
ar
X

iv
:1

11
0.

61
09

v1
  [

m
at

h.
C

A
] 

 1
9 

O
ct

 2
01

1

IDENTITIES FOR sin x THAT CAME FROM MEDICAL

IMAGING

PETER KUCHMENT AND SERGEY LVIN

Dedicated to the memory of Professor Leon Ehrenpreis,
a great mathematician and human being.

Abstract. The article describes interesting nonlinear differential
identities satisfied by standard exponential and trigonometric func-
tions, which appeared as byproducts of medical imaging research.
They look like some kind of non-commutative binomial formulas.
A brief description of the origin of these identities is provided, as
well as their direct algebraic derivation. Relations with separate
analyticity theorems in several complex variables and some open
problems are also mentioned.

1. Introduction

Working quite some time ago on some problems of medical imag-
ing [19, 20], the authors were surprised when their work produced
a series of seemingly new (at least to them) identities for functions
about which “everything is known,” such as standard exponentials and
trigonometric and hyperbolic sines and cosines. It was a little bit de-
pressing when our brave attempt to prove these identities by elementary
means, without using the mathematical techniques common in tomog-
raphy (c’mon, what can be difficult about sin x, after all?), stalled for
a while. We have succeeded eventually, albeit as we hope to persuade
the reader, there are still things that are not clear about this whole
business. Along the way, while trying to understand the identities, an
interesting theorem of complex analysis in several variables was discov-
ered in the joint work [1] of one of the authors and his student with L.
Ehrenpreis. We dedicate this article to the memory of Professor Leon
Ehrenpreis, who passed away in August 2010 (see [11, 33]).
In the next Section 2 we describe briefly the medical imaging origin

of the results we will be discussing. Section 3 contains the formulation
of the identities, which are then proved in the next three Sections.
The paper ends with the remarks section, where in particular some

Research of P. K. was supported in part by the NSF DMS Grant 0604778 and
IAMCS.
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open questions and relations to several complex variables theory are
described.

2. A brief story about medical imaging, Radon

transform, and all that

In tomographic medical imaging one sends through the patient’s
body some kind of radiation/waves (X-rays, ultrasound waves, elec-
tromagnetic waves, etc.), measures the transmitted and/or reflected
signals, and tries to recover from this data the internal distribution of
some important for medical diagnostics internal parameter of the body
(e.g., density, electrical conductivity, blood oxygenation, etc.).
The reader must have heard of at least some tomographic proce-

dures (the best-known ones are the X-ray CT scan and MRI). How-
ever, not everyone might realize the heavy involvement of sophisti-
cated, beautiful, and challenging mathematics in creating tomographic
images. In spite of its 40 years history, computed tomography still
produces a steady stream of exciting mathematical problems (see, e.g.,
[3,5,7,9,10,12–18,21,23–25,28,29,34,36–40] for description and math-
ematics of established and newly developing imaging modalities).
In the oldest and best established modality, X-ray CT, one deals

with the problem of recovering a function f(x) that is, roughly, the
tissue density at the internal point x. Since in many cases different tis-
sues have different densities, this function carries medically important
information about the interior of the patient’s body. If f(x) is found,
its density plot provides a picture, tomogram that shows to a doctor
how an internal slice of the patient’s body “looks like.” Mathemati-
cally speaking, the data obtained by the X-ray CT scanner provides
the practitioner with line integrals of the sought for function f (see,
e.g., [7, 10, 17, 23, 24] for detailed explanation). In other words, the
data one measures is the so-called 2D Radon transform that takes
function f(x) on the plane1 and integrates it over all lines L:

f(x) 7→ Rf(L) =

∫

L

f(x)dl.

We will parametrize lines by their normal coordinates (ω, s), where
ω is a unit vector normal to L and s is the (signed) distance from the
origin to L. Then the normal equation of the line L has the form

x · ω = s,

1We will not be precise about conditions on functions we deal with here. It is
safe to assume that they are “very nice”: differentiable as many times as you want
and vanishing at large distances.
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where x · ω is the standard inner product. Thus, the Radon transform
Rf of a function f can be written as follows:

(1) Rf(ω, s) = g(ω, s) :=

∫

x·ω=s

f(x)dl =

∞
∫

−∞

f(sω + tω⊥)dt.

