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Tractrices, Bicycle Tire Tracks, Hatchet
Planimeters, and a 100-year-old Conjecture
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1 Introduction

The geometry of the tracks left by a bicycle has received much attention recently
[9, 10, 11, 18} 20, 27]. In this paper we discuss the connection between the motion
of a bicycle and that of a curious device known as a hatchet planimeter, and we
will prove a conjecture about this planimeter that was made in 1906.

Bicycle. We use a very simple model of a bicycle as a moving segment in the
plane. The segment has fixed length ¢, the wheelbase of the bicycle. We denote
the endpoints of the segment by F and R for the front and rear wheels. The
motion is constrained so that the segment is always tangent to the path of the
rear wheel. We will refer to this as the “bicycle constraint”. This non-holonomic
constraint is due to the fact that the rear wheel is fixed on the frame, whereas
the front wheel can steer. The configuration space of a segment of fixed length
is 3-dimensional, and the bicycle constraint defines a completely non-integrable
2-dimensional distribution on it. This is an example of a contact structure, see,
e.g., [2 [14]; we shall not dwell on this connection with contact geometry.

If the path of the front wheel F' is prescribed then the rear wheel R follows
a constant-distance pursuit curve. The trajectory of the rear wheel is uniquely
determined once the initial position of the bicycle is chosen. For example, when
F follows a straight line, R describes the classical tractrix, see Figure [Il More
generally, one may call the trajectory of the rear wheel R the tractrix of the
trajectory of the front wheel F'.

On the other hand, if the path of the rear wheel R is given then the trajectory
of the front wheel F' is uniquely defined once one fixes the direction of the vector
RF, for which there are two choices. The choice is determined by a coorientation
of the rear wheel trajectory, that is, by a continuous choice of a normal direction
to it. Given a coorientation, the vector RF' is determined by the rule that it
makes a positive frame with the coorientation.

One might think that, equally well, one could choose an orientation of the
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Figure 1: The classical tractrix

rear wheel track. However, this is not the case: unlike coorientation, orientation
is discontinuous at cusps. Cusps are common for the rear-wheel trajectory: they
occur when the steering angle equals 90°, they are where the rear wheel changes
its rolling direction. Unless stated otherwise, we assume the trajectory of the
front wheel F' is smooth.

The study of tractrices goes back to I. Newton (1676), followed by Huygens,
Leibniz and Euler. To quote from [5], “...Euler treated the problem so com-
pletely that little or nothing on the subject has appeared since.” We hope to
make a contribution to this classical subject here.

Prytz Planimeter. The 19" Century was a golden age for mechanical
innovation. One modest but very useful device was the planimeter, first invented
in Bavaria in 1814E| A planimeter is an instrument that is used to measure the
area of a plane figure by tracing around its boundary. As such, it is a mechanical
manifestation of Green’s Theorem. There are many types of planimeters, and
many improvements have been made over the years, including contributions of
Lord Kelvin and James Maxwell. One of the most popular ones was the polar
planimeter, introduced in 1854 by Jacob Amsler, a Swiss mathematician and
inventor. See [4, [7, 8], T2} 13} 15} 16}, 22] 23] for a sampler of the vast literature
on planimeters.

By comparison, Amsler’s planimeter was more accurate, more compact, and
easier to use than the earlier instruments, and the older ones quickly became
obsolete ([I5] p. 508). Nevertheless, to be accurate the planimeter had to be
carefully designed and precisely manufactured, and it could be unaffordable for
an engineer of modest means. In the late 1800s, Holger Prytz, a Danish cavalry
officer and mathematician, devised an economical and simple alternative to
Amsler’s planimeter [24] 23].

Prytz’s planimeter consists of a metal rod whose one end, the tracer point, is
sharpened to a point, the other end is sharpened to a chisel edge parallel to the
rod. (The chisel edge is usually rounded, making it look similar to a hatchet,
and consequently the device is also known as a “hatchet planimeter”). It is
used by guiding the tracer point along a curve, taking care not to impart any
torque. The chisel edge tracks along a curve always tangent to the rod. Thus
the hatchet planimeter satisfies the bicycle constraint, with the chisel edge and
tracer point playing the roles of the rear and front wheels, respectively.

