| Prefer Pi: A Brief History and Anthology
of Articles in the American Mathematical
Monthly

Jonathan M. Borwein and Scott T. Chapman

Abstract. In celebration of both a special “bigt Day (3/14/15) and the 2015 centennial of
the Mathematical Association of America, we review the illustrious history ettimstani
in the pages of thdmerican Mathematical Monthly

1. INTRODUCTION. Once in a century, Pi Day is accurate not just to three digits
but to five. The year the MAA was founded (1915) was such a yearsand the
MAAs centennial year (2015). To arrive at this auspicious cosidn, we consider
the date to be given as month—day—two-digit ye&his year, Pi Day turns 26. For a
more detailed discussion of Pi and its history, we refer to laat’yearticle @6]. We
do note that “| prefer pi” is a succinct palindrore.

In honor of this happy coincidence, we have gone back satectedroughly 76
representative papers relating to Pi (the constant not the symbblished in this
journal since its inception in 1894 (which predates that of th&AMtself). Those
75 papers listed in three periods (before 1945, 1945-1989, andob)96rm the core
bibliography of this article. The first author and three undengateiresearch studefts
ran a seminar in which they looked at the 75 papers. Here is wewatiscovered.

Common themes.In each of the three periods, one observes both the commonality
of topics and the changing style of presentation. We shalhsase about this as we
proceed.

* We see authors of varying notoriety. Many are top-tier researchematticians
whose names remain known. Others once famous are unknown earticine from
small colleges, Big Ten universities, Ivy League schools, eratywhere else. In
earlier days, articles came from people at big industrial labsnbwadays, those
labs no longer support research as they used to.

» These papers cover relatively few topics.

o Every few years a “simple proof” of the irrationality af is published. Such
proofs can be found in$8, 26, 29, 31, 39, 52, 59, 62, 76).

> Many proofs ofz (2) := Y, 1/n?> = 72/6 appear, each trying to be a bit more
slick or elementary than the last. Of course, whether you prefgr groofs con-
cise and high tech or more leisurely and lower tech is a mattexrsté and con-
text. See {38, *58, 20, 28, 34, 42, 57, 68, 69].

o Articles on mathematics outside the European tradition hapeared since the
MONTHLY’s earliest days. See the papessy, 11, 15].

http://dx.doi.org/10.4169/amer.math.monthly.122.03.000
1For advocates of = 27, your big day 6/28/31 will come in 2031.
2Given by the Professor indko OzawaThe Housekeeper and the ProfesfRicador Books, 2003. Kindle
location 1095, as is “a nut for a jar of tuna?”
3The students are Elliot Catt from Newcastle and Ghislain McKay and Caneyaon from Waterloo.
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* In the past 30 years, computer algebra begins to enter the gisnas- sometimes
in a fundamental way.

» Of course, the compositing style of thedWTHLY has changed several times.

» The process of constructing this selection highlights howhmuar scholarly life
has changed over the past 30 years. Much more can be found aietistadily, but
there is even more to find than in previous periods. The ease ohdnmipers in
Google Scholar has the perverse consequence — like Greshanirsdaonomics —
of making less easily accessible material even more likelyetgbored.

While our list is not completely exhaustive, almost everygrdfsted in the bibli-
ography has been cited in the literature. In fact, several have lighly cited. Some
highly used research, such as Ivan Niven’'s proof of the irratignafiz in 1947 is
rarely cited as it has been fully absorbed into the literatédfg [ndeed, a quick look
at the AMS’s Mathematical Reviews reveals only 15 citatiohNigen’s paper.

We deem as pi-star (ar*) papers from our MNTHLY bibliography that have been
cited in the literature more than 30 times. The existence of F&m@ans that most
readers can access all these papers easily, but we have arrandbed /65 to be
available free for the next year on our websitey.maa.org/amm_supplements).
Here are ther*s with citation numbers according to Google Scholar (as of Q32
These papers are marked witk & the regular bibliography.

1. 133 citations: J. M. Borwein, P. B. Borwein, D. H. Bailey, Ramjan, modular
equations, and approximations to pi or how to compute onebitigits of pi,
96(1989) 201-219.

2. 119 citations: G. Almkvist, B. Berndt, Gauss, Landen, Raujen, the arithmetic-
geometric mean, ellipses, and the ladies diar@5(1988) 585-608.

3. 73 citations: A. Kufner, L. Maligrand, The prehistory of thertiainequality,
113(2006) 715-732.

4. 63 citations: J. M. Borwein, P. B. Borwein, K. Dilcher, Pi,|Bunumbers, and
asymptotic expansion96(1989) 681-687.

5. 56 citations: N. D. Baruah, B. C. Berndt, H. H. Chan, Ramanisijseries for
1/7: a surveyl162009) 567-587.

6. 40 citations: J. Sondow, Double integrals for Euler’s camsaad Iz /4 and an
analog of Hadjicostas’s formulda,12(2005) 61-65.

7. 39 citations: D. H. Lehmer, On arccotangent relationsifo45(1938) 657—664.

8. 39 citations: I. Papadimitriou, A simple proof of the formdlg- , 1/k* = 72/6,
80(1973) 424-425.

9. 36 citations: V. Adamchik, S. Wagon, A simple formula for104(1997) 852—
855.

10. 35citations: D. Huylebrouck, Similarities in irrationglgroofs forr, In 2,£(2),
and&(3), 1082001) 222-231.

11. 35 citations: L. J. Lange, An elegant continued fractionfpf061999) 456—
458.

12. 33 citations: S. Rabinowitz, S. Wagon, A spigot algorittumthe digits ofr,
102(1995) 195-203.

13. 32 citations: W. S. Brown, Rational exponential exprassiand a conjecture
concerningr ande, 76(1969) 28—-34.

The remainder of this article. We begin with a very brief history of Pi, both math-
ematical and algorithmic, which can be followed in more detajl80] and [46]. We
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then turn to our three periods and make a very few extra comments sbme of
the articles. For the most part the title of each article is a pmgtiod abstract. We
then make a few summatory remarks and list a handful of references frisideu
the MONTHLY, such as David Blattner'doy of Pi[79] and Arndt and Haenel'®i
Unleashed78].