Here ω⊥ = (ω2,−ω1) is the rotated 90o vector ω.
The Radon transform, besides being extremely useful in tomography,

arises in a large number of other areas, e.g. in PDEs, group representa-
tion theory, etc., and thus has been the topic of thorough mathematical
study [5, 12–15, 24, 25, 28, 29].
We are interested here in one feature particular for the Radon trans-

form: its range as of a linear operator between natural function spaces
is rather small, i.e. of infinite co-dimension. In other words, there
are infinitely many conditions a function g(ω, s) must satisfy to be the
Radon transform of a function f . Let us discuss them briefly.
One such condition is evenness:

(2) g(−ω,−s) = g(ω, s) for all ω ∈ SS, s ∈ R,

where SS is the unit circle. This reflects the fact that equations x·ω = s
and x · (−ω) = −s describe the same line.
More interesting are the so-called moment conditions. To formulate

them, we assume that f has a compact support (in fact, decay faster
than any power of |x| at infinity suffices). Then for any integer k ≥ 0
one can define the k-th moment of the data g(ω, s):

(3) Gk(ω) :=

∞
∫

−∞

skg(ω, s)ds,

which is a function on the circle SS.
Now the moment conditions say that

(4)
For any integer k ≥ 0, the moment Gk(ω)
can be extended from SS to the whole plane
as a homogeneous polynomial of degree k.

Although it might not be immediately obvious how one discovers the
moment conditions, as soon as they are formulated, it is straightforward
to check their necessity. Indeed, substituting into (3) the definition of
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the Radon transform g = Rf , one gets

Gk(ω) :=

∞
∫

−∞

skg(ω, s)ds =

∞
∫

−∞

sk
∫

x·ω=s

f(x)dlds =

∫

R2

(x · ω)kf(x)dx.

The last expression is clearly a homogeneous polynomial of degree k of
ω (since x · ω is a homogeneous linear function of ω) and thus we have
established these so-called “range conditions”.
Proving that there are no other range conditions besides evenness

and moment ones, is a different story, which takes much more work
(see, e.g. [5, 13, 14, 24, 25]).
Why would one be interested in these conditions? They are the

mandatory relations that ideal data collected from a tomographic de-
vice must satisfy. Well, the measured data are never ideal, and so
they deviate from these conditions. Thus, knowing the range condi-
tions might be helpful in detecting and correcting some measurement
errors. They are of help in other circumstances as well, for instance in
completing some missing data (e.g., see [22, 24, 25, 30] and references
therein for details). And they surely play an important role in most of
analysis of the Radon transform as an operator.
Quite a few years ago, the authors worked [19,20] on finding the range

conditions for some special (weighted) Radon-type transform arising
in another popular medical imaging method, so-called SPECT (Single
Photon Emission Computed Tomography) [9,16,18,21,24]. This is the
so-called exponential Radon transform, which is defined as follows:

(5) Rµf(ω, s) = g(ω, s) :=

∞
∫

−∞

f(sω + tω⊥)eµtdt.

Here µ > 0 is the attenuation coefficient.
When we found a set of range conditions2 for Rµ and then proved

that we had not missed any, we thought that checking their necessity
(as long as we already knew them) should be a piece of cake, just
like in the example of the usual Radon transform above. You plug
your transform Rµf into the conditions and should be able to “see”
immediately that they are satisfied. Well, when we did this, we saw an
infinite series of identities for sin x (yes, the usual sine!) that we could
not recognize and did not know why they should have been true. Here
they are:

2We do not provide these conditions here, since they are rather technical and do
not make what follows easier. The interested reader can find them in [18–20].
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For any odd natural number n, the following identity holds:

(6)

n
∑

k=0

(

n
k

)

( d
dx

− sin x) ◦ ( d
dx

− sin x+ i) ◦ · · ·

◦( d
dx

− sin x− (k − 1)i)(sin x)n−k ≡ 0.

Here i is the imaginary unit,

(

n
k

)

is the binomial coefficient “n choose

k,” the expressions in parentheses are considered as differential opera-
tors, and ◦ denotes their composition. For instance,

(

d

dx
− sin x

)

u(x) =
du

dx
− sin x u(x).

Although we have provided the necessary proofs and moved on to doing
other things, the true meaning of these identities has kept us puzzling
for all these years.
In this paper we present the formulation and elementary algebraic

derivation of these identities (not only for sin x, but even for some more
“elementary” functions such as linear and exponential ones).
We would be happy if someone could shed some more light onto the

meaning and possible generalizations of these identities.