1The forerunner of the modern bicycle was invented at about the same time, in 1817, by
Baron Karl von Drais; the invention was called Draisienne or Laufmaschine.



Figure 2: The Prytz Planimeter and its modification, due to Goodman

It seems unlikely that something as simple (some would say crude) as a
hatchet planimeter could measure area. To use it, put the tracer point at some
point on the boundary of the region and trace around its boundary. The chisel
edge follows a zig-zag path, that is, a path with cusps, similar to the rear wheels
of a car when parallel parking, see Figure |3| If the region is small relative to ¢,
the angular deflection of the planimeter is small. When the tracer point returns
to the initial position, the chisel edge comes to rest in a slightly different position
and makes an angle o with its initial position. The area of the region is a2,
at least approximately. There is an inherent error, which actually makes the
hatchet planimeter more mathematically interesting than its exact cousins. As
we will see, understanding the source of this error can help the user minimize
it.

Figure 3: Measuring Ap via .

Menzin’s conjecture. The trajectory of the front wheel of a bicycle deter-
mines the trajectory of the rear wheel once the initial position of the bicycle is
specified. Given the initial front wheel position, the possible initial rear wheel
positions constitute a circle (of radius £). Given a front wheel track, the map
M : St — S! that assigns the terminal position of the bicycle to the initial one
is called the bicycle monodromy. If we need to emphasize the dependence of the
monodromy of the front track trajectory F, we write Mp. In this paper, the
path followed by the front wheel will usually be closed, so M is a self-map of
a circle. The monodromy along a closed path depends on the starting point;
another choice of this point results in a conjugated monodromy. If the front
track trajectory F' is not closed, we identify the initial and the terminal circles
by a parallel translation; in this way, we think of the monodromy as a circle
map for a non-closed path as well.



For a closed front wheel path the circle map M : S' — S' has two, qualita-
tively different, behaviors. If the length of the bicycle ¢ is large compared to the
front wheel track, one observes the behavior depicted in Figure [ In this case,
the circle map M is conjugate to a rotation, and it has no fixed points. This
is the situation that we encountered when describing the Prytz planimeter. We
refer to this behavior as elliptic.
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Figure 4: Elliptic monodromy. The front wheel makes multiple passes around
the closed curve.

In contrast, when you ride a bicycle in real life, the distance the front wheel
goes is generally much longer than the length of the bicycle (see Figure. You
don’t get bicycle tracks that look like those in Figure [4| unless you are a circus
acrobat! When you make a typical round trip on a bicycle, the location of the
back wheel at the end of the trip is essentially independent of its initial position:
all of the possible rear-wheel trajectories are asymptotic to some particular
trajectory in the family, and M has an attracting fixed point, see Figure[}] The
map M also has a repelling fixed point—it is the attracting fixed point when
the bicycle runs the route in the opposite direction, see Figure[6} This behavior
is referred to as hyperbolic. For animations of this see [13].

Figure 5: Two examples of hyperbolic monodromy.



Figure 6: The stable curve is on the left, and the unstable curve on the right.
If the direction of traversal of figure eight is reversed, the two curves exchange
stability

In Section [3| we show that the monodromy is a Md&bius transformation of
S!. These two different behaviors are then explained by the fact that a generic
fractional-linear transformation has zero or two fixed points.

A. L. Menzin was an engineer who invented a slight modification of the
hatchet planimeter. More important to us, he made a conjecture in 1906 that
explores the boundary between these two different types of bicycle behavior. In
his own words: [2I] “If the average line across the area is long in comparison
with the length of the arm, ... the tractrix will approach, asymptotically, a
limiting closed curve. From purely empirical observations, it seems that this
effect can be obtained so long as the length of arm does not exceed the radius
of a circle of area equal to the area of the base curve”. In other words,

Conjecture 1 (Menzin) Suppose that the path of F' is a simple closed curve
bounding a region of area A. If A > ml? then My has an attracting fized point.