2. Pl: A BRIEF HISTORY. Pi is arguably the most resilient of mathematical ob-
jects. It has been studied seriously over many millennia aneivieyy major culture,
remaining as intensely examined today as in the Syracuse oimedes’ time. Its role

in popular culture was described in last year's Pi Day artid@.[We also recall the
recent movied.ife of Pi((2012, PG) directed by Ang Lee) aid ((1998, R) directed
by Darren Aronofsky?.

From both an analytic and computational viewpoint, it malesse to begin with
Archimedes. Around 250 BCE, Archimedes of Syracuse (287-212 BQEpught to
have been the first (iMeasurement of the Circléo show that the “two possible Pi's”
are the same. For a circle of radiusand diameted, Area= 71 r? while Perimeter
= m, d but thatry = 7, is not obvious and is often overlooked; s&g|[

Archimedes’ method. The first rigorous mathematical calculationofvas also due
to Archimedes, who used a brilliant scheme basedaubling inscribed and circum-
scribed polygons

6+ 12+ 24+ 48+ 96,

and computing the perimeters to obtain the bounﬁsan < 3%—3 =....>The case
of 6-gons and 12-gons is shown in Figutefor n = 48 one already “sees” near-
circles. No computational mathematics approached this Evegor again until the
19th century. Phillips in41] or [80, pp. 15-19] calls Archimedes the “first numerical

analyst.”

Figure 1. Archimedes’ method of computing with 6- and 12-gons

Archimedes’ scheme constitutes the first true algorithmzfan that it can produce
an arbitrarily accurate value far. It also represents the birth of numerical and error
analysis — all without positional notation or modern trigoratm. As discovered in the
19th century, this scheme can be stated as a simple, numgstatile, recursion, as
follows [82)].

4Imagine, an R—rated movie involving Pi!
5All rules are meant to be broken. Writing XD without cancellation makes it easier to see that is
larger than 1071.
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Archimedean mean iteration (Pfaff-Borchardt—Schwab). Seta, = 2+/3 andby =
3, which are the values for circumscribed and inscribed 6-gons. If

2a,b,

=g M and by1 = anib, (G), (1)

ant1

thena, andb, converge tar, with the error decreasing by a factor of four with each
iteration. In this case, the error is easy to estimate—lo@k gt— b2, ,—and the limit
is somewhat less accessible but still reasonably easy toiet[82).

Variations of Archimedes’ geometrical scheme were the basidlfbigh-accuracy
calculations ofr over the next 1,800 years—far after its “best before” date. Fer ex
ample, in fifth century China, Tsu Chung-Chih used a variant sfritieéthod to obtain
7 correct to seven digits. A millennium later, abBkh in Samarkand Who could cal-
culate as eagles can flpbtained 2r in sexadecimal

o A 64 16+59+28+01+34+51+46+14+50
T U760t 6P 60° ' 60" 60° ' 60° ' 607  6CF ' 60°
good to 16 decimal places (using 2*®-gons). This is a personal favorite; reentering
it in a computer centuries later and getting the predicted angives the authors
horripilation (“goose-bumps”).
Pi's centrality is emphasised by the many ways it turns up earlyew subjects
from irrationality theory to probability and harmonic analysisr Fstance, Francois
Viéta's (1540-1603) formula

2 N2V24+V2y2+V2+ V2
-5 .

v

and John Wallis’ (1616—-1703) infinite produé{7] 74, 75|

)

m 2:2-4.4.6-6-8-8
2 1.3.3.5.5.7.7.9

)

are counted among the first infinitary objects in mathematics. [atter leads to the
gamma function, Stirling’s formula, and much mo&], including thefirst infinite
continued fractiof for 2/7 by Lord Brouncker (1620-1684), first president of the
Royal Society of London:

2 1 9 25 49

t=2 2 2T (4)
142424 2.

Here, we use the modern concise notation for a continued fraction.

Arctangents and Machin formulas. With the development of calculus, it became
possible to extend calculations of dramatically as shown in Figuré Almost all
calculations between 1700 and 1980 reduce to exploitingghiessfor the arctangent
(or another inverse trig function) and using identities to reqoir@putation only near
the center of the interval of convergence. Thus, one starts wit

3 X5 X7
arctaix) =X - —+ ———+... for —1<x<1 5
00 =X — 5+ ==+ <x< (5)

6This was discovered without proof as was. (
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and arctarl) = /4. Substitutingx = 1 proves thésregory—Leibniz formul§1671—
1674)

=1l-C4 -S4+ (6)

James Gregory (1638-1675) was the greatest of a large Scottiblemetical fam-
ily. The pointx = 1, however, is on the boundary of the interval of convergence of
the series. Justifying substitution requires a careful error etifoathe remainder or
Lebesgue’s monotone convergence theorem, but most intagucalculus texts ig-
nore the issue. The arctan integral and series were known cerdarles to the Kerala
school, which was identified with Madhava (c. 1350 — c. 1425 arfigamagrama near
Kerala, India. Madhava may well have computed 13 digits of

To make B) computationally feasible, we can use one of many formulas asch

1 1
arctanl) =2 arctar<:—3> + arctan<?) (Hutton) (7
1 1 1
arctanl) = arctan(§> + arctan<§) + arctan(§> (Euler) (8)
arctar{l) = 4 arcta ! arctan L (Machin) 9)
N 5 239 '

All of this, including the efficiency of differenMachin formulasas they are now
called, is lucidly described by the early and distinguishemhpotational number the-
orist D.H. Lehmer 113]. See also2, 5, 49] and [19] by Wrench, who in 1961 with
Dan Shanks performed extended computer computatiarusing these formulas; see
Figure5.

In [*13] Lehmer gives what he considered to be a best possible selkiclgepair
of arctan relations for computing. The pair was

1 1 1
- —) - — ) -4 — 1
arctan(l) = 8 arctar< 10) arctan( 239) arctar< 515) (20)
arctan(l) = 12 arcta ! + 8arcta ! 5arcta L (12)
N 18 57 239/

In [2], Ballantine shows that this pair makes a good choice sineestries for
arctar{l/18) and arctarfl/57) has terms that differ by a constant factor of “0,” a
decimal shift. This observation was implemented in both th&l1#hd 1973 computa-
tions listed in Figuret.

