ∈ Ω, (1.2)

where all the sets Ω and Ωi, i = 1, . . . , n, are nonempty, closed, and convex; these are

our standing assumptions in this paper. Thus (1.2) is a constrained convex optimization
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problem, and hence it is natural to use techniques of convex analysis and optimization to

solve it.

2 Elements of Convex Analysis

In this section we review some basic concepts of convex analysis used in what follows. This

material and much more can be found, e.g., in the books [2, 3, 5].

Let f : IRs → IR := (−∞,∞] be an extended-real-valued function, which may be infinite

at some points, and let

dom f :=
{
x ∈ IRs

∣∣ f(x) < ∞
}

be its effective domain. The epigraph of f is a subset of IRs × IR defined by

epi f :=
{
(x, α) ∈ IRs+1

∣∣ x ∈ dom f and α ≥ f(x)
}
.

The function f is closed if its epigraph is closed, and it is convex is its epigraph is a convex

subset of IRs+1. It is easy to check that f is convex if and only if

f
(
λx+ (1− λ)y

)
≤ λf(x) + (1− λ)f(y) for all x, y ∈ dom f and λ ∈ [0, 1].

Furthermore, a nonempty closed subset Ω of IRs is convex if and only if the corresponding

distance function f(x) = d(x; Ω) is a convex function. Note that the distance function

f(x) = d(x; Ω) is Lipschitz continuous on IRs with modulus one, i.e.,

|f(x)− f(y)| ≤ ||x− y|| for all x, y ∈ IRs.

A typical example of an extended-real-valued function is the set indicator function

δ(x; Ω) :=

{
0 if x ∈ Ω,

∞ otherwise.
(2.1)

It follows immediately from the definitions that the set Ω ⊂ IRs is closed (resp. convex) if

and only if the indicator function (2.1) is closed (resp. convex).

An element v ∈ IRs is called a subgradient of a convex function f : IRs → IR at x̄ ∈ domf

if it satisfies the inequality

〈v, x− x̄〉 ≤ f(x)− f(x̄) for all x ∈ IRs, (2.2)

where 〈·, ·〉 stands for the usual scalar product in IRs. The set of all the subgradients v

in (2.2) is called the subdifferential of f at x̄ and is denoted by ∂f(x̄). If f is convex and

differentiable at x̄, then ∂f(x̄) = {∇f(x̄)}.

A well-recognized technique in optimization is to reduce a constrained optimization

problem to an unconstrained one using the indicator function of the constraint. Indeed,

x̄ ∈ Ω is a minimizer of the constrained optimization problem:

minimize f(x) subject to x ∈ Ω (2.3)
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if and only if it solves the unconstrained problem

minimize f(x) + δ(x; Ω), x ∈ IRs. (2.4)

By the definitions, for any convex function ϕ : IRs → IR,

x̄ is a minimizer of ϕ if and only if 0 ∈ ∂ϕ(x̄), (2.5)

which is nonsmooth convex counterpart of the classical Fermat stationary rule. Applying

(2.5) to the constrained optimization problem (2.3) via its unconstrained description (2.4)

requires the usage of subdifferential calculus. The most fundamental calculus result of convex

analysis is the following Moreau-Rockafellar theorem for representing the subdifferential of

sums.

Theorem 2.1 Let ϕi : IR
s → IR, i = 1, . . . ,m, be closed convex functions. Assume that

there is a point x̄ ∈ ∩n
i=1domϕi at which all but (except possibly one) of the functions

ϕ1, . . . , ϕm are continuous. Then we have the equality

∂
( m∑

i=1

ϕi

)
(x̄) =

m∑

i=1

∂ϕi(x̄).

Given a convex set Ω ⊂ IRs and a point x̄ ∈ Ω, the corresponding geometric counterpart

of (2.2) is the normal cone to Ω at x̄ defined by

N(x̄; Ω) :=
{
v ∈ IRs

∣∣ 〈v, x− x̄〉 ≤ 0 for all x ∈ Ω
}
. (2.6)

It easily follows from the definitions that

∂δ(x̄; Ω) = N(x̄; Ω) for every x̄ ∈ Ω, (2.7)

which allows us, in particular, to characterize minimizers of the constrained problem (2.3)

in terms of the subdifferential (2.2) of f and the normal cone (2.6) to Ω by applying

Theorem 2.1 to the function ϕ(x) = f(x) + δ(x; Ω) in (2.5).