For example, if the path of F' is a circle of radius r > ¢, then the chisel edge
will asymptotically approach the circle of radius v/72 — £2 with the same center.
Similarly, if the path of F' is a circle of radius r = ¢, then the chisel edge will
spiral into the center. There is a qualitative difference between the two cases.
If 7 > /¢ then the circle of radius v/r2 — £2 is a periodic path attracting nearby
trajectories on both sides, but if » = £ then the center point is attractive only
from one side and repelling from the other. As we explain below, this is the
difference between hyperbolic and parabolic dynamical behavior.

In Section 4] we give a proof of Menzin’s Conjecture when the path of F
bounds a convex region.

2 The Prytz planimeter and area

To explain how the Prytz planimeter works, let us introduce coordinates (z, y, 8)
on the configuration space of segments of length ¢: the rear end (chisel edge)
has coordinates R = (x,y), and the direction of the segment is 6. The front end
(tracer point) then has coordinates

F=(X,Y)=(z+{cosb,y+ {sinh).



Riding backwards here

Figure 7: Tractrix of a circle: r = £. The rear wheel R spirals away from
the center while riding backwards; after reversing the direction at the cusp, R
spirals into the center. The monodromy is parabolic.

The bicycle constraint is the relation dy/dx = tanf, or A = 0 where
A =cosf dy —sin @ dx. (1)

Consider an arbitrary motion of the segment such that its initial and terminal
positions coincide, that is, a loop in the (z,y, #)-space; this motion may violate
the constraint A = 0. Denote the signed areas bounded by the closed trajectories
of the rear and front ends by Ar and Ar. We are interested in the difference
AF — AR. One has:

1 1
ARzi/xdy—yda:, Apzi/XdY—YdX.
A computation yields:

XdY —YdX = (zdy — ydx) + 20\ — £ d(y cos§ — xsinf) + £2d6.

An exact differential integrates to zero over a closed curve, hence

2
AF—AR:z/H%/de. (2)

The integral [ A measures the net violation of the bicycle constraint. In par-
ticular, f A is the net signed distance that the point R moves in the direction
orthogonal to the segment RF. The integral [ df equals 27 times the number
of turns made by the segment.

Formula implies that the area under the tractrix (Figure (1)) is 762 /2.
Indeed, the bicycle constraint is A = 0, and the moving segment turns through
180°E| Likewise, the area between the inner and outer tire tracks in Figure |8is
2.

2Here we apply a version of involving improper integrals, that is, integration over an
infinite curve in the configuration space of segments of length £.




Figure 8: The area between front and rear tracks is m¢?

Now consider the hatchet planimeter in its use to measure an area. The
tracer point F' traverses the boundary of the region being measured, starting
and stopping at some base point B, but the chisel edge R does not traverse
a closed curve. Close the loop by rotating the segment through an angle o
centered at B, which violates the bicycle constraint. We have that df integrates
to 0 because the planimeter comes to rest in its original position without making
a full rotation. Note that A = 0 for the entire motion except the last portion, and
we compute that A integrates to af which is the length of the arc followed by R
as it rotates about B through angle a. It follows from that Ap = af? 4+ Apg.
Provided Ag is small, Ap ~ af? is a reasonable approximation.

How good is the approximation? The error is Ag, the signed area bounded
by the zig-zag path of the chisel and the circular arc, Figure [3] Some starting
positions are better than others, as they result in different values of Ag. A
suggestion made by most of the authors is to start and stop the tracing at the
centroid of the region. Of course, locating the centroid is at least as complicated
as computing the area—in practice one simply makes a reasonable guess. Only
Prytz [24] and Hill [16] give enough mathematical details to make this rigorous
(see [12] for a summary), and their analysis shows that even starting at the
centroid does not eliminate the error entirely. They show that, for an arbitrary
starting point, the error is O(1/¢) and that, starting at the centroid,

2

al? = Ap (1 + 562) +0O((d/0)?), (3)

where R? is the mean-square distance of points in the region from the centroid
and d is the diameter of the region. It seems reasonable to conjecture that the
full right-hand side of this formula is a weighted sum of all of the even moments
of the region.

