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Abstract. The Shi arrangement is the set of all hyperplanes in Rn of the form xj − xk = 0 or 1
for 1 ≤ j < k ≤ n. Shi observed in 1986 that the number of regions (i.e., connected components of
the complement) of this arrangement is (n + 1)n−1. An unrelated combinatorial concept is that of
a parking function, i.e., a sequence (x1, x2, ..., xn) of positive integers that, when rearranged from
smallest to largest, satisfies xk ≤ k. (There is an illustrative reason for the term parking function.)
It turns out that the number of parking functions of length n also equals (n + 1)n−1, a result due
to Konheim and Weiss from 1966. A natural problem consists of finding a bijection between the
n-dimensional Shi arragnement and the parking functions of length n. Pak and Stanley (1996) and
Athanasiadis and Linusson (1999) gave such (quite different) bijections. We will shed new light on
the former bijection by taking a scenic route through certain mixed graphs.

1. Introduction

Our goal is to draw (bijective) connections between three seemingly unrelated concepts; their
names form the title of our paper, and we start by introducing them one by one.

1.1. Parking Functions. Imagine a one-way street with n parking spots and a cliff at its end.
We’ll give the first parking spot the number 1, the next one number 2, etc., down to the last one,
number n. Initially they’re all free, but there are n cars approaching the street, and they’d all like
to park. To make life interesting, every car has a parking preference, and we record the preferences
in a sequence; e.g., if n = 3, the sequence (2, 1, 1) means that the first car would like to park at
spot number 2, the second car prefers parking spot number 1, and the last car would also like to
park at number 1. The street is narrow, so there is no way to back up. Now each car enters the
street and approaches its preferred parking spot; if it is free, it parks there, and if not, it moves
down the street to the first available spot. We call a sequence a parking function (of length n) if
all cars end up happily finding a parking spot, i.e., none fall off the cliff. For example, the sequence
(2, 1, 1) is a parking function (of length 3), whereas the sequence (1, 3, 3, 4) is not (see Figure 1).

The following enumerative result makes for a fun (nontrivial) exercise in any undergraduate
combinatorics class. The earliest reference we are aware of is [21, Section 5], though its explicit
relation to parking functions first appeared in [15].

Theorem 1. There are precisely (n+ 1)n−1 parking functions of length n.
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Figure 1. A sequence that is not a parking function.

One possible proof of this theorem starts with the following equivalence, which we will need
below:

Lemma 2. A sequence x ∈ Zn>0 is a parking function if and only if x is componentwise less than
or equal to some permutation of (1, 2, . . . , n).

This equivalent notion also explains why parking functions naturally appear in many contexts;
these include tree inversions [16], symmetric functions [9], Riemann–Roch theory for graphs (where
parking functions are also called reduced divisors [4]), Hopf algebras [17], chip-firing games (where
parking functions go by the name of superstable configurations [13]), and vertex operators [7].

1.2. Shi Arrangements. A hyperplane arrangement is a finite collection of hyperplanes in
some Euclidean space, i.e., sets of the form

{x ∈ Rn : ax = b}

for some a ∈ Rn \ {0} and b ∈ R. A famous example is the n-dimensional (real) braid ar-
rangement consisting of all hyperplanes of the form xj = xk for 1 ≤ j < k ≤ n; it has a natural
connection to the symmetric group Sn, and indeed, the braid arrangement forms a geometric bridge
between various algebraic and combinatorial concepts. A picture (in this case, Figure 2) is worth
a thousand words.

x1 = x2

x2 = x3x1 = x3

x1 > x2 > x3

x1 > x3 > x2

x3 > x1 > x2

x3 > x2 > x1

x2 > x3 > x1

x2 > x1 > x3

Figure 2. The bijection between permutations and regions of the braid arrange-
ment illustrated for n = 3.
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The n-dimensional Shi arrangement is a close relative to the braid arrangement: it consists of
all hyperplanes of the form

xj − xk = 0 and xj − xk = 1 for all 1 ≤ j < k ≤ n .
A region of the hyperplane arrangement H is a maximal connected component of Rn \

⋃
H. The

following result was first proved by Shi [24].