Finally in this section, we present a useful formula for computing the subdifferential of

the distance function (1.1) via the unique Euclidean projection

Π(x̄; Ω) :=
{
x ∈ Ω

∣∣ ||x− x̄|| = d(x; Ω)
}

(2.8)

of x̄ ∈ IRs on the closed and convex set Ω ⊂ IRs.

Proposition 2.2 Let Ω 6= ∅ be a closed and convex of IRs. Then

∂d(x̄; Ω) =





{ x̄−Π(x̄; Ω)

d(x̄; Ω)

}
if x̄ /∈ Ω,

N(x̄; Ω) ∩ IB if x̄ ∈ Ω,

where IB is the closed unit ball of IRs.
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3 Optimal Solutions to the Generalized Heron Problem

In this section we derive efficient characterizations of optimal solutions to the generalized

Heron problem (1.2), which allow us to completely solve this problem in some important

particular settings.

First let us present general conditions that ensure the existence of optimal solutions to

(1.2).

Proposition 3.1 Assume that one of the sets Ω and Ωi, i = 1, . . . , n, is bounded. Then

the generalized Heron problem (1.2) admits an optimal solution.

Proof. Consider the optimal value

γ := inf
x∈Ω

D(x)

in (1.2) and take a minimizing sequence {xk} ⊂ Ω with D(xk) → γ as k → ∞. If the

constraint set Ω is bounded, then by the classical Bolzano-Weierstrass theorem the sequence

{xk} contains a subsequence converging to some point x̄, which belongs to the set Ω due to

it closedness. Since the function D(x) in (1.2) is continuous, we have D(x̄) = γ, and thus

x̄ is an optimal solution to (1.2).

It remains to consider the case when one of sets Ωi, say Ω1, is bounded. In this case we

have for the above sequence {xk} when k is sufficiently large that

d(xk; Ω1) ≤ D(xk) < γ + 1,

and thus there exists wk ∈ Ω1 with ||xk − wk|| < γ + 1 for such indexes k. Then

||xk|| < ||wk||+ γ + 1,

which shows that the sequence {xk} is bounded. The existence of optimal solutions follows

in this case from the arguments above. △

To characterize in what follows optimal solutions to the generalized Heron problem (1.2),

for any nonzero vectors u, v ∈ IRs define the quantity

cos(v, u) :=
〈v, u〉

||v|| · ||u||
. (3.1)

We say that Ω has a tangent space at x̄ if there exists a subspace L = L(x̄) 6= {0} such that

N(x̄; Ω) = L⊥ :=
{
v ∈ IRs

∣∣ 〈v, u〉 = 0 whenever u ∈ L
}
. (3.2)

The following theorem gives necessary and sufficient conditions for optimal solutions to

(1.2) in terms of projections (2.8) on Ωi incorporated into quantities (3.1). This theorem

and its consequences are also important in verifying the validity of numerical results in the

Section 3.
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Theorem 3.2 Consider problem (1.2) in which

Ωi ∩ Ω = ∅ for all i = 1, . . . , n. (3.3)

Given x̄ ∈ Ω, define the vectors

ai(x̄) :=
x̄−Π(x̄; Ωi)

d(x̄; Ωi)
6= 0, i = 1, . . . , n, (3.4)

Then x̄ ∈ Ω is an optimal solution to the generalized Heron problem (1.2) if and only if

−
n∑

i=1

ai(x̄) ∈ N(x̄; Ω). (3.5)

Suppose in addition that the constraint set Ω has a tangent space L at x̄. Then (3.5) is

equivalent to
n∑

i=1

cos
(
ai(x̄), u

)
= 0 whenever u ∈ L \ {0}. (3.6)

Proof. Fix an optimal solution x̄ to problem (1.2) and equivalently describe it as an optimal

solution to the following unconstrained optimization problem:

minimize D(x) + δ(x; Ω), x ∈ IRs. (3.7)

Applying the generalized Fermat rule (2.5) to (3.7), we characterize x̄ by

0 ∈ ∂
( n∑

i=1

d(·; Ωi) + δ(·; Ω)
)
(x̄). (3.8)

Since all of the functions d(·; Ωi), i = 1, . . . , n, are convex and continuous, we employ the

subdifferential sum rule of Theorem 2.1 to (3.8) and arrive at

0 ∈ ∂
(
D + δ(·,Ω)

)
(x̄) =

n∑

i=1

∂d(x̄; Ωi) +N(x̄; Ω)

=

n∑

i=1

ai(x̄) +N(x̄; Ω),

(3.9)

where the second representation in (3.9) is due to (2.7) and the subdifferential description of

Proposition 2.2 with ai(x̄) defined in (3.4). It is obvious that (3.9) and (3.5) are equivalent.