The history of the Prytz planimeter is one of humor and controversy. Other
inventors, misunderstanding the mathematical nature of the error of the device,
strove to improve the planimeter by adding scales or wheels that would more ac-
curately measure the arc length o instead of the straight-line distance between
the points, defeating the simple, economical design (for example, Goodman’s



design in Figure . Prytz scoffed at them, writing [25] “rather than use the
‘improved [hatchet] planimeters,” let a country blacksmith make them a copy
of the original instrument.” For more on this amusing history, see [23] 12] and
their references.

3 Bicycle monodromy

The monodromy is a Md&bius transformation. The Mobius group on R
is the group of orientation preserving isometries of the hyperbolic plane. A
realization of the Md&bius group depends on the model of hyperbolic geometry.
The upper half plane model identifies the hyperbolic plane with the upper half
plane. The z-axis, complemented with a point at infinity, is the projective line
RP!, the absolute, or the “circle at infinity”. The group of orientation preserving
isometries in this model consists of fractional-linear transformations

ar +b
cx+d’

a,b,c,de R, ad—bc>0.

Another model of hyperbolic geometry is the projective (Beltrami-Cayley-
Klein) model. The hyperbolic plane is represented by the interior of a disk,
the lines are the chords of the disk, the distance is given by the logarithm
of cross-ratio, see Figure [] and the the group of isometries consists of the
projective transformations of the plane that preserve the disk. In particular,
Mébius transformations act on the boundary circle S' of the disk. We refer to
[3] for information about hyperbolic geometry.

Figure 9: Distance in the projective model: d(z,y) = %ln %

A stereographic projection identifies the circle S! with the projective line
RP! and conjugates the two actions, by fractional-linear transformations on
RP!, and by projective transformations of the plane on S'. If « is the angular
coordinate on the unit circle and z € R U oo is the coordinate on the projective
line then the stereographic projection from point (—1,0) is given by the formula
x = tan(a/2).



For example, the following is a 1-parameter group of projective transforma-
tions preserving the disk of radius ¢ centered at the origin:

14
{cosht + xsinht

foi(z,y) — (xcosht + ¢sinht,y).

Since cosht = 1 + O(t?) and sinht = t + O(t?), the infinitesimal generator of
this group is the vector field

(¢ = 2?, —ay) (4)

|

W(l‘,y) =

(the reader is invited to make the computations needed to verify the statements
in this paragraph).

The next theorem was proved in [I2] and extended to arbitrary dimensions
in [20]. The bicycle monodromy is a self-map of a circle of radius ¢ which we
identify with the circle at infinity in the projective model of hyperbolic geometry.

Theorem 2 For any front wheel trajectory, the bicycle monodromy is a Mdbius
transformation.

Proof. Consider Figure We want to determine the velocity of the rear
wheel R relative to the front wheel F. Let v be the velocity vector of F.
Decompose this vector into two components: the one aligned with the segment
RF, and the perpendicular component u. If point F' moves along the segment
RF then the relative position of R and F' does not change. On the other hand,
if F' moves with velocity u, then R moves, relative to F', with velocity —u.

Figure 10: Proof of Theorem

Thus, given a vector v, the relative velocity of every point of the circle is the
negative of the projection of v on the tangent line to the circle at this point. We
have described a vector field on the circle of radius ¢ which is an infinitesimal
generator of the bicycle monodromy.

To see that this is an infinitesimal M6bius transformation, assume (without
loss of generality) that v = (1,0). If « is the angular coordinate of point R on



the circle, then the negative of the projection of v on the tangent line to the
circle at point R is the vector sin« (sina, —cosa). It remains to notice that,
for x = fcos o, y = ¢ sin «, formula yields the same vector, scaled by (2. O

Readers familiar with differential geometry may be interested in the follow-
ing interpretation: the motion of a bicycle defines a parallel translation and
connection on the circle bundle over R?, and Theorem [2| shows that the group
for the connection is the Mobius group. For details see [12].

A differential equation. Given a trajectory of the front wheel of the
bicycle, the bike’s position is determined by the steering angle «, see Figure
Let ¢ be the arc length parameter along the curve F. The function «(t) is not
arbitrary: the bicycle constraint implies a differential equation on it. Let k(t)
be the curvature of the front wheel trajectory.

Some versions of the next result appeared in [I, O 01l 27, 20], and in a
different context, in [6].

