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PROVING THE EXISTENCE OF EIGENVALUES AND

EIGENVECTORS BY WEIERSTRASS’S THEOREM

JEAN VAN SCHAFTINGEN

Abstract. I propose a proof of the existence of the existence of eigenvectors
and eigenvalues in the spirit of Argand’s proof of the fundamental theorem of
algebra. The proof only relies on Weierstrass’s theorem, the definition of the
inverse of a linear operator and algebraic identities.

A fundamental result in the spectral theory of matrices or operators on finite-
dimensional spaces is the existence of eigenvectors and eigenvalues.

Theorem 1. Let V be a finite-dimensional complex vector space and let T : V → V

be a linear operator. If V 6= {0}, there exists v̄ ∈ V \ {0} and λ̄ ∈ C such that

T (v̄) = λ̄v̄ .

The vector v̄ is then an eigenvector with associated eigenvalue λ̄. This theorem
is the first step in the study of spectral decomposition and invariant subspaces of
T .

The traditional proof that I was taught as an undergraduate student relies on
the theory of determinants. One first remarks that λ ∈ C is an eigenvalue if and
only if the characteristic polynomial vanishes: det(T − λI) = 0. Note then that
this is a polynomial equation; by the fundamental theorem of algebra, there exists
λ ∈ C such that det(T − λI) = 0.

You can also prove the existence of eigenvalues by relying only on the consequence
of the intermediate value theorem that every real odd-degree polynomials has a real
root. By the argument that I have just sketched linear operators on odd-dimensional
real vector spaces have a real eigenvalue. You can then deduce algebraically the
existence of eigenvalues for linear operators on any complex vector space [3].

If you want you can also avoid determinants. For v ∈ V \{0} and d = dim V , the
vectors v, T (v), T 2(v), . . . , T n(v) are to be linearly independent, that is (anT

n+· · ·+
a0I)(v) = 0 for some a0, . . . , ak ∈ C. By the fundamental theorem of algebra this
can be rewritten as (T −λ1)◦ (T −λ2)◦ · · ·◦ (T −λr)(v) = 0 for some r ∈ {1, . . . , n}
and λ1, λ2, . . . , λr ∈ C. and (T − λj) is not invertible for some i ∈ {1, . . . , r} [1;
2, theorem 5.10].

All the approaches that I have presented rely on the existence of roots for poly-
nomials. I would like to point out that eigenvector and eigenvalue are defined
without reference to polynomials and that they are computed numerically most
of the time without computing roots of polynomials. This suggests to search for
polynomial-free proofs of the existence of eigenvectors and eigenvalues.

Indeed, there is another family of proofs coming from the spectral theory of
normed algebras [4,6,7]. The idea is to assume that the function λ ∈ C 7→ (T−λI)−1
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is well-defined and to derive a contradiction by Liouville’s theorem, the maximum
modulus principle, or some direct argument [5, 9, 10].

I am proposing here a proof of theorem 1 that does not require any previous
knowledge of polynomials and algebra of operators. The tools that are needed are
quite elementary: continuous functions of several variables, definition of the inverse
of an invertible linear map and summation formulas for geometric progressions.

I am following Argand’s strategy to prove the fundamental theorem of algebra
[8, §4.2]. Given a polynomial P , he minimizes z ∈ C 7→ |P (z)| and then shows
that the minimum value of that function should be 0. Here I minimize instead the
function (v, λ) ∈ (V \ {0}) × C → ‖T (v)−λv‖

‖v‖ . The problem of the existence of an

eigenvector and an eigenvalue, consists in showing that the minimum is 0.

Let us begin the proof consists by establishing the existence of a minimal pair
(v̄, λ̄). For the sake of the proof we endow V with an arbitrary norm.

Proposition 2. Let V be a finite-dimensional normed complex vector space. If

T : V → V is a linear operator and V 6= {0}, then there exists v̄ ∈ V \ {0} and

λ̄ ∈ C such that for every v ∈ V \ {0} and λ ∈ C

‖T (v)− λv‖

‖v‖
≥

‖T (v̄)− λ̄v̄‖

‖v‖
.

Since the domain of the function that we are minimizing is not compact, we
need a coercivity estimate on λ that will be provided by the boundedness of linear
operators on finite-dimensional spaces.

Lemma 3. Let V be a finite-dimensional normed complex vector space. If T : V →
V is a linear operator, then there exists C ∈ [0,∞) such that for every v ∈ V

‖T (v)‖ ≤ C‖v‖

and for every v ∈ V and λ ∈ C,

‖T (v)− λv‖ ≥ (|λ| − C)‖v‖ .