Suppose in addition that the constraint set Ω has a tangent space L at x̄. Then the

inclusion (3.5) is equivalent to

0 ∈
n∑

i=1

ai(x̄) + L⊥,

which in turn can be written in the form

〈 n∑

i=1

ai(x̄), u
〉
= 0 for all u ∈ L.
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Taking into account that ||ai(x̄)|| = 1 for all i = 1, . . . , n by (3.4) and assumption (3.3), the

latter equality is equivalent to

n∑

i=1

〈ai(x̄), v〉

||ai(x̄)|| · ||u||
= 0 for all u ∈ L \ {0},

which gives (3.6) due to the notation (3.1) and thus completes the proof of the theorem. △

To further specify the characterization of Theorem 3.2, recall that a set A of IRs is an

affine subspace if there is a vector a ∈ A and a (linear) subspace L such that A = a+L. In

this case we say that A is parallel to L. Note that the subspace L parallel to A is uniquely

defined by L = A−A = {x− y | x ∈ A, y ∈ A} and that A = b+ L for any vector b ∈ A.

Corollary 3.3 Let Ω be an affine subspace parallel to a subspace L, and let assumption

(3.3) of Theorem 3.2 be satisfied. Then x̄ ∈ Ω is a solution to the generalized Heron problem

(1.2) if and only if condition (3.6) holds.

Proof. To apply Theorem 3.2, it remains to check that L is a tangent space of Ω at x̄

in the setting of this corollary. Indeed, we have Ω = x̄ + L, since Ω is an affine subspace

parallel to L. Fix any v ∈ N(x̄; Ω) and get by (2.6) that 〈v, x− x̄〉 ≤ 0 whenever x ∈ Ω and

hence 〈v, u〉 ≤ 0 for all u ∈ L. Since L is a subspace, the latter implies that 〈v, u〉 = 0 for

all u ∈ L, and thus N(x̄; Ω) ⊂ L⊥. The opposite inclusion is trivial, which gives (3.2) and

completes the proof of the corollary. △

The underlying characterization (3.6) can be easily checked when the subspace L in

Theorem 3.2 is given as a span of fixed generating vectors.

Corollary 3.4 Let L = span{u1, . . . , um} with uj 6= 0, i = 1, . . . ,m, in the setting of

Theorem 3.2. Then x̄ ∈ Ω is an optimal solution to the generalized Heron problem (1.2) if

and only if
n∑

i=1

cos
(
ai(x̄), uj

)
= 0 for all j = 1, . . . ,m. (3.10)

Proof. We show that (3.6) is equivalent to (3.10) in the setting under consideration. Since

(3.6) obviously implies (3.10), it remains to justify the opposite implication. Denote

a :=

n∑

i=1

ai(x̄)

and observe that (3.10) yields the condition

〈a, uj〉 = 0 for all j = 1, . . . m, (3.11)

since uj 6= 0 for all j = 1, . . . ,m and ||ai|| = 1 for all i = 1, . . . , n. Taking now any vector

u ∈ L \ {0}, we represent it in the form

u =

m∑

j=1

λjuj with some λj ∈ IRn
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and get from (3.11) the equalities

〈a, u〉 =
n∑

j=1

λj〈a, uj〉 = 0.

This justifies (3.6) and completes the proof of the corollary. △

Let us further examine in more detail the case of two sets Ω1 and Ω2 in (1.2) with

the normal cone to the constraint set Ω being a straight line generated by a given vector.

This is a direct extension of the classical Heron problem to the setting when two points are

replaced by closed and convex sets, and the constraint line is replaced by a closed convex

set Ω with the property above. The next theorem gives a complete and verifiable solution

to the new problem.

