EIGENVALUES OF REAL SYMMETRIC MATRICES

MEINOLF GECK

ABSTRACT. We present a proof of the existence of real eigenvalues of real symmetric matrices which does not rely on any limit or compactness arguments, but only uses the notions of "sup", "inf".

Let $M_n(\mathbb{R})$ denote the set of all real $n \times n$ -matrices and $\operatorname{Sym}_n(\mathbb{R})$ be the set of all $A \in M_n(\mathbb{R})$ that are symmetric. A key ingredient of the "Spectral Theorem" is the existence of a real eigenvalue of a matrix $A \in \operatorname{Sym}_n(\mathbb{R})$. In some way, this uses limit or compactness arguments in \mathbb{R}^n (e.g., [2, Kap. 6, §2], [3]) or the fact that \mathbb{C} is algebraically closed (e.g., [1, §6.4]). Usually, none of these are available in a first course on linear algebra; in any case, it seems desirable to isolate the bare "analytic" prerequisites of this basic result about matrices. We present here a slight variation of the argument in [2], which refers at only one place to the completeness axiom for \mathbb{R} .

For $v, w \in \mathbb{R}^n$ (column vectors) we let $\langle v, w \rangle := {}^t v \cdot w$ denote the usual scalar product $({}^t v$ is the transpose of v, that is, a row vector). The Euclidean norm of v is denoted by $||v|| = \sqrt{\langle v, v \rangle}$. We define the norm of a matrix $A = (a_{ij}) \in M_n(\mathbb{R})$ by $|A|_{\infty} = \max\{|a_{ij}|: 1 \leq i, j \leq n\}$. All we need to know about these norms is the following inequality:

(†)
$$||A \cdot v|| \le \sqrt{n^3} |A|_{\infty} ||v||$$
 for all $v \in \mathbb{R}^n$

This easily follows from the inequalities $|w|_{\infty} \leq ||w|| \leq \sqrt{n}|w|_{\infty}$ and $|A \cdot w|_{\infty} \leq n|A|_{\infty}|w|_{\infty}$; we set $|w|_{\infty} = \max\{|w_1|, \ldots, |w_n|\}$ for any $w = {}^t(w_1, \ldots, w_n) \in \mathbb{R}^n$.

Remark 1. Let $A \in \text{Sym}_n(\mathbb{R})$. By a finite sequence of row and column operations, A can be transformed by congruence into a diagonal matrix. That is, there is a nonsingular real matrix P and a real diagonal matrix D such that $A = {}^t P \cdot D \cdot P$; e.g., [1, §6.7]. Since positive real numbers have square roots, we can further assume that all non-zero diagonal entries of D are ± 1 . Now assume that $A \succeq 0$, that is, $\langle v, A \cdot v \rangle \geq 0$ for all $v \in \mathbb{R}^n$. (Such a matrix is called positive semidefinite.) Then all non-zero diagonal entries of D must be +1. Consequently, we have the implication:

$$A \succeq 0$$
 and $\det(A) \neq 0 \Rightarrow A = {}^{t}P \cdot P$ with $P \in M_{n}(\mathbb{R})$ invertible.

Remark 2. Let $A = (a_{ij}) \in \text{Sym}_n(\mathbb{R})$. If $v \in \mathbb{R}^n$ is such that ||v|| = 1, then all components of v have absolute value ≤ 1 and so $|\langle v, A \cdot v \rangle| \leq \sum_{i,j=1}^n |a_{ij}|$. Hence, the set

$$S(A) := \{ \langle v, A \cdot v \rangle \colon v \in \mathbb{R}^n, \|v\| = 1 \} \subseteq \mathbb{R}$$

is bounded. In particular, this set has a greatest lower bound $\mu(A) = \inf S(A)$. We have

$$\langle v, A \cdot v \rangle \ge \mu(A) \|v\|^2$$
 for all $v \in \mathbb{R}^n$

This inequality is clear if v = 0; if $v \neq 0$, then set w := v/||v|| and note that $\langle w, A \cdot w \rangle \geq \mu(A)$.

By a limit or compactness argument, one can deduce that there exists a vector $v_0 \in \mathbb{R}^n$ such that $||v_0|| = 1$ and $\langle v_0, A \cdot v_0 \rangle = \mu(A)$. It then follows easily that v_0 is an eigenvector of A with eigenvalue $\mu(A)$ (see [2, Kap. 6, §2, no. 4]). The proof below avoids this line of reasoning.

MEINOLF GECK

Theorem 3. If $A \in \text{Sym}_n(\mathbb{R})$, then $\mu(A)$ is an eigenvalue of A.

Proof. Let I_n be the identity matrix and set $B := A - \mu(A)I_n \in \text{Sym}_n(\mathbb{R})$. If $\det(B) = 0$, then $\mu(A)$ is an eigenvalue of A. So let us now assume that $\det(B) \neq 0$. We have $\langle v, B \cdot v \rangle = \langle v, A \cdot v \rangle - \mu(A) ||v||^2$ for all $v \in \mathbb{R}^n$. Remark 2 shows that $B \succeq 0$ and $\mu(B) = \inf S(B) = 0$. Since also $\det(B) \neq 0$, we can write $B = {}^t P \cdot P$, where $P \in M_n(\mathbb{R})$ is invertible (see Remark 1).

Now, for any $v \in \mathbb{R}^n$, we have $\langle v, B \cdot v \rangle = {}^t v \cdot B \cdot v = \|P \cdot v\|^2$. Furthermore, if $\|v\| = 1$, then $1 = \|P^{-1} \cdot (P \cdot v)\| \le \sqrt{n^3} |P^{-1}|_{\infty} \|P \cdot v\|$, using (†). Thus, $\langle v, B \cdot v \rangle \ge 1/(n^3 |P^{-1}|_{\infty}^2) > 0$ for all $v \in \mathbb{R}^n$ such that $\|v\| = 1$, contradicting $\inf S(B) = 0$.

Remark 4. The argument also works for Hermitian matrices $A \in M_n(\mathbb{C})$. One just has to use the Hermitian product $\langle v, w \rangle = {}^t \overline{v} \cdot w$ for $v, w \in \mathbb{C}^n$, where the bar denotes complex conjugation. If A is Hermitian, then $\langle v, A \cdot v \rangle \in \mathbb{R}$ for all $v \in \mathbb{C}^n$, so we can define $\mu(A) = \inf S(A)$ as above.

References

- [1] S. H. Friedberg, A. J. Insel, L. E. Spence, *Linear Algebra*, 3rd ed., Prentice Hall, NJ, 1997.
- [2] M. Koecher, Lineare Algebra und analytische Geometrie, Grundwissen Mathematik, Springer-Verlag, Berlin, 1983.
- [3] H. S. Wulf, An algorithm-inspired proof of the spectral theorem in E^n , Amer. Math. Monthly 88 (1981) 49–50.

IAZ – Lehrstuhl für Algebra, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany meinolf.geck@mathematik.uni-stuttgart.de