Mathematical landmarks in the life of Pi. The irrationality ofr was first shown by

Lambertin 1761 using continued fraction§3J]. This is a good idea since a numker

has an eventually repeating nonterminating simple contifigation if and only ifo

is a quadratic irrational, as made rigorous in 1794 by Legendreeridrg conjectured
thatr is nonalgebrait that is, thatr is transcendentalUnfortunately, all the pretty

continued fractions for are not simple*63, 70, 83]. In [*63], Lange examines various
proofs of

71t can be argued that he was anticipated by Maimonides (the Rambam, 1135[d104)
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2 P 5 7
-3+ = = _ 12
Tt L2 242 (12)

Legendre was validated when in 1882 Lindemann prowédhnscendental. He did
this by extending Hermite’s 1873 proof of the transcendence dhere followed a
spate of simplifications by Weierstrass in 1885, Hilbert in 1&9%1 many others. Os-
wald Veblen’s article 18], written only ten years later, is a lucid description of the
topic by one of the leaders of the early 20th century American emagttical commu-
nity.2 A 1939 proof of the transcendenceroby Ivan Niven [L4] is reproduced exactly
in AppendixA since it remains entirely appropriate for a class today.

We next reproduce our personal favoriteoNITHLY proof of the irrationality ofr.

All such proofs eventually arrive at a putative integer that ntiesstrictly between
zero and one.

Theorem 1 (Breusch p6]). x is irrational.

Proof. Assumen = a/b with a and b integers. Then, withN = 2a, sinN = 0,
cosN =1, and coéN/2) = +1. If mis zero or a positive integer, then

2k+1

An(X) = kXz(;(—l)k(Zk + 1)’“@ = Pn(X) cosx + Qm(X) sinx

where P,(x) and Qn,(x) are polynomials inx with integral coefficients. (The proof
follows by induction orm : Ay 1 = xd A, /dx, and Ay = sinx.) Thus,An(N) is an
integer for every positive integen.

If t is any positive integer, then

(Zk+1-t-Dk+1-t-2) - 2k+1-2) o,

Bi(N) =) (=D

— (2k + 1)!
_ i(—l)k(Zk + 1) — b2k + D4 by N2
— (2k + 1)!

= A(N) — b1 Ac_1(N) + - £ b Ag(N).

Since all theb; are integersB;(N) must be an integer too. Break the sum B(N)
into the three pieces

[(t-1)/2] t—1 o0
> .Y ey
k=0  k=[(t+1)/2] k=t

In the first sum, the numerator of each fraction is a produttaainsecutive integers;
therefore, it is divisible by! and hence by2k + 1)! since X + 1 < t. Thus, each term
of the first sum is an integer. Each term of the second sum is zbt, The third sum
must be an integer for every positive integer

8He was also nephew of Thorstein Veblen, one of the founders of sogialod originator of the term
“conspicuous consumption.”
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This third sum is

- Nk (Zk -1t 2k+1
kg;( b (2k + l)!(2k—2t)!N

_ eyt M<1_ t+Dt+2 N2
(2t + 1! (2t +2)(2t +3) 2!

t+ D+ +3)t+4 N )

(2t +2)(2t +3)(2t + 4 (2t +5) 4!

Let S(t) stand for the sum in the parenthesis. Certainly

2

N
|S(t)|<1+N+7+---:eN.

Thus, the whole expression is absolutely less than
t! 2t+1

N
(2t ~ 1)| N2t+1eN < tt+1 eN < (Nz/t)t+leN,

which is less than 1 far > tg.
Therefore, S(t) = 0O for every integet > to. But this is impossible because

1 N2 1 N*

A similar argument shows that the natural logarithm of a rationanber must be
irrational. From loga,/b) = c¢/d would follow thate® = a?/b% = A/B. Then

B.Z(k—t—1)(k—t—2)---(k—2t)ck

— k!

would have to be an integer for every positive integavhich leads to a contradiction.

Irrationality measures, denoted«), as described in83] seem not to have seen
much attention in the MNTHLY. Theirrationality measureof a real number is the
infimum overp > 0 such that the inequality

p

o — —

q

1
e

=

has at most finitely many solutions ip e Z andqg € N. Currently, the best irra-
tionality measure known forr is 7.6063. Forr?, it is 5.095412, and for log 2, it is
3.57455391. For every rational number, the irrationality measaideand the Thue-
Siegel-Roth theorem states thatiis a real algebraic irrational ther(«) = 2. Indeed,
almost all real numbers have an irrationality measure of 2, anddesmlental numbers
have irrationality measure 2 or greater. For example, the tradscgal numbee has
w(e) = 2 while Liouville numberssuch as)_,.,1/10" are precisely those numbers
having infinite irrationality measure. The fact thatr) < oo (equivalentlyr is not
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a Liouville number) was first proved by Mahle8q] in 1953° This fact does figure
in the solution of many MNTHLY problems over the years; for instance, it lets one
estimate how far sim) is from zero.

