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EIGENVALUES OF REAL SYMMETRIC MATRICES

MEINOLF GECK

Abstract. We present a proof of the existence of real eigenvalues of real symmetric matrices which

does not rely on any limit or compactness arguments, but only uses the notions of ”sup”, ”inf”.

Let Mn(R) denote the set of all real n × n-matrices and Symn(R) be the set of all A ∈ Mn(R)

that are symmetric. A key ingredient of the ”Spectral Theorem” is the existence of a real eigenvalue

of a matrix A ∈ Symn(R). In some way, this uses limit or compactness arguments in R
n (e.g., [2,

Kap. 6, §2], [3]) or the fact that C is algebraically closed (e.g., [1, §6.4]). Usually, none of these

are available in a first course on linear algebra; in any case, it seems desirable to isolate the bare

”analytic” prerequisites of this basic result about matrices. We present here a slight variation of

the argument in [2], which refers at only one place to the completeness axiom for R.

For v,w ∈ R
n (column vectors) we let 〈v,w〉 := tv · w denote the usual scalar product (tv is the

transpose of v, that is, a row vector). The Euclidean norm of v is denoted by ‖v‖ =
√

〈v, v〉. We

define the norm of a matrix A = (aij) ∈ Mn(R) by |A|∞ = max{|aij | : 1 ≤ i, j ≤ n}. All we need

to know about these norms is the following inequality:

(†) ‖A · v‖ ≤
√
n
3 |A|∞‖v‖ for all v ∈ R

n.

This easily follows from the inequalities |w|∞ ≤ ‖w‖ ≤ √
n|w|∞ and |A ·w|∞ ≤ n|A|∞|w|∞; we set

|w|∞ = max{|w1|, . . . , |wn|} for any w = t(w1, . . . , wn) ∈ R
n.

Remark 1. Let A ∈ Symn(R). By a finite sequence of row and column operations, A can be

transformed by congruence into a diagonal matrix. That is, there is a nonsingular real matrix P

and a real diagonal matrixD such that A = tP ·D·P ; e.g., [1, §6.7]. Since positive real numbers have

square roots, we can further assume that all non-zero diagonal entries of D are ±1. Now assume

that A � 0, that is, 〈v,A · v〉 ≥ 0 for all v ∈ R
n. (Such a matrix is called positive semidefinite.)

Then all non-zero diagonal entries of D must be +1. Consequently, we have the implication:

A � 0 and det(A) 6= 0 ⇒ A = tP · P with P ∈ Mn(R) invertible.

Remark 2. Let A = (aij) ∈ Symn(R). If v ∈ R
n is such that ‖v‖ = 1, then all components of v

have absolute value ≤ 1 and so |〈v,A · v〉| ≤ ∑n
i,j=1

|aij |. Hence, the set

S(A) := {〈v,A · v〉 : v ∈ R
n, ‖v‖ = 1} ⊆ R

is bounded. In particular, this set has a greatest lower bound µ(A) = inf S(A). We have

〈v,A · v〉 ≥ µ(A)‖v‖2 for all v ∈ R
n.

This inequality is clear if v = 0; if v 6= 0, then set w := v/‖v‖ and note that 〈w,A · w〉 ≥ µ(A).

By a limit or compactness argument, one can deduce that there exists a vector v0 ∈ R
n such

that ‖v0‖ = 1 and 〈v0, A · v0〉 = µ(A). It then follows easily that v0 is an eigenvector of A with

eigenvalue µ(A) (see [2, Kap. 6, §2, no. 4]). The proof below avoids this line of reasoning.
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Theorem 3. If A ∈ Symn(R), then µ(A) is an eigenvalue of A.

Proof. Let In be the identity matrix and set B := A−µ(A)In ∈ Symn(R). If det(B) = 0, then µ(A)

is an eigenvalue of A. So let us now assume that det(B) 6= 0. We have 〈v,B·v〉 = 〈v,A·v〉−µ(A)‖v‖2
for all v ∈ R

n. Remark 2 shows that B � 0 and µ(B) = inf S(B) = 0. Since also det(B) 6= 0, we

can write B = tP · P , where P ∈ Mn(R) is invertible (see Remark 1).

Now, for any v ∈ R
n, we have 〈v,B · v〉 = tv · B · v = ‖P · v‖2. Furthermore, if ‖v‖ = 1, then

1 = ‖P−1 · (P · v)‖ ≤ √
n
3|P−1|∞‖P · v‖, using (†). Thus, 〈v,B · v〉 ≥ 1/(n3|P−1|2

∞
) > 0 for all

v ∈ R
n such that ‖v‖ = 1, contradicting inf S(B) = 0. �

Remark 4. The argument also works for Hermitian matrices A ∈ Mn(C). One just has to use the

Hermitian product 〈v,w〉 = tv · w for v,w ∈ C
n, where the bar denotes complex conjugation. If A

is Hermitian, then 〈v,A · v〉 ∈ R for all v ∈ C
n, so we can define µ(A) = inf S(A) as above.
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