Figure 11: Notation for Theorem

Theorem 3 One has: d .
o sin ar
o =k— = (5)

Proof. Differentiating o = arg F’ — arg RF by t and using the definition of
curvature, we get o’ = k —wgp, where wpp = % arg RF' is the angular velocity
of RF. The angular velocity is the same in all frames that do not rotate relative
to each other. In the reference frame attached to R and undergoing parallel
transport, F' moves in a circle of radius ¢, with speed v = sina. Thus wrp =

v/l = (sina)/¢. O

Corollary 3.1 One has: R' = @ cos .
Proof. Since the segment RF has constant length, the speed of R is the
projection of the velocity of F' on the line RF, i.e., cosa. And the velocity

of R aligns with RF. O

Remark 3.2 In the coordinate x = tan(a/2) on the projective line, equation
becomes a Riccati equation
de(t) 1

1
e 5/~c(vt)(gc(1t)2 +1) = 7a(t).

10



Signed length of the rear wheel track. Real fractional-linear trans-
formations come in three types: elliptic, with no fixed points; parabolic, with
one neutral fixed point; and hyperbolic, with two fixed points. For a hyperbolic
transformation, one fixed point is attractive, the other repelling, and the deriva-
tives of the monodromy at the fixed points are reciprocal to each other. For a
parabolic transformation, the fixed point is attractive on one side and repelling
on the other, and the eigenvalue at the fixed point is one.

As we mentioned above, the rear track trajectory R may have cusps. The
signed length of this curve is the alternating sum of the length of its smooth
pieces: the sign changes as one traverses a cusp. This signed length is the net
roll of the rear wheel of the bicycle. Consider the case when the rear track is
a closed curve. Then the bicycle monodromy M of the respective front track is
hyperbolic or parabolic. Denote by L the signed length of the rear track.

Theorem 4 The derivatives of the monodromy at its two fixed points are equal
to XL/t

Proof. Let «a(t) be a T-periodic solution of the differential equation cor-
responding to a fixed point of the monodromy. To find the derivative of the
monodromy, consider a perturbation «(t) + €8(t). Substituting into and
taking the terms linear in ¢ yields the linearization

cos a(t)

Bt = =5

This linear equation can be solved:

B(T) = B(0) o cosa(t) dt/t

B(t).

It follows from Corollary (3.1 that L = fOT cos a(t) dt, hence the result. O

Corollary 3.3 The monodromy is parabolic if and only if L = 0.

Proof. A hyperbolic Mébius transformation becomes parabolic when its two
fixed points merge together and the derivative at this fixed point equals one. O

Interpretation of : stargazing. The differential equation describ-
ing the bicycle motion has a curious interpretation in terms of hyperbolic ge-
ometry. Develop the front track trajectory F'(¢) in the hyperbolic plane, that is,
consider a curve G(t) C H? parameterized by the arc length whose curvature is
the function k(t). Fix a point A at infinity (“an immobile star”), and let a(t)
be the angle made by the line AG(t) with the tangent vector G’ ().

Proposition 3.4 One has: o/ =k —sina.

Thus the equation describing the motion of the unit length bicycle in the
Euclidean plane also describes the the retrograde motion of the star due to
motion along the curve G.

11



Proof. Let G and G be infinitesimally close points on the curve. In the
infinitesimally small absolute triangle AGG1, the angle A is zero and the side
|GG1| = dt. The angles of the triangle are m — o and a3 = « + da, see Figure
The hyperbolic Cosine Rule (see [3]) yields:

cosh(dt) sina sin(a+ da) =1 — cosa cos(a + da).

Expanding both sides to second order and simplifying, we get da? = sin? o dt2.
Then da = —sinadt, the sign being determined by the fact that da/dt < 0
when sina > 0.

In addition, the direction of the curve changes from point G to point G by
k(t)dt, adding this quantity to da. Therefore o/ =k —sine. O

A

G

Figure 12: Infinitesimal absolute triangle

We obtain a criterion for the bicycle monodromy to be the identity. Call a
differentiable curve C'-closed if its end points coincide and the oriented tangent
lines at the end points coincide as well.