Theorem 3.5 Let Ω1 and Ω2 be subsets of IRs as s ≥ 1 with Ω ∩ Ωi = ∅ for i = 1, 2 in

(1.2). Suppose also that there is a vector a 6= 0 such that N(x̄; Ω) = span{a}. The following

assertions hold, where ai := ai(x̄) are defined in (3.4):

(i) If x̄ ∈ Ω is an optimal solution to (1.2), then

either a1 + a2 = 0 or cos(a1, a) = cos
(
a2, a). (3.12)

(ii) Conversely, if s = 2 and

either a1 + a2 = 0 or
[
a1 6= a2 and cos(a1, a) = cos(a2, a)

]
, (3.13)

then x̄ ∈ Ω is an optimal solution to the generalized Heron problem (1.2).

Proof. It follows from the above (see the proof of Theorem 3.2) that x̄ ∈ Ω is an optimal

solution to (1.2) if and only if −a1−a2 ∈ N(x̄; Ω). By the assumed structure of the normal

cone to Ω the latter is equivalent to the alternative:

either a1 + a2 = 0 or a1 + a2 = λa with some λ 6= 0. (3.14)

To justify (i), let us show that the second equality in (3.14) implies the corresponding

one in (3.12). Indeed, we have ||a1|| = ||a1|| = 1, and thus (3.14) implies that

λ2||a||2 = ||a1 + a2||
2 = ||a1||

2 + ||a2||
2 + 2〈a1, a2〉 = 2 + 2〈a1, a2〉.

The latter yields in turn that

〈a1, λa〉 = 〈λa− a2, λa〉

= λ2||a||2 − λ〈a2, a〉

= 2 + 2〈a1, a2〉 − λ〈a2, a〉

= 2〈a2, a2〉+ 2〈a1, a2〉 − λ〈a2, a〉

= 2〈a2 + a1, a2〉 − λ〈a2, a〉

= 2〈λa, a2〉 − λ〈a2, a〉 = 〈a2, λa〉,
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which ensures that 〈a1, a〉 = 〈a2, a〉 as λ 6= 0. This gives us the equality cos(a1, a) =

cos(a2, a) due to ||a1|| = ||a2|| = 1 and a 6= 0. Hence we arrive at (3.12).

To justify (ii), we need to prove that the relationships in (3.13) imply the fulfillment of

− a1 − a2 ∈ N(x̄; Ω) = span{a}. (3.15)

If −a1 − a2 = 0, then (3.15) is obviously satisfied. Consider the alternative in(3.13) when

a1 6= a2 and cos(a1, a) = cos(a2, a). Since we are in IR2, represent a1 = (x1, y1), a2 =

(x2, y2), and a = (x, y) with two real coordinates. Then by (3.1) the equality cos(a1, a) =

cos(a2, a) can be written as

x1x+ y1y = x2x+ y2y, i.e., (x1 − x2)x = (y2 − y1)y. (3.16)

Since a 6= 0, assume without loss of generality that y 6= 0. By

||a1||
2 = ||a2||

2 ⇐⇒ x21 + y21 = x22 + y22

we have the equality (x1 − x2)(x1 + x2) = (y2 − y1)(y2 + y1), which implies by (3.16) that

y(x1 − x2)(x1 + x2) = x(x1 − x2)(y2 + y1). (3.17)

Note that x1 6= x2, since otherwise we have from (3.16) that y1 = y2, which contradicts the

condition a1 6= a2 in (3.13). Dividing both sides of (3.17) by x1 − x2, we get

y(x1 + x2) = x(y2 + y1),

which implies in turn that

y(a1 + a2) = y(x1 + x2, y1 + y2) =
(
x(y1 + y2), y(y1 + y2)

)
= (y1 + y2)a.

In this way we arrive at the representation

a1 + a2 =
y1 + y2

y
a

showing that inclusion (3.15) is satisfied. This ensures the optimality of x̄ in (1.2) and thus

completes the proof of the theorem. △

Finally in this section, we present two examples illustrating the application of Theo-

rem 3.2 and Corollary 3.4, respectively, to solving the corresponding the generalized and

classical Heron problems.