Theorem 3. The n-dimensional Shi arrangement has precisely (n+ 1)n−1 regions.

One proof of this theorem (first given in [12], see also [1]) is through the characteristic polynomial
of the Shi arrangement, which carries more information than the number of its regions [27]; e.g.,
with it one can also prove that the n-dimensional Shi arrangement has precisely (n−1)n−1 bounded
regions.

Hyperplane arrangements are ubiquitous in several areas of mathematics and form a research
area in its own right. Some highlights include connections between combinatorics (starting with
[27]), matroid theory [6], topology (starting with [11]), commutative algebra [18], and algebraic
geometry [22]. We refer to [19, 26] for further study.

1.3. Parking Graphs. A mixed graph G is an amphibian: G is between a graph and a directed
graph, in the sense that G may contain both undirected and directed edges (see, e.g., [10]). Mixed
graphs have various applications, e.g., to scheduling problems. Here we are only interested in a
fairly special class of mixed graphs. As with directed graphs, we define the in-degree of a vertex
v of G to be the number of directed edges pointing into v; the out-degree of v is the number of
directed edges pointing away from v.

A parking graph P is a mixed graph with vertex set [n] := {1, 2, . . . , n} whose underlying graph
is the complete graph Kn and whose edges satisfy what we will call the source-sink condition. To
describe it, we use the following nomenclature for 1 ≤ j < k ≤ n:

• a directed edge j ← k in P is a down edge;
• a directed edge j → k in P is an up edge;
• an undirected edge jk in P is a downish edge.

(See Figure 3 for examples.) One reason for the last terminology is that we will associate to each

parking graph P a directed graph
−→
P which, in addition to the directed edges of P , also contains

each undirected edge jk of P as a directed edge j ← k. For example, the mixed graph in Figure 3
gives rise to a coherently oriented 3-cycle.

21

3

Figure 3. A down (1← 2), up (1→ 3), and downish (23) edge.

The source-sink condition says that
−→
P is acyclic, i.e., it contains no coherently oriented cycles,

and for any triangle G (complete subgraph on 3 vertices) of P that has both a down and a downish

edge, the source (i.e., the vertex with in-degree 0) and sink (the vertex with out-degree 0) of
−→
G

cannot be connected by a downish edge.

Theorem 4. There are precisely (n+ 1)n−1 parking graphs on the vertex set [n].
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Both the notion of a parking graph and Theorem 4 seem to be new, though close relatives of
parking graphs can be found in [14]. We will give their motivation next.

1.4. A natural question. Theorems 1 and 3 beg the problem of finding a bijection between the
parking functions of length n and the regions of the n-dimensional Shi arrangement. The first such
bijection, due to Pak and Stanley [25], recursively labels the regions of the Shi arrangement with
parking functions from the inside out, starting by giving the label (1, 1, . . . , 1) to the “central”
region {x ∈ Rn : xn + 1 > x1 > x2 > · · · > xn}, and giving a rule how the labels change as one
crosses any of the Shi hyperplanes. A different bijection, due to Athanasiadis and Linusson [2],
constructs a diagram of nonnesting arcs on [n] from a region of the Shi arrangement in Rn, and
each diagram in turn determines a parking function.

Our goal is to give a third bijection by way of parking graphs, hence proving Theorem 4: we
will exhibit a bijection between Shi regions and parking graphs and a bijection between parking
graphs and parking functions. This implies, of course, a bijection between Shi regions and parking
functions, and its forward direction turns out to be equivalent to the Pak–Stanley bijection. (Pak
and Stanley “only” gave an injection from the set of Shi regions in Rn to the set of parking functions
of length n and then appealed to the fact that both sets are equinumerous.)