TheRiemann zetéunction'® is defined fors > 1 by ¢(s) = Y., 1/n°. TheBasel
problem first posed by Pietro Mengoli in 1644, which asked for the evalnaof
¢(2 =Y ,.,1/n? was popularized by the Bernoullis, who came from Basel in
Switzerland and, hence, the name. In 1735, all even valuesvaére evaluated by
Euler. He argued that sinnx) could be thought of as an infinite polynomial and so

2

sin(zr x) = X
X :nﬂ(l—ﬁ>, (13)

n=1

since both sides have the same zeros and value at zero. Comipericaefficients of
the Taylor series of both sides df3) establishes that(2) = 72/6 and then one recur-
sively can determine a closed form (involving Bernoulli polynals). In particular,
¢(4) = m%/90, £(6) = 7°/945, and; (8) = 78/9450 and so on. By contragt3) was
only proven irrational in the late 1970s, and the status(8j is unsettled—although
every one who has thought about tkigowsit is irrational. It is a nice exercise to con-
firm the values ot (4), ¢ (6) from (13). A large number of the papers in this collection
center on the Basel problem and its extensions; ¥&& {73, 50, 72]. An especially
nice accounting is in43]. As is discussed inR4, 46, it is striking how little more is
known about the number—theoretic structurerof

Algorithmic high spots in the life of Pi. In the large, only three methods have been
used to make significant computationsof before 1700 by Archimedes’ method,
between 1700 and 1980 using calculus methods (usually basdtecarctangent’s
Maclaurin series and Machin formulas), and since 1980 using apdat series or
iterations both based on elliptic integrals and the arithmggometric mean. The
progress of this multicentury project is shown in Figugesl, and5. If plotted on

a log linear scale, the records line up well, especially in Fédi) which neatly tracks
Moore’s law.

Name Year Digits
Babylonians 2000? BCE 1
Egyptians 2000? BCE 1
Hebrews (1 Kings 7:23) 550? BCE 1
Archimedes 250? BCE 3
Ptolemy 150 3
Liu Hui 263 5
Tsu Ch’ung Chi 4807 7
Al-Kashi 1429 14
Romanus 1593 15
van Ceulen (Ludolph’s number) 1615 35

Figure 2. Pre-calculusr calculations

9He showedy () < 42 Douglas Adams would be pleased. The entire Mahler archive is on lirteat //
carma.newcastle.edu.au/mahler/.
10As expressed in Stigler's law of eponymy, discoveries are often namedeaéeresearchers, butin Euler's
case, he needs no more glory.
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Hex Digit Occurrences

0 62499881108

Decimal Digit Occurrences 1 62500212206
2 62499924780

0 99999485134 3 62500188844

1 99999945664 4 62499807368

2 100000480057 5 62500007205

3 99999787805 6 62499925426

4 100000357857 7 62499878794

5 99999671008 8 62500216752

6 99999807503 9 62500120671
7 99999818723 A 62500266095
8 100000791469 B 62499955595

9 99999854780 C 62500188610
D 62499613666

Total 1000000000000 E 62499875079
F 62499937801

Total 1000000000000

Figure 3. Seemingly random behavior of single digitsofn base 10 and 16

Name Year | Correct Digits
Sharp (and Halley) 1699 71
Machin 1706 100
Strassnitzky and Dase 1844 200
Rutherford 1853 440
Shanks 1874 (707) 527
Ferguson (Calculator) 1947 808
Reitwiesner et al. (ENIAC) | 1949 2,037
Genuys 1958 10,000
Shanks and Wrench 1961 100,265
Guilloud and Bouyer 1973 1,001,250

Figure 4. Calculusr calculations

The “post-calculus” era was made possible by the simultandisgsvery by Eu-
gene Salamin and Richard Brent in 1976 of identities—actuallywn to Gauss but
not recognized for their value24, 37, 82]—that lead to the following two illustrative
reduced complexity algorithms.

Quadratic algorithm (Salamin-Brent). Seta, = 1, by = 1/+/2, ands, = 1/2. Cal-

culate
-1+ b1 . . i
A== (Arithmetic), bx = yac1b1 (Geometric),  (14)
. ) 2a2
o=a—b2, s =s.1—2% andcompute p, = o (15)

Then px convergegquadraticallyto . Note the similarity between the arithmetic—
geometric mean iteratiorlg) (which for general initial values converges quickly to
a nonelementary limit) and the out-of-kilter harmonic—geometr&an iteration X)
(which in general converges slowly to an elementary limit) ahéttvis an arithmetic—
geometric iteration in the reciprocals (s&2]).
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Name Year Correct Digits

Miyoshi and Kanada 1981 2,000,036
Kanada-Yoshino-Tamura 1982 16,777,206
Gosper 1985 17,526,200
Bailey Jan. 1986 29,360,111
Kanada and Tamura Sep. 1986 33,554,414
Kanada and Tamura Oct. 1986 67,108,839
Kanada et. al Jan. 1987 134,217,700
Kanada and Tamura Jan. 1988 201,326,551
Chudnovskys May 1989 480,000,000
Kanada and Tamura Jul. 1989 536,870,898
Kanada and Tamura Nov. 1989 1,073,741,799
Chudnovskys Aug. 1991 2,260,000,000
Chudnovskys May 1994 4,044,000,000

Kanada and Takahashi Oct. 1995 6,442,450,938
Kanada and Takahashi Jul. 1997 51,539,600,000
Kanada and Takahashi Sep. 1999 206,158,430,000
Kanada-Ushiro-Kuroda Dec. 2002 1,241,100,000,000

Takahashi Jan. 2009 1,649,000,000,000
Takahashi April. 2009 | 2,576,980,377,524
Bellard Dec. 2009 | 2,699,999,990,000
Kondo and Yee Aug. 2010 | 5,000,000,000,000
Kondo and Yee Oct. 2011 10,000,000,000,000
Kondo and Yee Dec. 2013 | 12,200,000,000,000

Figure 5. Post-calculusr calculations

Each iteration of the Brent—Salamin algoritiimubleghe correct digits. Successive
iterations produce, ¥, 9, 20, 42, 85, 173 347, and 697 good decimal digits ®f and
take logN operations to computd digits. Twenty-five iterations compute to over
45 million decimal digit accuracy. A disadvantage is thatreafcthese iterations must
be performed to the precision of the final result. Likewise, we hlgdollowing.

Quartic Algorithm (The Borweins). Seta, = 6 — 4¢/2 andy, = +/2 — 1. Iterate

1-A-yo

Ty 4 an=al+ YirD)® = 221 L+ Yigr + Vo)
- Yk

Yi+1 =

Then Ya, converges quarticalfy} to 7. Note that only the power of 2 used &
depends oik. Twenty-five iterations yield an algebraic number that agredis avito
in excess of a quadrillion digits. This iteration is nicely ded in [56].