Proof. The first assertion is classical for linear operators on finite-dimensional
normed vector-spaces. For the second assertion, by the triangle inequality,

|λ|‖v‖ = ‖λv‖ ≤ ‖T (v)− λv‖+ ‖T (v)‖ ≤ ‖T (v)− λv‖+ C‖v‖ . �

We can now prove the existence of a minimal pair.

Proof of proposition 2. Define the function f : V ×C → R for v ∈ V and λ ∈ C by

f(v, λ) = ‖T (v)− λv‖ .

Choose v0 ∈ V with ‖v0‖ = 1. One has for every v ∈ V with ‖v‖ = 1, by lemma 3

f(v, λ) = ‖T (v)− λv‖ ≥ |λ| − C .

Therefore, if |λ| > ‖T (v0)‖+ C and ‖v‖ = 1,

(1) f(v, λ) > f(v0, 0) .

Since f is continuous and the set
{

(v, λ) ∈ V × C : ‖v‖ = 1 and |λ| ≤ ‖T (v0)‖+ C
}

is compact and not empty, by Weierstrass’s theorem there exists v̄ ∈ V and λ̄ ∈ C

with ‖v̄‖ = 1 and |λ̄| ≤ ‖T (v0)‖ + C such that for every v ∈ V with ‖v‖ = 1 and
λ ∈ C with |λ| ≤ ‖T (v0)‖+ C,

(2) f(v, λ) ≥ f(v̄, λ̄) .
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By (1), the inequality (2) also holds for v ∈ V with ‖v‖ = 1 and λ ∈ C with
|λ| > ‖T (v0)‖ + C. Finally, if v ∈ V \ {0} and λ ∈ C, one has

‖T (v)− λv‖

‖v‖
= f(‖v‖−1v, λ) ≥ f(v̄, λ̄) =

‖T (v̄)− λ̄v̄‖

‖v̄‖
. �

The second part of the proof is to show that the a minimal pair yields an eigen-
vector and its associated eigenvalue.

Proposition 4. Let V be a finite-dimensional normed vector space over C, T :
V → V be a linear operator, v̄ ∈ V \ {0} and λ̄ ∈ C. If for every v ∈ V \ {0} and

λ ∈ C,
‖T (v)− λv‖

‖v‖
≥

‖T (v̄)− λ̄v̄‖

‖v‖
,

then T (v̄) = λ̄v̄.

The key point consists in proving that if a minimal pair that does not yield an
eigenvector and its associated eigenvalue, then it yields additional minimal pairs.

Lemma 5. Let V be a finite-dimensional normed complex vector space, T : V → V

be a linear operator, v̄ ∈ V \ {0} and λ̄ ∈ C. If for every v ∈ V \ {0} and λ ∈ C,

‖T (v)− λv‖

‖v‖
≥ c̄ :=

‖T (v̄)− λ̄v̄‖

‖v‖
,

then, for every λ ∈ C with |λ− λ̄| < c̄, there exists v ∈ V \ {0} such that

‖T (v)− λv‖

‖v‖
= c̄ .

The proof relies on the next algebraic computation. Recall that I denotes the
identity map.

Lemma 6. Let V be a finite-dimensional normed complex vector space, S : V → V

be a linear operator, σ ∈ C, ω ∈ C and n ∈ N. If for every j ∈ {1, . . . , n − 1},
ωj 6= 1 and ωn = 1, S is invertible and for every j ∈ {0, . . . , n − 1}, S − ωjσI is

invertible, then

n−1
∑

j=0

(S − ωjσI)−1 ◦
(

I − (σS−1)n
)

◦ S = nI .

This formula is proved by L. Tornheim (in the framework of normed fields)
[10, p. 63]; Kametani states it without proof [5, p. 98, last line].

Proof of lemma 6. First note that

(3) I − (σS−1)n = (Sn − σnI) ◦ S−n .

One shows by induction on n that

(S − ωjσI)−1 ◦ (Sn − σnI) = (S − ωjσI)−1 ◦
(

Sn − (ωjσI)n
)

=

n−1
∑

k=0

ωkjσkSn−k−1 .

Hence,
n−1
∑

j=0

(S − ωjσI)−1 ◦ (Sn − σnI) =
n−1
∑

j=0

n−1
∑

k=0

ωkjσkSn−k−1 .