3. Algebraic formulation of the identities

The identities (6) can be formulated and proven in a rather general
algebraic setting. Namely, let A be a commutative algebra with cance-
lation property and with a differentiation3 D over a fieldK. An element
u ∈ A can be considered an analog of the sine function if it satisfies
the equation D2u = λ2u for some λ ∈ K. For instance, in the case
when u = sin x, we are talking about the algebra C∞(R) over complex
numbers of all smooth functions on the variable x, with differentiation
D = d/dx and λ = i.
In what follows, the reader will not loose anything thinking, instead

of the general algebraic situation, of smooth functions f(x) with the
usual derivative D = d/dx. However, the general algebraic notations
(A, D, λ) lead to somewhat easier to read formulas, so we will stuck
with them most of the time.
We are interested in solutions of simple differential equations

(7) Du = λu

and

(8) D2u = λ2u,

3I.e., D(uv) = D(u)v + uD(v).
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where λ ∈ K. Thus, in the example of the function algebra with usual
differentiation, solutions of equation (7) for λ = 0 are constants, while
for non zero values of λ they give us exponential functions. Analo-
gously, solutions of (8) for λ = 0 are linear functions, while for non
zero values of λ they in particular give us trigonometric and hyperbolic
sine and cosine.
We now formulate the main results.

Theorem 1. Any solution u of the first-order equation Du = λu sat-
isfies for any natural n the following identity:

(9)
n
∑

k=0

(

n
k

)

(D−u)◦ (D−u+λ)◦ ...◦ (D−u+(k−1)λ)un−k = 0.

Theorem 2. Any solution u of the second-order equation D2u = λ2u
satisfies for any odd natural n the identity (9).

The expression un−k at the very right is just the (n − k)th power
of u. Expressions like (D − u) are considered as operators on the
algebra A. For instance, (D−u) applied to an element f ∈ A produces
(D − u)f = Df − uf . The little circles ◦ mean composition of these
operators from right to left. For instance,

(D − u) ◦ (D − u+ λ)f = (
d

dx
− u(x))(

df

dx
− u(x)f(x) + λf(x))

=
d2f

dx2
−

d(uf)

dx
+ λ

df

dx
− u(x)

df

dx
+ u2(x)f(x)− λu(x)f(x).

So, the expression in (9) directs us to raise u to the power (n − k),
then apply to it the operator (D − u + (k − 1)λ), then to apply to
the resulting function the operator (D − u + (k − 2)λ), etc. To avoid
confusion in the case of k = 0, it might be easier to think that the
composition in (9) has k operator factors. In other words, the term for
k = 0 does not have any of these factors and thus is just un.
An important thing to notice is that, as Calculus teaches us, the

operations D and u (differentiation and multiplication by u) do not
commute, i.e. the result of their composition depends on its order. If
this were not so, the identities (9) would become trivial, as we will see
a little bit later.
Since solutions of the equations (7)-(8) are very simple functions

(constants and exponential, linear, trigonometric or hyperbolic func-
tions), let us look at some examples to see whether the identities (9)
might be trivial, or at least look familiar.
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Take (7) for λ = 0, so the solution u is just a constant C. Then (9)
looks as follows:

n
∑

k=0

(

n
k

)

(D − C)kCn−k = 0.

Since D acting on any constant gives zero result, this identity boils
down to

n
∑

k=0

(

n
k

)

(−C)kCn−k = (−C + C)n = 0.

This is indeed easy and proves the particular case of Theorem 1 for
λ = 0.
Consider now the particular case of (7) when λ = 1 and u = ex.

Then (9) reduces to

n
∑

k=0

(

n
k

)(

d

dx
− ex

)

◦

(

d

dx
− ex + 1

)

◦...◦

(

d

dx
− ex + (k − 1)

)

e(n−k)x = 0.

Hmmm... Does not look familiar? Neither it did to us. Well, we will
not prove this particular identity, since we are going to prove the more
general Theorems 1 and 2.
Let us look at an example of a solution of the second-order equation

D2u = λ2u, say take u = sinx and λ = i. Then the identity (9) for
n = 3 becomes (using more familiar d

dx
instead of D)

(10)

sin3 x+ 3(
d

dx
− sin x) sin2 x+ 3(

d

dx
− sin x) ◦ (

d

dx
− sin x+ i) sin x

+(
d

dx
− sin x) ◦ (

d

dx
− sin x+ i) ◦ (

d

dx
− sin x+ 2i)1 = 0.