As charmingly detailed in*R1], see also47, 82], Ramanujan discovered that

(16)

1 22 i (4k)! (1103+ 2639K)
7 98014~ (k1)*396%
Each term of this series produces an additi@ightcorrect digits in the result. When
Gosper used this formula to compute 17 million digitsrah 1985, it agreed to many
millions of places with the prior estimatethis concluded the first proadf (16). As
described in*24], this computation can be shown to be exact enough to cotesttu
bona fide proof! Actually, Gosper first computed the simple cur@d fraction forr,

LIA fourth-order iteration might be a compound of two second-order;ahésone cannot be so decom-
posed.
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hoping to discover some new things in its expansion, but fowntk. At the time of
this writing, 500 million terms of the continued fraction ferhave been computed
by Neil Bickford (then a teenager) without shedding light on valeethe sequence is
unbounded (se€’[]).

G. N. Watson, on looking at various of Ramanujan’s formulas siscf6), reports
the following sensations3p):

...a thrill which is indistinguishable from the thrill | feel when | enter the 1®atja Nuovo

of the Capella Medici and see before me the austere beauty of the feussstapresenting
‘Day’, ‘Night’, ‘Evening’, and ‘Dawn’ which Michelangelo has set ewthe tomb of Guiliano
de‘Medici and Lorenzo de‘Medici. — G. N. Watson, 1886—1965.

Soon after Gosper did his computation, David and Gregory Chughydound the
following even more rapidly convergent variation of Ramanigdoimula. It is a con-
sequence of the fact thaf—163 corresponds to an imaginary quadratic field with class
number one:

(—D)k (Bk)! (13591409+ 545140134)

1 o0
T 1225‘ (3K)! (k!)2 640320<+3/2 (7)

Each term of this series produces an extraordinary additional téataligits. Note
thatin both (6) and (L7), one computes a rational series and has a single multiplicatio
by a surd to compute at the end.

Some less familiar themes While most of the articles in our collection fit into one of
the big themes (irrationalityg[7], transcendence, arctangent formulas, Euler’s product
for sinx, evaluation ofz(2), = in other cultures), there are of course some lovely
sporadic examples. These include the following.

» Spigot algorithms, which drip off one more digit at a time for &= and use only
integer arithmetic [*71, 54]. As described in*44], the first spigot algorithm was
discovered foe. While the ideas are simple, the specificsfoneed some care; we
refer to Rabinowitz and Wagon11] for the carefully explained details.

* Products for & - eand /e [35]. Melzack, then at Bell Labs, prov&dthat

- 2N (—1)“+1n
— = lim 1+ - 18
e N—o0 1_[ ( + n) ( )
n=1
2N+1 (=1)"n
6 2
— = lim 1+ — . 19
e N—oo E ( + n> ( )

Melzak begins by showing that lim ., V(C,))/V(S)) = +/2/(re), where§, is the
n-sphere an@, is the inscribech-dimensional cylinder of greatest volume. He then
proves (8) and (19), saying the proof follows that of the derivation of Wallis’ for-
mula, and he&onjectureghat (18) can be used to prove thatr is irrational. We re-
mind the reader that the transcendentalitgofollows from theGelfond—Schneider
theorem (1934)§2] sincee™? =i, but the statuses &+ =, e/x, e- 7, andn®
are unsettled.

12\We correct errors in Melzak’s original formulas.
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Both (18) and (19) are very slowly convergent. To checkd], one may take logs
and expand the series for log then exchange the order of sunmtat@wrive at the
more rapidly convergent “zeta’-series

= (=2)" e
3 (oe(n—l)—l):log<?>

n=2 n

wherea(s) = Zk>o(—1)"/(k + 1)% is the alternating zeta function, which is well
defined for Res > 0.
If we consider the partial products fdatg), then we obtain

(22446688 2N)<2N+1>2N

13355 7 7 9 2N+1 2N +2

As N — oo, the left factor yields Wallis’s product for /2 and the right factor tends
to 1/e, which confirms 18). A similar partial product can be obtained frod®j.

A curious predictability in the error in the Gregory—Liebnitz ser ies(6) for /4
[*25, 45]. In 1988, it was observed that the series

X (—1)ktl 1 1 1 1 1
=4 — 41—+ ... 2
T Z = sTe 5t 11 : (20)

when truncated to 5,000,000 terms, differs strangely from the trlue i :

3.14159245358979323846464338327950278419716939938730582097494182230781640. . .
3.14159265358979323846264338327950288419716939937510582097494459230781640. . .
2 -2 10 -122 2770.

Values differ as expected from truncating an alternating sendbe seventh place
a “4” that should be a “6.” But the next 13 digits are correct affigsraanother blip,
for 12 digits. Of the first 46 digits, only four differ from the correspling digits
of 7. Further, the “error” digits seemingly occur with a period of 14cls anoma-
lous behavior begs for explanation. A great place to start issliyguNeil Sloane’s
Internet-based integer sequence recognition tool, availdk@@oeis. org. This
tool has no difficulty recognizing the sequence of errors as tifiedculer num-
bers Even Euler numbers are generated byxsecy .- ,(—1)*Exx*/(2k)!. The
first few are 1—1, 5, —61, 1385 —50521 2702765 This discovery led to the fol-
lowing asymptotic expansion

N/2

T (=D &~ Eom
E_ZZ oKk — 1 NZNZerl' (21)

Now the genesis of the anomaly is clear: by chance, the seriebden trun-
cated at 5,000,000 terms—exactly one-half of a fairly largegrauf ten. Indeed,
settingN = 10, 000, 000 in equationZ1) shows that the first hundred or so digits of
the truncated series value are small perturbations of the correichaleexpansion
for .

On a hexadecimal computer with = 16’, the corresponding strings and hex
errors are
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3.243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89452821E. . .
3.243F6A6885A308D31319AA2E03707344A3693822299F31D7A82EFA98EC4ADBF69452821E. . .
2 -2 A -7A 2AD2

with the first being the correct value af. (In hexadecimal ohexone uses “A,B,
..., F"to write 10 through 15 as single “hex-digits.”) Similar ploenena occur for
other constants; se8(]. Also, knowing the errors means we can correct them and
use @1) to make Gregory's formula computationally tractable.

