Deleting edges from Ramsey minimal examples a paper written leaving the "scaffholding in place" by Robert Cowen Queens College (CUNY)

1. Introduction. A famous remark attributed to Carl F. Gauss is "no self-respecting architect leaves the scaffolding in place after completing the building." This style of presenting mathematical research is surely elegant and economical; however it gives the reader almost no insight into how the results were actually obtained. In this note, I will describe in some detail how I was led to make a conjecture and the process that finally led me to a proof of the conjecture. The result is in an area of mathematics called Ramsey Theory. Ramsey theory is a flourishing area of graph theory with an enormous number of difficult open problems (see [2]). I am certainly not an expert in Ramsey Theory, never having done any research in this area before, and was not intending to do any original research when I began this project. Rather, I wanted to use some problems from Ramsey Theory to illustrate using Boolean computation for a paper that I was writing for the *Mathematica* Journal[1]. Most of my research involves logic, set theory and some graph theory (see my webpage[2]). The idea for the *Mathematica* paper was to take some combinatiorial problems, in this case, some standard problems from Ramsey Theory, translate them into *Mathematica*'s logical language and use its "industrial strength" Boolean computational capability to "solve" these problems. I felt that *Mathematica*'s Boolean capability was under-utilized and wanted to encourage others to make use of it.

2. <u>Ramsey Theory Preliminaries</u>. If *n* is a positive integer, K_n , denotes the complete graph on *n* vertices; that is, the graph with *n* vertices that contains every possible edge between these vertices. If *s*, *t* are positive integers, the Ramsey number, r(s, t) is the smallest integer *p*, such that if the edges of K_n are colored either red or blue, there must be either a red K_s or a blue K_t . Interchanging colors implies, r(s, t) = r(t, s). It is a well-known theorem, due to Frank Ramsey, that *p* exists, for each *s* and *t* (see, for example, [5]). If r(s, t) = p, we shal call K_p a *Ramsey Minimal Example*. Thus if K_p is a Ramsey Minimal Example, there is a red/blue edge coloring of K_{p-1} without a red K_s or a blue K_t . Thus, it is natural to ask: how many edges, *e*, must be removed from K_p before we can red/blue color the edges without getting a red K_s or a blue K_t ? Since K_{p-1} has such a coloring and and K_p can be obtained from K_{p-1} by adding a new vertex and p - 1 edges, $1 \le e \le p - 1$. It is well known that r(3,3) = 6 (see [3],[4],[5]) and Figure 1 shows that e = 1, when p = 6, since neither the red or blue subgraph contains a triangle.

Utilizing Mathematica's Boolean capability I was able to show that in several other cases the answer also was e=1(some of these examples appear in [1]). I began to conjecture that this might always be true, but didn't have any ideas on how to prove or disprove it nor did I know if anyone had already solved this problem. I tried a "Google search" for this or related results. After several attempts, I entered the search terms: "removing edges ramsey theory" and the second entry displayed by the search was [3]. On this site I found a result from a paper by S. Golumb [4], attributed to his student, Herbert Taylor, that was a special case of the result I wanted to prove. The special case was when K_s and K_t are both triangles; however, the proof given in [4] was easily adapted to prove my conjecture.

<u>Theorem</u>. Suppose r(s, t) = p. If G results from K_p by deleting a single edge, then G has a red/blue edge coloring and with respect to this coloring there is neither a red K_s or a blue K_t .

<u>Proof</u>. Let *P* be a vertex of K_{p-1} and let P_1 be a new vertex. Connect P_1 to each vertex *Q* of K_{p-1} , except *P*, by a new edge, P_1Q . Let us denote by L_{p-1} , the graph that results from K_{p-1} by replacing *P* by P_1 and each edge *PQ*, $Q \neq P$, by P_1Q . Then L_{p-1} is isomorphic to K_{p-1} . (In Figure 2, p = 9, so K_{p-1} and L_{p-1} are isomorphic to K_8) Also, *G* is isomorphic to $K_{p-1} \cup L_{p-1}$, the graph whose vertex set is the union of the vertex sets of K_{p-1} and L_{p-1} and whose edge set is the union of the edge sets of K_{p-1} and L_{p-1} . We construct an edge coloring, σ , of *G* as follows. Choose a red/blue edge coloring, γ for K_{p-1} that does not have either a red K_s or a blue K_t . Extend this coloring to a coloring σ of $K_{p-1} \cup L_{p-1}$, by coloring the additional edges, P_1Q , the same color that PQ received under γ . Then the subgraph L_{p-1} also has the property that it does not contain a red K_s or a blue K_t with respect to the coloring σ . Any complete subgraph of *G* cannot contain both *P* and P_1 , since there is no edge, PP_1 in *G*. Therefore, any K_s that is a subgraph of *G*, is either a subgraph of K_{p-1} (if it does not contain P_1) or a subgraph of L_{p-1} (if it does not contain P_1).

<u>Conclusion</u>. I have found, in my own research, asking questions and doing computer "experiments," often leads to new theorems. Gauss, it should be remembered was a calculating prodigy and might have discovered many of his results this way as well. Unfortunately, by "removing the scaffolding," he also hid his methods of discovery.

References.

1. R. Cowen, Using Boolean Computation to Solve Some Problems from Ramsey Theory, The *Mathematica* Journal, to appear.

2. R. Cowen, webpage: https://sites.google.com/site/robertcowen/

3. Ramsey's Theorem - Interactive Mathematics Miscellany and Puzzles,

www.cut - the - knot.org/arithmetic/combinatorics/Ramsey.shtml

4. S. W. Golomb, Ramsey's theorem is sharp, Mathematics Magazine 79(2006), 304 - 306.

5. R.L.Graham, B.Rothschild, and J.Spencer, Ramsey Theory, Wiley, New York, 1980