Obvious, isn’t it? Well, do not despair if you do not see it right away,
we don’t either.
As you will see, the direct algebraic proofs of Theorems 1 and 2 (at

least the proofs that we know) are different when λ = 0 and when
λ 6= 0. Certainly, it is not hard to derive the identities for λ = 0 from
the ones for λ 6= 0 by taking the limit when λ → 0. We, however,
would like to see direct algebraic proofs of the identities for both cases
λ = 0 and λ 6= 0. Such proofs are provided below.

4. Proof of Theorem 1

We have already proven it above for λ = 0. So, let us assume that
λ 6= 0.
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Suppose that u satisfies the first-order equation Du = λu. We can
apply a gauge transform to simplify our identities. Namely, we will
use the easy to check identity

(11) u−m(D − u)um = D − u+mλ.

We can now use (11) in each factor of (9) to rewrite it as follows:

(12)

(

n
∑

k=0

(

n
k

)

[(D − u) ◦ u−1]k

)

un = 0.

Here we notice that we deal with an operator binomial
n
∑

k=0

(

n
k

)

Ak,

where A = (D − u) ◦ u−1. Since only one operator is involved, no
non-commutativity arises, and thus the usual binomial formula works.
This reduces identity (9) to

(13) [(D − u) ◦ u−1 + 1]nun = (D ◦ u−1)nun = 0.

Now an immediate calculation usingDu = λu shows that (D◦u−1)nun =
0 holds.

Remark 3. A careful reader might object to our calculations in this
section that involve negative powers of u, as well as positive ones, es-
pecially in the abstract setting of a commutative differential algebra
A with cancelation. However, this algebraic problem can be overcome
(see [19]).

5. Proof of Theorem 2 for λ = 0

We assume now that λ = 0 and thus the function u satisfies the
equation D2u = 0. In this case the identities (9) that we intend to
prove simplify to

(14)
n
∑

k=0

(

n
k

)

(D − u)kun−k = 0

for any odd natural n.

Remark 4. This identity fails for n = 2.

One can understand (14) also as follows:

(15)

(

n
∑

k=0

(

n
k

)

(D − u)k ◦ un−k

)

1 = 0.
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The expression in the parentheses resembles the familiar binomial ex-
pression

n
∑

k=0

(

n
k

)

akbn−k,

where a = D−u and b = u. If the operators commuted, then the whole
thing would have been equal to (a + b)n = (D − u + u)n1 = Dn1 =
dn1

dxn
= 0. Done!

Hold on, not so fast! First of all, since D and u do not commute,
the usual binomial formula does not apply. Besides, it looks like we
obtained the identity (9) for all natural n, which is incorrect, as we
saw in Remark 4. So, let us take a closer look.
If λ = 0, then function u is linear. Let us concentrate on the case

when u(x) = x.
Let us first rewrite our identity (15) for the case when u = x:

(16)

n
∑

k=0

(

n
k

)

(D − x)k xn−k = 0.

We will now use another popular gauge transformation trick that
will enable us to rewrite (16) in a slightly different form. It is based on
the following simple identity:

(17) (D − x)k
(

e
x
2

2 f(x)
)

= e
x
2

2 Dkf(x).

Thus, commutation with the function e
x
2

2 kills the term −x added to
the derivative and (D − x)k becomes Dk:

e−
x
2

2 ◦ (D − x)k ◦ e
x
2

2 = Dk.

This implies the following

Lemma 5. The identities (16) are equivalent to

(18)

(

n
∑

k=0

(

n
k

)

Dk ◦ xn−k

)

e−
x
2

2 = 0.

So, now the proof of Theorem 2 for λ = 0 boils down to proving (18)
for odd n. Notice that if D and x commuted, then the expression in
parentheses in (18) would become just (D + x)n, and thus, due to the
easily verified equality

(19) (D + x) e−
x
2

2 = 0,
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we would immediately obtain the validity of (18). However, life is not
so easy and thus the operators do not commute. (Besides, as we already
know, (18) is guaranteed for odd values of n only).
Based on (18), let us introduce the differential operators

Pn(D, x) =

n
∑

k=0

(

n
k

)

Dk ◦ xn−k.

The punch line is in the following statement:

Lemma 6. The following recurrence relation holds:

(20) Pn+2(D, x) = Pn+1(D, x) ◦ (D + x) + (n + 1)Pn(D, x).

Proof of the Lemma. We will compute Pn+1(D, x) ◦ (D + x) and
show that it coincides with Pn+2(D, x)− (n + 1)Pn(D, x). In order to
do so, we will use the easy to verify commutation relation

D ◦ xm = xm ◦D +mxm−1

and its consequence

(21) xm ◦D = D ◦ xm −mxm−1.