 Hilbert's inequality [*61, 48] In its simplest incarnation, Hilbert's inequality is

(for a,, bm € R, a,, by > 0) (22)

with the assertion that the constantis best possible. Actually,/2 was the best
constant that Hilbert could obtain. Hardy’s inequality, whariginated in his suc-
cessful attempt to prove2®) early in the development of the modern theory of
inequalities, is well described ing1]. One could write a nice book on the places in
which or ¢ (2) arise as the best possible constant in an inequality.

* The distribution of the digits of & [46]. Single-digit distribution of the first tril-
lion digits base 10 and 16 is shown in Figi@eAll the counts in these figures are
consistent withr being random.

3. PIIN THIS MONTHLY: 1894-1944. This period yielded 20 papers for our se-
lection. The July 1894 issue of thisdMITHLY contained the most embarrassing article
on Pi [LQ] ever to grace the pages of thedMTHLY. Flagged only by “published by the
request of the author,” who indicated it was copyrighted in9.88s the origin of the
famous usually garbled story of the attempt by Indiana in 189&dislate the value of
; see B1] and [80, D. Singmaster, The legal values of pi]. It contains a nonsahsi
geometric construction of. Sozr and the MONTHLY got off on a bad footing.

Luckily, the future was brighter. While most early articles wonldet today’s crite-
ria for publication, this is not true of all. For exampl&(] offers a carefully organized
list of 68 consequences of Euler’s product for sin giverlig) vith almost no English.
By contrast, §] is perhaps the first discussion of the efficiency of calcutatiothe
MONTHLY.

REFERENCES FROML894T0 1944

1. R.C. Archibald, Historical notes on the relatien/? =il Amer. Math. Monthly28(1921) 116-121.
MR1519723
2. J. P. Ballantine, The best (?) formula for computingo a thousand placegymer. Math. Monthly
46(1939), 499-501. MR3168990
3. J. M. Barbour, A sixteenth century Chinese approximationrfokmer. Math. Monthiy10(1933) 69—73.
MR1522708
4. A. A. Bennett, Discussions: Pi and the factorsxdf+ 1, Amer. Math. Monthly32(1925) 375-377.
MR1520736
5. A.A. Bennett, Two new arctangent relationsfgrAmer. Math. Monthl\32(1925) 253-255. MR1520682
6. C.C.Camp, Discussions: A new calculationgfAmer. Math. Monthl383(1926) 472-473. MR1521028
7. J. S. Frame, A series useful in the computationzof Amer. Math. Monthly42(1935) 499-501.
MR1523462
8. M. G. Gaba, A simple approximation far, Amer. Math. Monthly5(1938) 373-375. MR1524313
9. S. Ganguli, The elder Aryabhata’s valuemgfAmer. Math. Monthly87(1930) 16—-22. MR1521892
10. E.J. Goodwin, Quadrature of the circhener. Math. Monthly1(1894) 246-248.
11. G. B. Halsted, Piin Asiddmer. Math. Monthly15(1908) 84. MR1517012
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12. W. E. Heal, Quadrature of the circkmer. Math. Monthly3(1896) 41-45. MR1514010

*13. D. H. Lehmer, On arccotangent relationsfgrAmer. Math. Monthly5(1938) 657-664. MR1524440

14. I. Niven, The transcendencesof Amer. Math. Monthly6(1939) 469-471. MR0O000415

15. C. Schoy, Discussions: Al-Biruni’'s computation of the valfiee pAmer. Math. Monthl\33(1926) 323—
325. MR1520959

16. D. E. Smith, Historical survey of the attempts at the computatiwh construction ofr, Amer. Math.
Monthly2(1895) 348-351. MR1513968

17. R. S. Underwood, Discussions: Some results involvingAmer. Math. Monthly31(1924) 392-394.
MR1520517

18. 0. Veblen, The transcendencewénde, Amer. Math. Monthly11(1904) 219-223. MR1516235

19. J. W. Wrench, On the derivation of arctangent equaliteser. Math. Monthly45(1938) 108-109.
MR1524198

20. G.B. Zerr, Summation of serie&mer. Math. Monthly5(1898) 128-135. MR1514571

4. PI'IN THIS MONTHLY: 1945-1989. This second period collects 22 papers. It
saw the birth and evolution of the digital computer with maoypgequences for the
computation ofr. Even old topics are new when new ideas and tools arise. A chgrmin
example is as follows.

Why = is not 22/7. Did you know that

1-xt 22
0</ (1+>)<2 x=" —n? (23)

The integrand is strictly positive of®, 1), so the integral inZ3) is strictly positive—
despite claims that is 22/7 that rage over the millenntd.Why is this identity true?
We have

x*(1—x)* 1 2 4
= P dx=Zt"— St +t5— —t3+ 4t — 4 arctant),
/0 1y = U+ U+ nt)

as differentiation easily confirms, and so the Newtonian fundaah¢heorem of cal-
culus provesZ3).
One can take the idea i23) a bit further. Note that

1
1
41— x)*dx= — 24
/OX( X)"dx 630 (24)

and we observe that

1 (1—x)*x4 L .
2/x(l X) dx</de</ox(l—x) dx. (25)

Combine this with 23) and @4) to derive
223 22 1 22 1 22

e <nT<—=-—"7==< =,
71 ~ 7 630 7 1260 7
and so we re-obtain Archimedes’ famous computation

10 10
3— <1 <3=—. 26
71 70 (26)
130ne may still find adverts in newspapers offering such proofs for satecént and otherwise very nice
children’s book “Sir Cumference and the the Dragon of Pi (A Math Adventya)lished in 1999 repeats the
error, and email often arrives in our in-boxes offering to show whyghiike this are true.
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This derivation was popularized Burekg a Cambridge University student journal,

in 1971 A recent study of related approximations is made by Lué&k |t seems

largely happenstance that/Z2is an early continued fraction approximaterto
Another less standard offering is i8B3] where Y. V. Matiyasevich shows that

_ 6logfcm(Fy, ..., Fn)
7 = lim .
m— oo loglem(uy, ..., Un)

(27)

Here, Icm is the least common multiple, fcm is the formal commoritipie (the
product), andF, is the n-th Fibonacci number with/g = 0, F; = 1, F, = F_1 +
Fn_2, n > 2 (without the square root we obtain a formula {@p)).