Hopkins and Perkinson [14] recently extended the Pak–Stanley bijection to bigraphic arrange-
ments, using mixed graphs as a similar intermediate tool. Our construction is not identical but
equivalent—our parking graphs correspond to Hopkins–Perkinson’s Shi-admissable orientations of
a complete graph, and our source-sink condition is equivalent to their condition of “having no bad
cycles.” At any rate, our approach seems more direct (which should not be surprising, since Hopkins
and Perkinson proved a more general result). Even more recent work of Backman also essentially
contains parking graphs; his definition adds a q-rooted spanning tree [3, Lemma 5.6].

1.5. Cayley’s formula. As a historical aside, the arguably most famous counting instance with
answer (n + 1)n−1 is the number of labeled trees with n + 1 vertices. Thus a similar natural
question concerns possible bijections between labeled trees and, say, parking functions. The oldest
such bijection we are aware of is due to Schützenberger [23]; the arguably simplest bijection is due
to Foata and Riordan [8] and illustrates that bijections between labeled trees and parking functions
are generally easier than those between parking functions and regions of the Shi arrangements:
The Foata–Riordan bijection starts with encoding a labeled tree by its Prüfer code, a recursively
constructed sequence containing the label of the vertex incident to the lowest-labeled leaf (which
then gets removed to yield the recursion; this procedure stops when a single edge is left).1 Foata
and Riordan use the following map, which they attribute to Henry O. Pollak, from the set of all
parking functions of length n to the set of all Prüfer codes encoding labeled trees with n+1 vertices:

(1) (x1, x2, . . . , xn) 7→ (x2 − x1, x3 − x2, . . . , xn − xn−1) mod n+ 1 .

This map can be inverted if x1 is known independently, and the Foata–Riordan proof shows that
for any Prüfer code, there exists a unique x1 that gives an inverse of (1) yielding a parking function.

2. The Bijections

A directed complete graph G (also called a tournament) contains a cycle if and only if there is
a triangle subgraph in G that is a cycle. As a consequence, it suffices to limit acyclicity in the
source-sink condition to triangles.

1Prüfer’s idea [20] immediately gives a bijection between labeled trees with n + 1 vertices and sequences of length
n− 1 containing numbers in [n + 1], thus confirming Cayley’s formula.
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Now we tackle the actual bijections. We start with a map from parking graphs to regions of the
Shi arrangement: given a parking graph P on the vertex set [n], we define

(2) ψ(P ) :=

x ∈ Rn :
xj − xk ≥ 1 if j ← k is down,

0 ≤ xj − xk ≤ 1 if jk is downish,
xj − xk ≤ 0 if j → k is up

 .

Thus ψ(P ) is a potential region of the n-dimensional Shi arrangement. We will now show that it
is an honest region, i.e., full-dimensional, and that every such region comes from a parking graph.
Figure 4 shows the case n = 3.

x1 − x2 = 0

x1 − x2 = 1

x2 − x3 = 1x1 − x3 = 1x1 − x3 = 0

s
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Figure 4. The bijection between parking graphs on three vertices (all labeled as
in the graph in the bottom right) and regions of the 3-dimensional Shi arrangement.

Theorem 5. The map ψ gives a bijection between the parking graphs on the vertex set [n] and the
regions of the n-dimensional Shi arrangement.

Proof. For a region R of the n-dimensional Shi arrangement, we define (by a slight abuse of notation
but in light of what’s to come) ψ−1(R) to be the mixed graph one obtains by reversing the recipe
given by (2). Our goal is to show that both ψ and ψ−1 are well-defined maps from the set of all
parking graphs on the vertex set [n] to the set of all regions of the n-dimensional Shi arrangement
and back. Since ψ and ψ−1 are inverses by construction, this will prove Theorem 5.