Corollary 3.5 The development G C H? of the C'-closed front track F is
C'-closed if and only if the monodromy Mg for the unit length bicycle is the
identity.

Proof. If G is C'-closed then the stargazing angle a(t) mod 27 is a periodic
function for all points A.

Conversely, assume that G is not C'-closed. Let Ay and A; be its end points,
and let Ly and L; be the oriented tangent lines to G at these points. If the
monodromy is the identity then, for each point at infinity X, the lines X Ay and
X A1 make equal angles with the curve G.

Denote the backward and forward intersection points of Ly with the circle at
infinity by B and C. Then the angles made by the lines BAg and C' 4y with G
are zero and 7 respectively, hence the lines BA; and C'A; also make the angles
of zero and 7 with GG, and therefore Ly = Lg. It follows that A; lies on Ly and
Ay # Ag.

Now let D be the point at infinity such that DAy is perpendicular to L.
Then DA; is not perpendicular to Ly (= Lg), contradicting the assumption that
the monodromy is the identity. O

12



For example, let F' be a circle of curvature k, traversed p times, and assume
that G is a circle of the same curvature, traversed ¢ times. The perimeter length
of F is 2mp/k, and that of G is 2mq/vk? — 1 (see [3] for formulas of hyperbolic
geometry). We obtain the equation

hence k = p/+/p? — ¢2. For example, F' can be a circle of radius v/3/2 (for
p=2,q=1), or radius 3/5 (for p = 5,q = 4).

Corollary 3.6 If the front track F is a C'-closed convex curve (traversed once)
then the bicycle monodromy Mg is not the identity.

Proof. Assume first that £ = 1. Let k be the curvature function of F', and
assume that its hyperbolic development G is also C'-closed. Then / P k(t)dt =
27 and, by the Gauss-Bonnet theorem in the hyperbolic plane, fG k(t)dt =
27 + A where A is the area bounded by G. This is a contradiction.

By scaling, the same conclusion is valid for any bicycle length. O

4 Proof of Menzin’s conjecture

In this section we prove Menzin’s Conjecture[I]in the case when the front wheel
track is convex. The property of the monodromy to be hyperbolic (and elliptic,
for that matter) is “open”: a small perturbation of the curve does not affect it.
Thus, without loss of generality, we assume that F' is a smooth strictly convex
curve bounding area A.

The plan of the proof is to vary the length of the bicycle, from very small to
very large. We show that

1. When / is small, the monodromy is hyperbolic.
2. When / is large, the monodromy is elliptic.

3. Let ¢y be the smallest length for which the monodromy becomes parabolic.
Then A < 7f2.

Since A > 7/? by assumption, it follows that ¢ < ¢y, which is the hyperbolic
zone by definition of £g.

See Figure [13| for a family of closed rear wheel tracks R corresponding to a
fixed front wheel track (outer ellipse with arrow) and various bicycle lengths.
Note the change of topology of the curve R as the length varies.

Let us now proceed to claims 1)-3).

1) If ¢ is very small, the monodromy is hyperbolic: this agrees with our
experience of riding a bike whose wheel base is much smaller than the length of
the path. Here is a more precise sufficient condition for hyperbolicity.

13



Figure 13: Varying the length of the bicycle (image borrowed from [19] with
permission)

Lemma 4.1 If { < r, where r is the radius of the smallest osculating circle to
F, then the monodromy Mg is hyperbolic.

L Front wheel’s

contact with

ground
Rear wheel'’s
contact with

ground

Figure 14: Notations to proof of Lemma [£.1]

Proof. In the notations of Figure
0 = ¢ 'sin(a —0); (6)

here a(t) is smooth with o/ > 0 by the convexity of F, since k(t) = o/(t) is the
curvature of F. Let kyax = maxa/(t). Then

<1 = (kmax) " (7)
Consider the strip in the (¢, 0)-plane, Figure[15] given by
alt) —m/2 <0 < at)+7/2.

This strip traps the trajectories of @; indeed, on the lower boundary § = a—7/2
we have

(7 d
=1 9

0'(t) =1 'sin(a — (a — 7/2)) kmaz > %(a(t) —7/2).