REFERENCES FROML945T0 1989

*21. G. Almkvist, B. Berndt, Gauss, Landen, Ramanujan, the arithmetisrgtric mean, ellipses,, and
the ladies diaryAmer. Math. Monthl{95(1988) 585-608. MR0966232

22. B. H. Arnold, H. Eves, A simple proof that, for odul> 1, arccos 1p andn are incommensurable,
Amer. Math. Monthlys6(1949) 20. MR0028343

23. L. Baxter, Arer, e, and~/2 equally difficult to compute?Amer. Math. Monthly88(1981) 50-51.
MR1539586

*24. J. M. Borwein, P. B. Borwein, D. H. Bailey, Ramanujan, modular eqoatiand approximations to pi
or how to compute one billion digits of g6(1989) 201-219. MR099186

*25. J. M. Borwein, P. B. Borwein, K. Dilcher, Pi, Euler numbers, and gepiic expansionsimer. Math.
Monthly96(1989) 681-687. MR1019148

26. R. Breusch, A proof of the irrationality @f, Amer. Math. Monthl{61(1954) 631-632. MR0064087

*27. W. S. Brown, Rational exponential expressions and a conjecture ootger and e, Amer. Math.
Monthly76(1969) 28—-34. MR0234933

28. B. R. Choe, An elementary proof OFo2, 1/n? = 72/6, Amer. Math. Monthly94(1987) 662-663.
MR0935853

29. J.D. Dixon, is not algebraic of degree one or twamer. Math. Monthlf69(1962) 636. MR1531775

30. J. Gurland, On Wallis’ formuléAmer. Math. Monthly63(1956) 643-645. MR0082117

31. J.Hancl, A simple proof of the irrationality a*, Amer. Math. Month\93(1986) 374-375. MR0841114

32. D. K. Kazarinoff, A simple derivation of the Leibnitz—Gregoryissrfor 7/4, Amer. Math. Monthly
62(1955) 726—727. MR1529178

33. Y. V. Matiyasevich, A new formula far, Amer. Math. Month\{93(1986) 631-635. MR1712797

34. Y. Matsuoka, An elementary proof of the form¥a° , 1/k? = 72/6, Amer. Math. Monthl\68(1961)
485-487. MR0123858

35. Z. A. Melzak, Infinite products fot - e, andx /e, Amer. Math. Monthly8(1961) 39-41. MR0122920

36. K. Menger, Methods of presentie@ndz, Amer. Math. Monthl\j62(1945) 28—-33. MR0011319

37. G. Miel, An algorithm for the calculation af, Amer. Math. Monthl\86(1979) 694—697. MR0546184

*38. |. Papadimitriou, A simple proof of the formulg"; 1/k? = 72/6, Amer. Math. Monthy80(1973)
424-425. MR0313666

39. A.E.Parksr , e, and other irrational numberdmer. Math. Month\®3(1986) 722—-723. MR0863976

40. L. L. Pennisi, Expansions far andz2, Amer. Math. Monthl\62(1955) 653-654. MR1529151

41. G. M. Phillips, Archimedes the numerical analysfer. Math. Monthl88(1981) 165-169. MR0619562

42. E.L. Stark, Another proof of the formulgp ; 1/k? = 72/6, Amer. Math. Monthly76(1969) 552-553.
MR1535429

43. K. Venkatachaliengar, Elementary proofs of the infinite productifiar and allied formulaeAmer. Math.
Monthly 69(1962) 541-545. MR1531736

5. PI'IN THIS MONTHLY: 1990-2015. In the final period, we have collected 32
papers and see no sign that interest iis lessening. A new topic44, 46, 51, 81] is

that of BBP formulaswhich can compute individual digits of certain constantshsu
asr in base 2 orr? in bases 2 and 3 without using the earlier digits. The phenomen

14Equation 23) was on a Sydney University examination paper in the early sixties andatiest source
we know of dates from the 194089 in an article by Dalzell, who lamentably did not cite himself 84].
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is based on the formula

1/ 4 2 1 1
S iy [ . 28
d ;16 (8|+1 8 +4 815 8|+6) (28)

On August 27, 2012, Ed Karrel useg8j to extract 25 hex digits of starting after
the 1G° position. They ar@53CB3F7FOC9ACCFA9AA215F2.1% In 1990, a billion digits
had not yet been computed; s&6][ and even now, it is inconceivable to compute the
full first quadrillion digits in any base.

Over this period, the use of the computer has become more reasérein pure
mathematics, and concrete mathematics is back in fashionislspirit, we record the
following evaluation ofz (2), which to our knowledge first appeared as an exercise in

[82].

Theorem 2 (Sophomore’s Dream).One may square term-wise to obtain

2
(Z 2n+1) N Z (2n+ 1)2° (29)

n=—0o0 Nn=-—o00

In particular ¢ (2) = 72/6.

Proof. Let
NN N
(=pmn 1
= @+ D@n+ ) = (2k+ D)
and note thaby = Y0\ 525 31y S50 We leave it to the reader to show

that for largeN the inner sungy (n) is of order (N — n + 1), which goes to zero.
The proof is finished by evaluating the left side @) to 72/4 using Gregory’s
formula 6) and then noting that this meadsy” , 1/(2n + 1)> = =2/8. [ ]

Another potent and concrete way to establish an identity idbtain an appropriate
differential equation. For example, consider

[ 2 _[fexp—x(L+1?)
f(x):= (/O e ds) and g(x) .:/0 i dt.