It is slightly easier to see that ψ−1 is well defined, so let’s start with that: namely, we need to

show that, for any region R, the mixed graph ψ−1(R) satisfies the source-sink condition. If
−−−−−→
ψ−1(R)

contains a cycle, then for some j < k < m the region R satisfies either xj − xk > 0
xk − xm > 0
xm − xj > 0

 or

 xj − xk < 0
xk − xm < 0
xm − xj < 0

 .
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The first set of inequalities gives rise to the contradiction xj > xj and the second to xj < xj .
If ψ−1(R) violates the downish part of the source-sink condition, then the defining inequalities

for R include both 0 ≤ xj−xk ≤ 1 (where k is the source and j the sink of some triangle in
−−−−−→
ψ−1(R))

and xj − xk ≥ 1 (see Figure 5); but a region has nontrivial interior, so no such R can exist.

j

k m

Figure 5. Violation of the source-sink condition; here k < m < j and at least one
of the two potential down edges is present.

To see that ψ is well defined, we need to show, given a parking graph P , that ψ(P ) has nontrivial

interior. Let’s look at the in-degree sequence of
−→
P ; since

−→
P is acyclic, the in-degree sequence is

a permutation (σ(0), σ(1), . . . , σ(n− 1)) of the vector (0, 1, . . . , n − 1). Note that this in-degree
sequence also means that j → k is an up edge if and only if σ(j − 1) < σ(k − 1). Now choose
x ∈ Rn whose coordinates satisfy

xσ−1(0)+1 < xσ−1(1)+1 < · · · < xσ−1(n−1)+1 .

We claim that x is in the interior of ψ(P ). Indeed, x satisfies all inequalities xj ≥ xk in (2) strictly,
by construction. In words, x respects both the inequality constraints stemming from an up edge
and those stemming from a down/downish edge. What remains to be shown is that there is no
potential contradiction from the interplay of the constraints stemming from a down and a downish
edge. But the only way such a contradiction could occur is when

0 < xσ−1(i)+1 − xσ−1(m)+1 < 1
xσ−1(j)+1 − xσ−1(k)+1 > 1

for some m < i, k < j and σ−1(i) ≤ σ−1(j) < σ−1(k) ≤ σ−1(m). This means that P has a
subgraph G of the form in Figure 6 (where m and k or j and i could coincide). In the subgraph

i j

km

Figure 6. A sub-mixed graph violating the source-sink condition. Vertex i is the
source and vertex m is the sink. The edges between i or m and j or k may be up,
down, or downish edges in the direction of the dashed arrows.

G, vertex i is the source, m is the sink, the edge im is downish, and k ← j is a down edge. We will
show that G violates the source-sink condition. Notice that k is the sink of the triangle on vertices
i, j, and k, and that j is the source of the triangle on vertices j, k and m. If the edge ki is downish,
then the triangle on vertices i, j, and k violate the source-sink condition. If the edge k ← i is a
down edge, then the triangle on vertices k, i, and m violates the source-sink condition. Finally, if
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i → k is an up edge, then m < i < k < j. Therefore the edge m ← j must be a down edge, thus
violating the source-sink condition for the triangle on vertices i, j, and m. �

Our second map is between parking graphs and parking functions: given a parking graph P , let
d(P ) be its in-degree sequence, and define

φ(P ) := d(P ) + 1

where 1 ∈ Rn is a vector all of whose coordinates are 1.

Theorem 6. The map φ gives a bijection between the parking graphs on the vertex set [n] and the
parking functions of length n.

Proof. To show that φ is well defined, note once more that, given a parking graph P , the in-degree

sequence of
−→
P is a permutation of (0, 1, . . . , n− 1), and thus d(P ) is component-wise less than or

equal to this permuted vector; this implies that d(P ) + 1 is a parking function.
To show that φ−1 exists, we provide an algorithm that constructs a parking graph P (x) for the

parking function x and show that the algorithm yields φ−1. Starting with the vertex set [n], the
algorithm determines when to add up edges from a particular vertex and when to add down edges.
In contrast with the function φ, the algorithm is not as easy to define nor understand. We start
with a detailed example which will shed some light into the process behind the algorithm.