Now recalling that

n−1
∑

j=0

ωkj =











1− ωkn

1− ωk
= 0 if ωk 6= 1 ,

n if ωk = 1 ,
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we have
n−1
∑

j=0

(S − ωjσI)−1 ◦ (Sn − σnI) = nSn−1 ,

from which we conclude with the help of (3). �

Proof of lemma 5. We can assume that c̄ > 0. For every v ∈ V \ {0} and λ ∈ C,

‖T (v)− λv‖ ≥ c̄‖v‖ ,

hence T − λI is one-to-one and invertible, and for every v ∈ V \ {0} and λ ∈ C,

(4) ‖(T − λI)−1(v)‖ ≤
‖v‖

c̄
,

Let n ∈ N and set ω = cos 2π
n
+i sin 2π

n
. By lemma 6 with S = T −λI and σ = λ̄−λ

and by the triangle inequality, we have

n‖v̄‖ ≤

n−1
∑

j=0

∥

∥

(

(T − λ̄I −ωj(λ− λ̄)I)−1 ◦
(

I − ((λ− λ̄)(T − λ̄I)−1)n
)

◦ (T − λ̄I)
)

(v̄)
∥

∥.

Now, one has for j ∈ {1, . . . , n− 1} by (4)
∥

∥

(

(T − λ̄I − ωj(λ − λ̄)I)−1 ◦
(

I − ((λ− λ̄)(T − λ̄I)−1)n
)

◦ (T − λ̄I)
)

(v̄)
∥

∥

≤
1

c̄

∥

∥

(

I − ((λ − λ̄)(T − λ̄I)−1)n
)

◦ (T − λ̄I)
)

(v̄)
∥

∥

≤
1

c̄

(

∥

∥T (v̄)− λ̄v̄
∥

∥+
∥

∥

(

(λ− λ̄)(T − λ̄I)−1)n
)

◦ (T − λ̄I)
)

(v̄)
∥

∥

)

.

On the other hand we have by (4)
∥

∥

(

(T − λ̄I − (λ− λ̄)I)−1 ◦
(

I − ((λ − λ̄)(T − λ̄I)−1)n
)

◦ (T − λ̄I)
)

(v̄)
∥

∥

≤
∥

∥

(

(T − λI)−1 ◦ (T − λ̄I)
)

(v̄)
∥

∥

+
1

c̄

∥

∥

(

(λ− λ̄)(T − λ̄I)−1)n
)

◦ (T − λ̄I)
)

(v̄)
∥

∥ .

Therefore, using the previous inequalities, we obtain

n
∥

∥T (v̄)− λ̄v̄
∥

∥ = nc̄‖v̄‖

≤ (n− 1)
∥

∥T (v̄)− λ̄v̄
∥

∥+ c̄
∥

∥

(

(T − λI)−1 ◦ (T − λ̄I)
)

(v̄)
∥

∥

+ n
∥

∥

(

(λ− λ̄)(T − λ̄I)−1)n
)

◦ (T − λ̄I)
)

(v̄)
∥

∥ .

Applying n times (4) we conclude that
∥

∥T (v̄)− λ̄v̄
∥

∥

≤ c̄
∥

∥

(

(T − λI)−1 ◦ (T − λ̄I)
)

(v̄)
∥

∥+ n
∥

∥

(

(λ− λ̄)(T − λ̄I)−1)n
)

◦ (T − λ̄I)
)

(v̄)
∥

∥

≤ c̄
∥

∥

(

(T − λI)−1 ◦ (T − λ̄I)
)

(v̄)
∥

∥+ n
( |λ̄− λ|

c̄

)n

‖T (v̄)− λv̄‖ .

Since |λ− λ̄| < c̄, by letting n → ∞ and taking v =
(

(T − λI)−1 ◦ (T − λ̄I)
)

(v̄), we
have

‖T (v)− λv‖ ≤ c̄
∥

∥v
∥

∥ ,

from which the conclusion follows. �

Proof of proposition 4. Assume by contradiction that T (v̄) 6= λ̄v̄. By lemma 5, for
every λ ∈ C with |λ− λ̄| < c̄, there exists v ∈ V such that

(5) c̄ =
‖T (v)− λv‖

‖v‖
.
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Applying again lemma 5 inductively, for every λ ∈ C and n ∈ N such that |λ− λ̄| <
nc̄, there exists v ∈ V such that (5) holds.

On the other hand, by lemma 3, if |λ| > c̄+ C,

‖T (v)− λv‖

‖v‖
≥ |λ| − C > c̄ ,

in contradiction with (5). �
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