The derivative off + gis zero: inMaple,

f:=x->Int(exp(-s~2),s=0..%)"2;

g:=x->Int (exp(-x"2*%(1+t"2))/(1+t~2) ,t=0..1);

with(student) :d:=changevar (s=x*t,diff (f(x),x),t)+diff(g(x),x);
d:=expand(d) ;

15A1l processing was done on four NVIDIA GTX 690 graphics cards (GPbsilled in CUDA; the com-
putation took 37 days. CUDA is a parallel computing platform and @wgning mode developed by NVIDIA
for use in its graphics processing units (GPUSs).
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shows this. Hencef (x) + g(x) is constant for O< x < oo and so, after justifying
taking the limit atoo,

[e'9) 2
(/ exp(—tz) dt) = f(o0) = g(0) = arctan(l) = %
0

Thus, we have evaluated the Gaussian integral using onlyeeliamy calculus and
Gregory’s formula §). The change of variablg$ = x shows that this evaluation of
the normal distribution agrees with(1/2) = /7.

In similar fashion, we may evaluate

F(y) := / exp(—x?) cog2xy) dx
0
by checking that it satisfies the differential equatkiiy) + 2y F(y) = 0. We obtain
T
Fy) = ‘/7_ exp(—y?),

since we have just evaluatéd0) = /7 /2.
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6. CONCLUDING REMARKS.

It's generally the way with progress that it looks much greater than it réslly Ludwig
Wittgensteid®

Itis a great strength of mathematics that “old” and “inferior” arésymonyms. As we
have seen in this selection, many seeming novelties arellgatediscoveries. That is
not at all a bad thing, but it does behoove authors to write “Ehast seen this before”
or “this is to my knowledge new” rather than unnecessarilynsiag ontological or

epistemological primacy.
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A. APPENDIX: I. NIVEN - THE TRANSCENDENCE OF = [14]. Among the
proofs of the transcendence @fwhich are in general variations and simplifications
of the original proof of Hermite, perhaps the simplest is that ofHrwitz” His
solution of the problem contains an ingenious device, whiemaw employ to prove
the transcendence at

We assume that is an algebraic number, and show that this leads to a conti@ualict
Since the product of two algebraic numbers is an algebraic nyhigequantityi  is
a root of an algebraic equation with integral coefficients

61(X) =0, (30)
whose roots are; = i, o, o, . . ., an. Using Euler’s relatio®”™ + 1 = 0, we have
1+ (E2+1)--- (e +1)=0. (31)

17A. Hurwitz, Beweis der Transendenz der ZahMathematische Annalen, vol. 43, 1893, pp. 220-221 (also
in his Mathematische Werke, vol. 2, pp. 134-135).
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We now construct an algebraic equation with integral coefftsihose roots are
the exponents in the expansion of (31). First consider the expsen

o1+, a1 4oz, ap+as, ..., 01+ p. (32)
By equation 80), the elementary symmetric functions @f, oy, .. ., a, are rational
numbers. Hence the elementary symmetric functions of the diesn82) are rational
numbers. It follows that the quantitie32) are roots of

62(x) =0, (33)

an algebraic equation with integral coefficients. Similatihe sums of ther's taken
three at a time are thgC; roots of

63(x) = 0. (34)

Proceeding in the same way, we obtain

0a(x) =0, O5(x) =0, ..., 0,(x) =0, (35)
algebraic equations with integral coefficients, whose rootdharsums of the's taken
4,5, ..., nat atime respectively. The product equation

01(X)82(X) - - - O (X) = 0, (36)

has roots that are precisely the exponents in the expansi@i)of (
The deletion of zero roots (if any) from equatidB6) gives

X)) =cX +cxX' 1+ 4c =0, (37)

whose root$3s, B, ..., B are the non-vanishing exponents in the expansioBy (
and whose coefficients are integers. Her88 (hay be written in the form

efrief24 ...+ +k=0, (38)
wherek is a positive integer.
We define
CsXp—l {Q(X)}p
fX) = ——, 39
(x) - D! (39)

wheres = rp — 1, andp is a prime to be specified. Also, we define
FOO =00+ FP00+ fPx) + -4 FEPH(x), (40)

noting, with thanks to Hurwitz, that the derivativee™F (x) is —e™ f (x). Hence we
may write

e *F(x) — e"F(0) = /x —e ¢ f(£)de.
0
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The substitutiorf = x produces
1
F(x) — €F(0) = —x/ e=x f (rx)dr.
0

Let x range over the value’, B2, ..., B, and add the resulting equations. UsiBg)(
we obtain

r r 1
> F(B) +kF(0) = —Zﬁjfo e (¢)dr. (41)
j=1 j=1

This result gives the contradiction we desire. For we shall sadloe primep to make
the left side a non-zero integer, and make the right side as senai please.
By (39), we have

r
me:o, for 0<t < p.

j=1

Also by 39) the polynomial obtained by multiplyind (x) by (p — 1)! has integral
coefficients. Since the product pfconsecutive positive integers is divisible py the
pth and higher derivatives @fp — 1)! f (x) are polynomials irx with integral coeffi-
cients divisible byp!. Hence thepth and higher derivatives of (x) are polynomials
with integral coefficients, each of which is divisible Ipy That each of these coeffi-
cients is also divisible bg® is obvious from the definition39). Thus we have shown
that, fort > p, the quantityf ¥ (8;) is a polynomial ing; of degree at most, each of
whose coefficients is divisible byc®. By (37), a symmetric function 0By, B, ..., B
with integral coefficients and of degree at masis an integerprovided thateach
coefficient is divisible byc® (by the fundamental theorem on symmetric functions).
Hence

r
Y fPBp=pk, t=pp+L...p+9
j=1
where thek; are integers. It follows that

n+s

]
Y FB=pY ki
j=1 t=p

In order to complete the proof that the left side #f)is a non-zero integer, we now
show thatk F(0) is an integer that is prime tp. From @9) it is clear that
fYP0 =0, t=01....,p—2
f(p_l) (0) — CSCrp,
fO0) =pki, t=p,p+L....,p+9

where theK; are integers. Ifp is chosen greater than eachlofc, ¢, (possible since
the number of primes is infinite), the desired result follows fra)(
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Finally, the right side of41) equals

(p— 1)'

This is a finite sum, each term of which may be made as small assteby choosing
p very large, because

im (CAIOGBDY _
p—oo  (p— 1!
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