Example 3.6 Consider problem (1.2) where n = 2, the sets Ω1 and Ω2 are two point A and

B in the plane, and the constraint Ω is a disk that does not contain A and B. Condition

(3.5) from Theorem 3.2 characterizes a solution M ∈ Ω to this generalized Heron problem

as follows. In the first case the line segment AB intersects the disk; then the intersection

is a optimal solution. In this case the problem may actually have infinitely many solutions.

Otherwise, there is a unique point M on the circle such that a normal vector −→n to Ω at M

is the angle bisector of angle AMB, and that is the only optimal solution to the generalized

Heron problem under consideration; see Figure 1.
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Figure 1: Generalized Heron Problem for Two Points with Disk Constraint.

Example 3.7 Consider problem (1.2), where Ωi = {Ai}, i = 1, . . . , n, are n points in the

plane, and where Ω = L ⊂ IR2 is a straight line that does not contain these points. Then,

by Corollary 3.4 of Theorem 3.2, a point M ∈ L is a solution to this generalized Heron

problem if and only if

cos(
−−−→
MA1,

−→a ) + · · · + cos(
−−−→
MAn,

−→a ) = 0,

where −→a is a direction vector of L. Note that the latter equation completely characterizes

the solution of the classical Heron problem in the plane in both cases when A1 and A2 are

on the same side and different sides of L; see Figure 2.
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Figure 2: The Classical Heron Problem.

4 Numerical Algorithm and Its Implementation

In this section we present and justify an iterative algorithm to solve the generalized Heron

problem (1.2) numerically and illustrate its implementations by using MATLAB in two

important settings with disk and cube constraints. Here is the main algorithm.
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Theorem 4.1 Let Ω and Ωi, i = 1, . . . , n, be nonempty closed convex subsets of IRs such

that at least one of them is bounded. Picking a sequence {αk} of positive numbers and a

starting point x1 ∈ Ω, consider the iterative algorithm:

xk+1 = Π
(
xk − αk

n∑

i=1

vik; Ω
)
, k = 1, 2, . . . , (4.1)

where the vectors vik in (4.1) are constructed by

vik :=
xk − ωik

d(xk; Ωi)
with ωik := Π(xk; Ωi) if xk /∈ Ωi (4.2)

and vik := 0 otherwise. Assume that the given sequence {αk} in (4.1) satisfies the conditions

∞∑

k=1

αk = ∞ and

∞∑

k=1

α2
k < ∞. (4.3)

Then the iterative sequence {xk} in (4.2) converges to an optimal solution of the generalized

Heron problem (1.2) and the value sequence

Vk := min
{
D(xj)

∣∣ j = 1, . . . , k
}

(4.4)

converges to the optimal value V̂ in this problem.

Proof. Observe first of all that algorithm (4.1) is well posed, since the projection to a convex

set used in (4.2) is uniquely defined. Furthermore, all the iterates {xk} in (4.1) are feasible;

see the proof of Proposition 3.1. This algorithm and its convergence under conditions (4.3)

are based on the subgradient method for convex functions in the so-called “square summable

but not summable case” (see, e.g., [1]), the subdifferential sum rule of Theorem 2.1, and

the subdifferential formula for the distance function given in Proposition 2.2. The reader

can compare this algorithm and its justifications with the related developments in [4] for

the numerical solution of the (unconstrained) generalized Fermat-Torricelli problem. △

Let us illustrate the implementation of the above algorithm and the corresponding cal-

culations to compute numerically optimal solutions in the following two characteristic ex-

amples.

Example 4.2 Consider the generalized Heron problem (1.2) for pairwise disjoint squares

of right position in IR2 (i.e., such that the sides of each square are parallel to the x-axis or

the y-axis) subject to a given disk constraint. Let ci = (ai, bi) and ri, i = 1, . . . , n, be the

centers and the short radii of the squares under consideration. The vertices of the ith square

are denoted by q1i = (ai + ri, bi + ri), q2i = (ai − ri, bi + ri), q3i = (ai − ri, bi − ri), q4i =

(ai + ri, bi − ri). Let r and p = (ν, η), be the radius and the center of the constraint. Then

the subgradient algorithm (4.1) is written in this case as

xk+1 = Π
(
xk − αk

n∑

i=1

vik; Ω
)
,

10



where the projection P (x, y) := Π((x, y); Ω) is calculated by

P (x, y) = (wx+ν,wy+η) with wx =
r(x− ν)√

(x− ν)2 + (y − η)2
and wy =

r(y − η)√
(x− ν)2 + (y − η)2

.