Example. To see the algorithm in practice, we will construct P (3, 1, 1, 2), the parking graph asso-
ciated to the parking function (3, 1, 1, 2). The output of the algorithm must be a parking graph
with vertex set {1, 2, 3, 4} and in-degree sequence d(P ) = (2, 0, 0, 1). There are many graphs with
such an in-degree sequence. Figure 7 shows two different labeled complete mixed graphs on four
vertices. The graph on the left violates the source-sink condition: triangle {1, 2, 4} violates the
downish part of the source-sink condition, and triangle {2, 3, 4} creates a cycle. The graph on the
right is the unique parking graph associated to (3, 1, 1, 2).

4 3

21

4 3

21

Figure 7. Two graphs with the same in-degree; the graph on the right is P (3, 1, 1, 2).

So how can we create an algorithm that yields an actual parking graph? We begin the process
by analyzing the entries of the input with smallest value. By virtue of being a parking function,
the input will always have at least one entry with a value of 1. In our example, we have two
such entries: the ones corresponding to vertex 2 and vertex 3. These will be the two vertices with
in-degree 0 in our graph. Suppose the first up edge introduced was 2→ 4. Then the edge 34 must
be downish. There is also a downish edge 23 since both have in-degree 0. Then the triangle {2, 3, 4}
creates a cycle, as seen on the left graph of Figure 7. Therefore, we instead begin by creating an up
edge 3→ 4 as seen in the first graph in Figure 8. In general, in order to avoid creating cycles, up
edges will always emerge from the available vertex corresponding to the entry with highest index
and lowest value. This process is formalized as the up step of the algorithm below.
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4 3

21

4 3

21

4 3

21

Figure 8. The algorithm in practice: building the parking graph P (3, 1, 1, 2).

So we now have a graph where vertex 4 has in-degree 1, as desired. Since vertices 2, 3 and 4 all
have the correct in-degree, we no longer introduce up edges. Vertex 1 must have in-degree 2, so we
need to introduce two down edges from vertices 2, 3, or 4. If the down edge were 1← 2, then either
the edge between 1 and 4 or the edge between 1 and 3 will be downish. If 14 is a downish edge,
then the triangle {1, 2, 4} would violate the source-sink condition, as 4 would be the source and 1
would be the sink. This can also be seen in the left graph of Figure 7. An analogous argument
applies if 13 was the downish edge. It is therefore necessary to have the down edges 4 ← 1 and
3← 1 as seen in the middle graph in Figure 8. In general, in order to avoid violating the downish
part of the source-sink condition, down edges will always emerge from the available vertices with
the corresponding entries with the lowest in-degree. This process is formalized as the down step of
the algorithm below.

Each of the vertices has the desired in-degree, and so we add all other edges as downish edges,
finally yielding P (3, 1, 1, 2).

We now formalize the ideas introduced in this example with an algorithm:

Input: parking function x ∈ Zn>0

y := x− (1, 1, . . . , 1)

(?) If there exists yk = 0 then

j := max {k : yk = 0}
introduce j → k
yk := yk − 1

}
for all k > j with yk > 0 [up step]

yj := yj − 1

yk := yk − 1 for all yk < 0

go to (?)

Else if there exists yk > 0 then

choose minimal yj such that there exists k < j with yk > 0 and k 8 j

introduce k ← j
yk := yk − 1

}
for all k < j with yk > 0 [down step]

go to (?)

Else [all yk < 0]

introduce remaining edges as undirected and stop

Output: mixed graph P (x), source priority vector s(x) := (y1, . . . , yn)



PARKING FUNCTIONS, SHI ARRANGEMENTS, AND MIXED GRAPHS 9

Some additional terminology will be useful in order to talk about the algorithm: We will refer to
ŷ := x− (1, . . . , 1) as the initial y. At each iteration of the algorithm, we will refer to the current
value of the jth entry of y as yj . If j < k, we say the j-entry is before the k-entry of y, and the
k-entry is after the j-entry of y. If yj = 0 and j = max{k : yk = 0} we call j the feeder of the
corresponding up step, or an up feeder. Similarly, j is the feeder of a down step, or a down
feeder, if a down edge k ← j is introduced. We will say j is a down feeder candidate for k
whenever the algorithm is at a down step, yk > 0, k < j and k 8 j. In Lemma 9, we will show the
source priority vector s(x) associates a total order to the vertices of P (x) that determines when
each vertex is the feeder of an up step. If |si(x)| > |sj(x)|, then i became a feeder of an up step
before j did.

