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1. Introduction. A famous remark attributed to Carl F. Gauss is  “no self-respecting architect leaves the scaffolding 
in place after completing the building.” This style of presenting mathematical research is surely elegant and 
economical; however it gives the reader almost no insight into how the results were actually obtained. In this note, 
I will describe in some detail how I was led to make a conjecture  and the process that finally led me to a proof of 
the conjecture. The result is in an area of mathematics called Ramsey Theory. Ramsey theory is a flourishing area 
of graph theory with an enormous number of difficult open problems (see [2]).  I am certainly not an expert in 
Ramsey Theory, never having done any research in this area before, and was not intending to do any original 
research when I began this project. Rather, I wanted to use some problems from Ramsey Theory to illustrate using 
Boolean computation for a paper that I was writing for the Mathematica Journal[1]. Most of my research involves 
logic, set theory and some graph theory (see my webpage[2]).   The idea for the Mathematica paper was to take 
some combinatiorial problems, in this case, some standard problems from Ramsey Theory,  translate them into 
Mathematica’s logical language and use its “industrial strength” Boolean computational capability to “solve” these 
problems. I felt that Mathematica’s Boolean capability was under-utilized and wanted to encourage others to make 
use of it. 
2. Ramsey Theory Preliminaries. If n is a positive integer, Kn, denotes the complete graph on n vertices; that is, the 
graph with n vertices that contains every possible edge between these vertices.  If s, t are positive integers, the 
Ramsey number, r(s, t) is the smallest integer p, such that if the edges of Kn are colored either red or blue, there 
must be either a red Ks or a blue Kt. Interchanging colors implies, r(s, t) = r(t, s).  It is a well-known theorem, due 
to Frank Ramsey, that p exists, for each s and t (see, for example, [5]). If r(s, t ) = p, we shal call Kp a Ramsey 
Minimal Example. Thus if Kp is a Ramsey Minimal Example, there is a red/blue edge coloring of Kp-1without a 
red Ks or a blue Kt. Thus, it is natural to ask: how many edges, e,  must be removed from Kp before we can 
red/blue color the edges without getting a red Ks or a blue Kt? Since Kp-1 has such a coloring and 
and Kp can be obtained from Kp-1 by adding a new vertex and p - 1 edges, 1 § e § p - 1. It is well known that r(3,3) 
= 6 (see [3],[4],[5]) and Figure 1 shows that e =1, when p = 6, since neither the red or blue subgraph contains a 
triangle.



Figure 1
 Utilizing Mathematica’ s Boolean capability I was able to show that in several other cases the answer also was 
e=1(some of these examples appear in [1]). I began to conjecture that this might always be true, but didn’t have 
any ideas on how to prove or disprove it nor did I know if anyone had already solved this problem.  I tried a 
“Google  search” for this or related results.  After several attempts, I entered the search terms:  “removing edges 
ramsey theory” and the second entry displayed by the search was [3]. On this site I found a result from a paper by 
S. Golumb [4], attributed to his student, Herbert Taylor, that was a special case of the result I wanted to prove. The 
special case was when Ks and Kt are both triangles; however, the proof given in [4] was easily adapted to prove my 
conjecture.

Figure 2

Theorem. Suppose r(s, t) = p. If G results from Kp by deleting a single edge, then G has a red/blue edge coloring 
and with respect to this coloring there is neither a red Ks or a blue Kt.
Proof. Let P be a vertex of Kp-1 and let P1 be a new vertex. Connect P1 to each vertex Q of Kp-1, except P, by a 
new edge, P1Q. Let us denote by Lp-1, the graph that results from Kp-1 by replacing P by P1 and each edge PQ, 
Q¹≠P, by P1 Q. Then Lp-1 is isomorphic to Kp-1. (In Figure 2, p = 9, so Kp-1 and Lp-1 are isomorphic to K8) Also, 
G is isomorphic to Kp-1‹ Lp-1, the graph whose vertex set is the union of the vertex sets of  Kp-1 and Lp-1 and 
whose edge set is the union of the edge sets of Kp-1 and Lp-1. We construct an edge coloring, s, of G  as follows. 
Choose a red/blue edge coloring, g for Kp-1 that does not have either a red Ks or a blue Kt. Extend this coloring to 
a coloring s of Kp-1‹ Lp-1, by coloring the additional edges, P1 Q, the same color that PQ  received under g. 
Then the subgraph Lp-1 also has the property that it does not contain a red Ks or a blue Kt with respect to the 
coloring s.  Any complete subgraph of G cannot contain both P and P1, since there is no edge, PP1 in G.  There-
fore, any Ks that is a subgraph of G, is either a subgraph of Kp-1Hif it does not contain P1L or a subgraph of Lp-1(if 
it does not contain P). In either case Ks is not colored red by s.  Similarly Kt is not colored blue by s.
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Conclusion. I have found, in my own research, asking questions and doing computer “experiments,”  often leads to 
new theorems.  Gauss, it should be remembered was a calculating prodigy and might have discovered many of his 
results this way as well. Unfortunately, by “removing the scaffolding,” he also hid his methods of discovery. 
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