14



A similar condition holds on the upper boundary of the strip, and we conclude
that the segment of initial conditions [«(0) — 7/2, a(0) — 7/2] maps strictly into
its 2r—translate at ¢ = L (the length of F'). This implies that the monodromy
map 6(0) — O(L), as a map of the circle, has two fixed points — one inside the
arc from (a(0) —7/2, a(0) +7/2) and another inside a complementary arc. This
proves hyperbolicity. O

0
/ ot)+i/2
2n alt)
ot)r/2

/7 L

Figure 15: Hyperbolicity for small £.

2). That monodromy is elliptic for sufficiently large ¢ was discussed in Sec-
tion[2} this is what makes hatchet planimeter work. To be precise, if F is convex,
then Ap > 0, and we conclude, according to , that if £ is large enough, then
the turning angle 0 < a < 27 for all starting points on F' and for all starting
angles 6(0). This proves ellipticity.

3). Now we come to the main part of the argument, the inequality A < 7/3.
Let Ry be the closed rear track corresponding to the bicycle length ¢y. We claim
that
(i) Ro has the total rotation of 2;

(ii) Ry is locally convex, that is, has no inflection points;
(iii) Ap < 0, where Ag is the area Ag bounded by the curve Ry given by
(1/2) [ xdy — ydz, as in Section

Item (i) needs an explanation: even if the curve has cusps, its tangent line
is well defined and continuous at all points, and we mean the rotation of this
tangent line as one traverses the curve. To prove (i), notice that the total
rotation depends continuously on ¢, and that it is a multiple of 27 for a closed
curve. As shown in Step 1), for small ¢, there is a closed rear wheel curve with
total rotation 27. Thus the total rotation is 2w for Ry as well.

To prove (ii), assume the opposite. Since the rear track is convex for small
£, non-convexity appears, as £ increases, when the curvature of R vanishes and
then becomes negative, so that the curve develops a concavity, a “dimple” , as
shown in Figure This yields a double tangent line L to the curve R which we
orient consistently with the orientation of the rear track R. Then the respective
front track F intersects L twice, with the same intersection index (from right
to left side, in Figure . Thus F' is not convex, contradicting our assumption.

To prove (iii), we use the notion of support function. Given a smooth strictly

15



L

Figure 16: Developing a dimple

convex closed curve -, its support function p(p) is the (signed) distance from
the origin to the tangent line to ~, perpendicular to the direction ¢, see Figure
The support function determines a 1-parameter family of lines, and the
curve 7 is recovered as the envelope of this family. The perimeter length of the
curve and the area bounded by it are given by the formulas:

L() :/0 Wp(w) do, A(y) = %/O ﬂ(pQ(w)—p’Q(sO)) de, (8)

see, e.g., [26].

Figure 17: Support function

In fact, support functions can be used to characterize curves that are the en-
velopes of families of lines parameterized by their direction, that is, 1-parameter
families of lines whose direction changes monotonically. As we proved, Ry is such
a curve. Formulas still apply when interpreted as signed length and signed
area.

By Corollary L(Rp) = 0. Thus we claim that

if /p(w) dp =0, then/pQ(w) dp < /p’Q(w) dp.

This is the famous Wirtinger inequality, proved by Fourier decomposition of the
function p(yp), see, e.g., [I7]. This proves (iii).
It remains to relate the areas bounded by the rear and front tracks, that is,
Ag and A. Since the total rotation of the curve Ry is 2m, formula implies:
A= Ay + i <l

as needed. This completes the proof.
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We finish this section by describing an extension of the Menzin Conjecture
and its proof to classical geometries of constant curvature, that is, to the elliptic
and the hyperbolic planes [I8]. These results were obtained as an undergraduate
research project in the REU and MASS programs at Penn State.

The bicycle constraint makes sense in both geometries, and the bicycle mon-
odromy is still a Mobius transformation. The spherical and hyperbolic analogs
of equation are as follows:

%zk—cotﬁ sin «, Z—?zk—cothf sin a. 9)
Here cot £ and coth ¢ are the geodesic curvatures of the circles of radius £ in S?
and H?, and k is the geodesic curvature of the front wheel track.