We must check that this algorithm both runs without failing and indeed returns the parking
graph associated to the input, the parking function x. Note that the algorithm always starts at an
up step because the input x is a parking function. Hence, there exists k such that xk = 1, so ŷk
will be 0. This ensures, in particular, that the algorithm will always start. If there exists a yk with
yk = 0, an up step will always occur. So the up step of the algorithm is well defined. However,
the down step of the algorithm could cause problems. How do we know that when there exists a
yk > 0 that triggers a down step, there also exists a down feeder candidate, j, for k? We answer
this question in the following lemma.

Lemma 7. If the algorithm is at a down step, then for some yk > 0, there exists a down feeder
candidate for k, namely, j. Furthermore, if j is the down feeder for k, then yj < 0.

Proof. Suppose, by way of contradiction, that a down feeder candidate did not exist. By assump-
tion, at least one yk > 0 and for every other l 6= k, either yl > 0 or yl < 0, but there is no entry
with yl = 0 since the algorithm is at a down step. Let k0 = min{k : yk > 0}. If there is no down
feeder candidate, then either there is no j with k < j for any yk > 0, in which case k0 = n, or for
all j with k0 < j we have that k0 ← j has already been introduced.

In the first case, k0 = n, yk0 = yn > 0 and yl < 0 for all 1 ≤ l < n. It follows that at some point
in the algorithm, each of the l must have fed n at the step when they were 0. Therefore, n has been
fed n− 1 times during an up step, and yet yn ≥ 1. Since each up step redefines yn := yn − 1, if we
trace back the steps of the algorithm, it follows that for the initial ŷ, ŷn ≥ 1 + (n− 1). Therefore,
xn = n+ 1, which means x was not a parking function by Lemma 2, so this case is not possible.

In the second case, for all j with k0 < j, k0 ← j has already been introduced, so k0 has been fed
by every entry after k0. Furthermore, for all l < k0, yl < 0, so at some point in the algorithm l fed
k0 during an up step, so k0 has been fed by every entry before k0. So again, k0 has been fed n− 1
times, so by the same argument as in the first case, tracing our steps back would give us that the
initial input was not a parking function. So this case is also not possible.

This proves the existence of a down feeder candidate at a down step. We now show that if j is
the feeder, i.e., the minimal yj amongst the candidates, then yj < 0.

Recall that there are no 0 entries in y since we are at a down step. Again, by way of contradiction,
suppose that there are no negative candidates for feeders. This means that for any p with yp > 0,
each q > p with yq < 0 has already fed p; that is, the edge p ← q has already been introduced
in a previous down step. Furthermore, the algorithm gives us that for any r < p with yr < 0, r
has fed p in a previous up step. Let k be the total number of positive entries in the current down
step. Then for any of the k possible entries yp with yp > 0, p has been fed by all n− k indices with
negative entries.

Since the input x is a parking function and yp > 0, we have 1 ≤ yp ≤ n − 1 − (n − k) = k − 1.
Since we have gone through at least n− k iterations of the algorithm, we can trace the algorithm
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back n−k steps to see that for the initial ŷ, 1+(n−k) ≤ ŷp ≤ n−1. Therefore, n−k+2 ≤ xp ≤ n.
Since there are exactly k entries xp satisfying this inequality, it follows that there are only n − k
entries of x that could be less than n − k + 2, and by Lemma 2, x cannot be a parking function.
This contradiction proves Lemma 7. �

Lemma 7 shows that the algorithm is well defined, i.e., it runs without failing. Since the input
is a finite n-tuple with non-negative entries, at some point in the algorithm each of these entries
will eventually become 0 and later negative after a series of up steps. Therefore, the final output
of the algorithm s(x) is indeed an n-tuple consisting of all negative entries. Furthermore, the
following lemma tells us that these entries are all distinct and that the n-tuple gives us meaningful
information about the desired parking function P (x).