Now, take a deep breath, and ...
(22)

Pn+1(D, x) ◦ (D + x) =

(

n+1
∑

k=0

(

n+ 1
k

)

Dk ◦ xn+1−k

)

◦ (D + x)

=
n+1
∑

k=0

(

n + 1
k

)

Dk ◦ xn+1−k ◦D +
n+1
∑

k=0

(

n+ 1
k

)

Dk ◦ xn+2−k.

Let us now use (21) to commute xn+1−k with D in the first sum to get

(23)

n+1
∑

k=0

(

n+ 1
k

)

Dk+1 ◦ xn+1−k +
n+1
∑

k=0

(

n + 1
k

)

Dk ◦ xn+2−k

−
n+1
∑

k=0

(n+ 1− k)

(

n + 1
k

)

Dk ◦ xn−k.

The first two sums can be rewritten as
(24)
n+2
∑

k=1

(

(n+ 2)− 1
k − 1

)

Dk+1 ◦ x(n+2)−k +
(n+2)−1
∑

k=0

(

(n+ 2)− 1
k

)

Dk ◦ x(n+2)−k

=
n+2
∑

k=0

(

n+ 2
k

)

Dk ◦ x(n+2)−k = Pn+2(D, x).

We used here the standard property of the Pascal triangle:
(

(n+ 2)− 1
k − 1

)

+

(

(n+ 2)− 1
k

)

=

(

n+ 2
k

)

.
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It only remains to handle the remainder

n+1
∑

k=0

(n+ 1− k)

(

n+ 1
k

)

Dk ◦ xn−k.

This expression is equal to (n+1)Pn(D, x), proving which only requires
the knowledge of what binomial coefficients are. This finishes the proof
of the Lemma. �

Corollary 7. For any odd natural n, the following factorization holds
with some operator Q(D, x):

(25) Pn = Q ◦ (D + x).

Proof. Let us prove this by induction. When n = 1, we have P1 = D+x,
and the statement is obvious. Assume that we have proven it for some
odd n, i.e. Pn = Q ◦ (D + x). Then the previous Lemma implies that
Pn+2 = (Pn+1 + (n+ 1)Q) ◦ (D + x). �

Remark 8. The factorization Pn = Q ◦ (D + x) fails for n = 2.

Now the proof of Theorem 2 for λ = 0 is immediate. Indeed, for
any odd n, the left hand side in the identity (18) in question becomes

Pne
−

x
2

2 = Q ◦ (D + x)e−
x
2

2 . Applying (19), we conclude that this is
zero. This finishes the proof of the Theorem for λ = 0 and u = x.
The proof provided for u = x can be easily generalized to an arbitrary

linear function u = ax+ b. Alternatively, one can derive the result for
any linear function from the one for u = x. �

6. Proof of Theorem 2 for λ 6= 0

Let us now outline the steps of the proof of Theorem 2 in case λ 6= 0.
Step 1. If u satisfies the first-order equation Du = λu (and thus

certainly D2u = λ2u as well), the statement follows from Theorem 1.
Step 2. Suppose Du = −λu. Then (9) is true for odd n, because one

can easily check that “symmetric” terms in the sum that correspond
to k and n− k cancel out.
Step 3. Let us now suppose that u is any solution of D2u = λ2u.

If our identities were linear with respect to u (which they are not),
then the cases when Du = ±λu discussed in the two previous steps
would suffice, since any solution could be expanded into a sum of these
two. Nonlinearity seems to destroy this idea. However, having nothing
better in mind, let us still try. Thus, u = v + w, where Dv = −λv
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and Dw = λw (notice that the assumption λ 6= 0 is critical for the
possibility of such decomposition)4.
Step 4. Let us use the same commutation trick (11)

u−m(D − u)um = D − u+mλ

as before, but using commutation with w rather than u. Then the
left-hand side of (9) can be written as
(26)

n
∑

k=0

(

n
k

)

(D − v − w) ◦ ... ◦ (D − v − w + (k − 1)λ)(v + w)n−k

=

[

n
∑

k=0

(

n
k

)

[(D − v) ◦ w−1 − 1]k(vw−1 + 1)n−k

]

wn.

Step 5. Let us introduce the following operator notations: A =
(D − v) ◦ w−1 and B = vw−1. Then the last sum becomes

∑

(

n
k

)

(A− 1)k(B + 1)n−k.

If the operatorsA and B commuted, then according to the binomial for-

mula this would boil down to (A+B)n and thus also to
∑

(

n
k

)

AkBn−k.