Note a curious particular case of @D in spherical geometry: if £ = /2 then
cot{ = 0, and the bicycle is parallel transported along the front track F. If F
bounds area 27 then the monodromy is the identity (this is a consequence of
the Gauss-Bonnet theorem).

Note also the case £ = 0o in hyperbolic geometry: the second equation in @
coincides with equation with ¢ = 1. Since the rear end of an infinitely long
bicycle in the hyperbolic plane does not move at all, we recover Proposition

An analog of the theorem proved in this section is the following result.

Theorem 5 In S?: if F is a simple geodesically convex curve bounding area
greater than 27(1 — cos ) then the monodromy is hyperbolic;

in H?: if F is a simple horocyclically convex curve (i.e., having geodesic cur-
vature greater than 1) bounding area greater than 2mw(cosh ¢ — 1) then the mon-
odromy s hyperbolic.

In both cases, the areas are those of the discs of radius .

5 Wirtinger’s inequality, Menzin’s conjecture,
and the isoperimetric inequality

We close with two items relating our work and the isoperimetric inequality: first
between our use of Wirtinger’s inequality and the isoperimetric inequality for
equidistant curves (wave fronts) of the rear track, and second between Menzin’s
conjecture and the isoperimetric inequality for the front track.

Wirtinger’s inequality and the isoperimetric inequality are known to be
closely related. We proved that if a curve, given by a support function, has
zero signed length then the curve bounds non-positive signed area. We now
show that this implies the classical isoperimetric inequality for convex curves.

Let v be a closed smooth strictly convex curve, and let L and A be its
perimeter length and the area bounded by it. Assume that ~ is a source of
light, and consider propagation of light inside . The locus reached by light in
time ¢ is the wave front -4, an equidistant curve of the curve ~, see Figure
The curves ~y; are smooth and convex for small values of ¢ but later they develop
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cusp singularities. The support function of 4 is pi(¢) = p(¢) — t. It follows
from formulas that

L(v) =L —2nt, A(y)=A— Lt + 7t°.

As a consequence, the isoperimetric defect L? — 47 A is independent of ¢.

Figure 18: Propagation of light inside a curve

Consider the moment ¢ for which L(y;) = 0, that is, t = L/(27). As we
proved, at this moment, A(v;) < 0. Substituting ¢t = L/(27) into the formula
for A(;) yields the isoperimetric inequality 4rA < L2

We conclude by another deduction of the isoperimetric inequality, for the
front track, this time from Menzin’s conjecture. We refer to the material of
Section

Suppose we bicycle around a closed path F' in the positive sense. According
to Menzin’s conjecture, if Ap > m¢? then there is a closed rear path R, as in
Figure By equation , Ap— AR = 702, where Ap, is the signed area enclosed
by R. We choose £ so that Ar = 72, hence Ar = 0 (this choice of £ may render
the monodromy parabolic).

Let

Ap =cosfdY —sinfdX,

where F' = (X,Y) and 6 are as in Section [2 Note that Ap = u - dF, where
u = (—sin#,cosf), and so Ap records the component of the motion of F' per-
pendicular to the frame of the bicycle. In particular, Ap < dt where dt is the
length element along the front track, hence Ap := f Ar < L, the length of the
front track.

On the other hand, it is easily shown that A\p = A\ + £df, where ) is defined
in (1). The bicycle constraint is A = 0, and so Ap = 27¢. Combining this with
Ap = nl? we have A% = 47 Ap. Thus L% > 47 Ap, the isoperimetric inequality
for the curve F.

Furthermore, the equality implies that A\p = ds, that is, the front wheel only
moves in the direction perpendicular to the bicycle frame. In this case the rear
wheel does not move at all, and the front wheel describes a circle of radius £.
Thus the isoperimetric inequality is an equality only if front wheel path is a
circle.

It’s worth noting that the inequality

L% 2 A% :4’/T(AF —AR)
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holds whenever there is a closed rear wheel path. In the proof of Menzin’s
conjecture, we identified a closed rear wheel path with signed area Ay < 0. In
cases where Ay < 0, we get a positive lower bound on the isoperimetric defect:

L% — 4w Ap > A% — 4 Ap = —47 Ag.
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