Lemma 8. The source priority vector s(x) is a total order that indicates the reverse order in which
indices are the feeder of an up step.

Proof. The algorithm begins with an up step with the rightmost index j of ŷ with ŷj = yj = 0 as
the feeder. This up step of the algorithm instructs us to do as follows: for each l > j with yl > 0,
introduce the edge j → l; redefine yj := yj−1; and redefine yl := yl−1. Since there are no negative
entries in ŷ, we need not do anything else in this step. So the new entries of y are yj = −1, yl ≥ 0
for all l 6= j. Therefore, j is the unique entry with yj = −1 after the first step of the algorithm.

Suppose we continue with the algorithm and are now at another up step. Let j be the rightmost
index of y with yj = 0. The up step instructs us to change the entries of y as follows: redefine
yj := −1; for every yl > 0 with up edge j → l introduced, redefine yl := yl − 1; for any yk < 0,
redefine yk := yk − 1; and for any i 6= j such that yi = 0, no new adjacent edges are introduced,
so yi remains 0. Thus for i, j, k, and l playing the above roles, the new entries of y are yj = −1,
yl ≥ 0, yk ≤ −2, and yi = 0. Therefore, the j-entry is the unique entry with yj = −1.

It follows inductively that s(x) gives a total ordering of {−1, . . . ,−n}, and since yk < 0 gets
redefined to be yk − 1 only during up steps, this ordering signifies the order in which j was the
feeder of an up step. �

It is now possible to understand exactly when the algorithm will create an up edge i → j in
terms of the source priority vector. This is summarized in the following lemma.

Lemma 9. Let i < j. Then |si(x)| > |sj(x)| if and only if i→ j in P (x).

Proof. Suppose i → j in P (x). Then i → j is introduced when yi = 0 and yj > 0. Therefore, yi
becomes −1 before yj becomes −1. Hence |si(x)| > |sj(x)|.

Suppose i 9 j. Then, during the iteration when yi = 0, it must have been true that yj < 0.
Therefore |si(x)| < |sj(x)|. This proves Lemma 9. �

It is also useful to talk about the order in which the algorithm introduces down edges in terms
of the source priority vector.

Lemma 10. Let j and k both be down feeder candidates for i at a certain down step. Then j
becomes the down feeder for i at this step if and only if |sj(x)| > |sk(x)|.

Proof. Lemma 7 gives us that if j is a down feeder for i then yj < 0. Since the down feeder is the
minimum yj amongst the candidates, it follows that j is the down feeder for i if and only if yj < 0
and yj < yk. This is true if and only if |sj(x)| > |sk(x)|. �

It remains to show that if x is the input of the algorithm, then the output, P (x), is indeed
a parking graph (i.e., P (x) satisfies the source-sink condition), and P (x) has in-degree sequence
x− 1. Therefore, the algorithm yields φ−1.
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To show that d(P (x)) = x − 1, we will follow an entry yk through the algorithm. The initial
value ŷk = xk − 1 is the desired in-degree of vertex k of P (x). If yk > 0, then a directed edge is
introduced towards k if and only if yk is reduced by 1. Therefore, when yk = 0, vertex k of P (x)
has in-degree xk− 1; and once yk ≤ 0, the only edges incident with k that are introduced are edges
that are directed away from k or that are undirected, neither of which contributes to the in-degree.
Therefore, d(P (x)) = x− 1, as desired.