The interesting thing is that the latter conclusion holds even without
commutativity:

Lemma 9. For any two operators A,B the following equality holds:
∑

(

n
k

)

(A− 1)k(B + 1)n−k =
∑

(

n
k

)

AkBn−k.

Indeed, this equality does not require changing the order of the fac-
tors. Thus, if it holds for commuting operators, then it does for non-
commuting ones as well.
How can this help us with the proof of the theorem? It allows us to

drop the terms ∓1 in (26) to get
[

n
∑

k=0

(

n
k

)

[(D − v) ◦ w−1]k(vw−1)n−k

]

wn.

Now one can reverse Step 4 (undoing the commutations with powers
of w we have done) and rewrite (26) as

n
∑

k=0

(

n
k

)

(D − v) ◦ ... ◦ (D − v + (k − 1)λ)vn−k,

4This is just standard exponential representation of solutions studied in ODEs
(or, if you will, the representation of sinx as combination of e±ix).
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which is equal to zero due to the Step 2, since v solves the first-order
equation Dv = −λv. This proves Theorem 2 for λ 6= 0. �

7. Remarks and generalizations

• For the readers with a taste for generalizations, we can mention
that the identities (9) hold in a much more general situation.
Namely, u can be assumed to be an element of a commutative
algebra with cancelation and with differentiation D over a field
Λ. Then λ should be an element of the field Λ [19].

• Generalizations of some of the identities we discussed are avail-
able:

Theorem 10. If u satisfies D2u = 0, then the identity

(27)

n
∑

k=0

(

n
k

)

(D − u)k ◦Dmun−k = 0

holds for all odd integer n ≥ 1 and even m ≥ 0.

• Several integral geometry and tomography experts devoted their
time and effort to trying to understand better the meaning of
these strange range conditions. This is also what one of the
authors set out to do with V. Aguilar and L. Ehrenpreis. Sur-
prisingly, as the result, the identities (9) were related [1] to
the so-called separate analyticity theorems (Hartogs-Bernstein
theorems) in several complex variables. For instance, the fol-
lowing amazing theorem is essentially equivalent to these iden-
tities [1, 26, 27]:

Theorem 11. Let Ω be a disk in R2 and f(x) be a function in
the exterior of Ω. Suppose that when restricted to any tangent
line L to ∂Ω, the function f |L, as a function of one real variable
extends to an entire function on the complexification of L. Then
f , as a function on R2 \Ω extends to an entire function on C2.

Well, this fact also did not look obvious. Analyticity of f in
a complex neighborhood of R2 \ D follows from the old (and
not well known) separate analyticity theorem by S. Bernstein
(see [2]), however this theorem cannot produce statement about
f being an entire function. Thus, since proving the above the-
orem, a couple of things about it kept bothering us for sev-
eral years. First of all, this is a several complex variables fact,
while our proof did not look like a SCV argument at all. Is
there a truly complex analysis proof? Another, related, ques-
tion is whether such a theorem can be proven for a different
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convex body instead of a disk Ω? A SCV proof was later pro-
vided in [26, 27], although it was rather complicated and was
not generalizable (at least, easily) to other convex curves. Leon
Ehrenpreis has worked out some other examples of convex al-
gebraic curves (unpublished), but general picture remained un-
clear. Finally, A. Tumanov presented recently [35] a beautiful
short proof based on attachment of analytic disks (where Tu-
manov is a great expert), which works for any strictly convex
body Ω with a mild conditions on the smoothness of its bound-
ary.

More discussion of the relations of the range conditions with
complex analysis can be found for instance in [6, 18–20].

• It would be interesting to find an algebraic proof of the identities
that would work simultaneously for λ = 0 as well as for λ 6= 0.

• It is clear that the identities discussed must be related to spe-
cial function theory and group representations. It would be
interesting to understand such relations.

• The formulations of the Theorems 1 and 2 lead to the natural
question: what can be said for solutions of the equation of 3rd
order D3u = λ3u and higher? A natural guess would be that
the same identities hold, but only for an arithmetic sequence of
numbers n with the difference equal to 3. It is hard to compute
these expressions by hand even for small values of n, say for
n = 4. Ms. E. Rodriguez, a former Masters student of P. K.,
has used the Maple symbolic algebra system to check this con-
jecture. The result is negative, the natural conjecture fails for
equations of third order [31]. So, what (if anything) happens
to solutions of higher order differential equations Dmu = λmu?
Are they deprived of any such identities? We do not know the
answer to this question.
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