The quantities vik in the above algorithm are computed by

vik =





0 if |x1k − ai| ≤ ri and |x2k − bi| ≤ ri,

xk − q1i
‖xk − q1i‖

if x1k − ai > ri and x2k − bi > ri,

xk − q2i
‖xk − q2i‖

if x1k − ai < −ri and x2k − bi > ri,

xk − q3i
‖xk − q3i‖

if x1k − ai < −ri and x2k − bi < −ri,

xk − q4i
‖xk − q4i‖

if x1k − ai > ri and x2k − bi < −ri,

(0, 1) if |x1k − ai| ≤ ri and x2k − bi > ri,

(0,−1) if |x1k − ai| ≤ ri and x2k − bi < −ri,

(1, 0) if |x1k − ai| > ri and |x2k − bi| ≤ ri,

(−1, 0) if |x1k − ai| < −ri and |x2k − bi| ≤ ri

for all i = 1, . . . , n and k = 1, 2, . . . with the corresponding quantities Vk defined by (4.4).
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MATLAB RESULT

k xk Vk

1 (-3,5.5) 30.99674

10 (-1.95277,2.92608) 26.14035

100 (-2.02866,2.85698) 26.13429

1000 (-2.03861,2.84860) 26.13419

10,000 (-2.03992,2.84750) 26.13419

100,000 (-2.04010,2.84736) 26.13419

200,000 (-2.04011,2.84735) 26.13419

400,000 (-2.04012,2.84734) 26.13419

600,000 (-2.04012,2.84734) 26.13419

Figure 3: Generalized Heron Problem for Squares with Disk Constraint.

For the implementation of this algorithm we develop a MATLAB program. The following

calculations are done and presented below (see Figure 3 and the corresponding table) for

the disk constraint Ω with center (−3, 4) and radius 1.5, for the squares Ωi with the same
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short radius r = 1 and centers (−7, 1), (−5,−8), (4,7), and (5,1), for the starting point

x1 = (−3, 5.5) ∈ Ω, and for the sequence of αk = 1/k in (4.1) satisfying conditions (4.3).

The optimal solution and optimal value computed up to five significant digits are x̄ =

(−2.04012, 2.84734) and V̂ = 26.13419.

The next example concerns the generalized Heron problem for cubes with ball constraints

in IR3.

Example 4.3 Consider the generalized Heron problem (1.2) for pairwise disjoint cubes of

right position in IR3 subject to a ball constraint. In this case the subgradient algorithm

(4.1) is

xk+1 = Π
(
xk − αk

n∑

i=1

vik; Ω
)
,

where the projection Π((x, y, z); Ω) and quantities vik are computed similarly to Exam-

ple 4.2.

MATLAB RESULT

k xk Vk

1 (2,2,0) 27.35281

1,000 (-0.68209,0.25502,0.69986) 24.74138

1,000,000 (-0.77641,0.31416,0.74508) 24.73757

2,000,000 (-0.77729,0.31480,0.74561) 24.73757

3,000,000 (-0.77769,0.31509,0.74584) 24.73757

3,500,000 (-0.77782,0.31518,0.74592) 24.73757

4,000,000 (-0.77792,0.31526,0.74598) 24.73757

4,500,000 (-0.77801,0.31532,0.74604) 24.73757

5,000,000 (-0.77808,0.31538,0.74608) 24.73757

Figure 4: Generalized Heron Problem for Cubes with Ball Constraint.

For the implementation of this algorithm we develop a MATLAB program. The Figure 4

and the corresponding figure present the calculation results for the ball constraint Ω with

center (0, 2, 0) and radius 2, the cubes Ωi with centers (0,−4, 0), (6, 2,−3), (−3,−4, 2),

(−5, 4, 4), and (−1, 8, 1) with the same short radius r = 1, the starting point x1 = (2, 2, 0),

and the sequence of αk = 1/k in (4.1) satisfying (4.3). The optimal solution and optimal

value computed up to five significant digits are x̄ = (−0.77808, 0.31538, 0.74608) and V̂ =

24.73756.
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