To show P (x) is acyclic, suppose 1 ≤ i < j < k ≤ n and i → j → k. When the edge j → k is
introduced, yj = 0 while yk > 0. When i → j is introduced, then yi = 0 and yj > 0. Therefore
yk > 0, so i → k is also introduced. Thus there is no cycle i → j → k → i. Now suppose i → k.
When the edge i → k is introduced, yi = 0, yk > 0 and for all l > i, yl 6= 0. In particular, yj 6= 0.
If yj > 0, then i → j is introduced in the same step. Suppose yj < 0; then an up step previously
occurred in which j was the source and yk was positive, so j → k was introduced. Therefore there
are no cycles involving i→ k.

Lastly, we show that P (x) satisfies the downish part of the source-sink condition, and this will
complete the proof that P (x) is a parking graph with the correct in-degree sequence. Consider a
triangle ∆ of P (x) with vertices i, j, k with i < j < k. If P (x) has either an up edge or a down edge
between each pair of vertices, then there is no violation of the source-sink condition and we’re done.
So suppose for some pair of vertices of ∆, P (x) has a downish edge between them. We consider
three cases.

Case 1: There is a downish edge ij. Suppose, by way of contradiction, that ∆ violates the
downish part of the source-sink condition. Then ∆ must have an up edge j → k and a down edge
i ← k. Since j < k, Lemma 9 gives us that |sj(x)| > |sk(x)|. On the other hand, since k ← i is
introduced before j ← i, Lemma 10 gives us that |sk(x)| > |sj(x)|. So this cannot happen.

Case 2: There is a downish edge jk. Suppose, by way of contradiction, that ∆ violates the
downish part of the source-sink condition. Then ∆ must have an up edge i → j and a down edge
i← k. Since i < j, Lemma 9 gives us that |si(x)| > |sj(x)|. In particular, when yi = 0, yj > 0, so
when yi > 0, yj > 0. On the other hand, k is a down feeder for i, but since yj was also positive when
yi was positive, k would have been a down feeder for j during this same step. This contradicts the
assumption that jk was downish, so this cannot happen.

Case 3: There is a downish edge ik. Suppose, by way of contradiction, that ∆ violates the
downish part of the source-sink condition. Then all edges of ∆ are either down or downish, and at
least one of i← j or j ← k is in P (x). Suppose i← j is in P (x). Then during a down step in the
algorithm, both j and k were down feeder candidates for i, and j became the feeder for i, so by
Lemma 10, |sj(x)| > |sk(x)|, and since j < k, by Lemma 9, ∆ has up edge j → k. This contradicts
the assumption that ∆ violates the source-sink condition. Now Suppose j ← k is in P (x). Since
i 9 j, by Lemma 9, |si(x)| < |sj(x)|. Therefore, during the down step in the algorithm where k
was a down feeder for j, it would have also fed i as both yi and yj were simultaneously positive
at this step. This contradicts the assumption that ik is downish. Therefore, this cannot happen
either.

With these three cases exhausted, we conclude that P (x) satisfies the downish part of the source-
sink condition. Since P (x) satisfies the source-sink condition and d(P (x)) = x−1, we conclude that
P (x) is a parking graph and the algorithm yields φ−1, and this finishes the proof of Theorem 6. �

3. Closing Remarks

As mentioned above, the composition φ ◦ ψ−1 gives a bijection between the regions of the n-
dimensional Shi arrangement and the parking functions of length n, and the “forward” direction of
this bijection gives the map introduced by Pak and Stanley [25]. It is not clear to us how parking
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graphs interact with the other known bijection by Athanasiadis and Linusson [2]. In the same
paper, Athanasiadis and Linusson study an arrangement that is situated between braid and Shi
arrangement, namely, the arrangement

xj − xk = 0 for all 1 ≤ j < k ≤ n ,
xj − xk = 1 for all 1 ≤ j < k ≤ n with jk ∈ E ,

where E is the edge set of a given fixed graph on n vertices (see also [1]). It would be interesting
if parking graphs could shed any further light upon these arrangements.

Finally, it could be interesting to study possible connections of this work with the chromatic
theory for gain graphs initiated by Berthomé, Cordovil, Forge, Ventos, and Zaslavsky; see, in
particular, [5, Section 8].
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