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BESICOVITCH, BISECTION, AND THE NORMALITY OF

0.(1)(4)(9)(16)(25) . . .

P. POLLACK AND J. VANDEHEY

Abstract. We revisit Besicovitch’s 1935 paper in which he introduced several tech-
niques that have become essential elements of modern combinatorial methods of nor-
mality proofs. Despite his paper’s influence, the results he inspired are not strong enough
to reprove his original result. We provide a new proof of the normality of the constant
0.(1)(4)(9)(16)(25) . . . formed by concatenating the squares, updating Besicovitch’s meth-
ods.

1. Introduction

A real number x is said to be normal (to base 10) if every string of decimal digits appears
in the decimal expansion of x as frequently as every other string of the same length, so the
digit 4 should appear as often as 9, and 299 should appear as often as 058. More concretely,
given a fixed integer base g ≥ 2, let ν(x,N, s) denote the number of times the string s,
consisting of k base g digits, appears in the first N digits of the base g expansion for x:
then x is normal to base g if for every non-empty string s, we have

(1) lim
N→∞

ν(x,N, s)

N
=

1

gk
.

Borel showed that almost all real numbers are normal to a given base g, in the sense
that the set of numbers that are not normal has Lebesgue measure 0. Despite this, to this
day, no well-known mathematical constant, such as e, π, or ln 2, is known to be normal to
any integer base. All known examples of normal numbers were numbers constructed to be
normal.

The first such explicit construction was given by Champernowne [4]: he showed that if we
concatenate all the integers in succession—like so, 0.123456789101112 · · ·—then the result-
ing number is normal to base 10. Champernowne’s result inspired many mathematicians
to look at sequences of positive integers {an}∞n=1 which make the number 0. sa1 sa2 sa3 sa4 · · ·
normal in a given base. Here, given an integer a, we shall let sa denote the string composed
of its base g digits.

Shortly after Champernowne, Besicovitch studied the sequence an = n2. Although it
is commonly stated that Besicovitch proved that the number xB = 0.14916253649 · · · is
normal to base 10, in fact he showed a different result from which the normality of xB can
be derived relatively quickly. Nonetheless, Besicovitch’s work was important for two main
reasons.
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First, Besicovitch’s result inspired Davenport and Erdős [6] to develop a method of
proving normality through exponential sum estimates, and they used this method to show
that if f(n) is a positive, non-constant, integer-valued polynomial, then 0. Ěf(1) Ěf(2) Ěf(3) . . .
is a normal number to the given base. (Taking f(n) = n2, this gives a second proof that xB
is normal to base 10.) This has given rise to what we call the analytic method of normality
proofs, which has resulted in a number of different normality results by applying different
results on exponential sums (see, for example, [9, 10, 13]).

Second, Besicovitch’s result inspired the definition of an integer being (ǫ, k)-normal. Let
ν(a, s) denote the number of times the finite string s appears in sa, and let L(a) denote the
number of digits in the string sa. Then an integer n is said to be (ǫ, k)-normal if

∣

∣

∣

∣

ν(a, s)

L(a)
− 1

gk

∣

∣

∣

∣

≤ ǫ

for every string s with k digits. This definition inspired the following result, which may be
called the combinatorial method of normality proofs.

Theorem 1. Consider a sequence {an}∞n=1. Suppose that the lengths of the strings Ďan are
growing on average, but that no one length dominates; more precisely, suppose that as m
tends to infinity, we have

(2) m = o

(

m
∑

n=1

L(an)

)

and m · max
1≤n≤m

L(an) = O

(

m
∑

n=1

L(an)

)

.

In addition, suppose that for any fixed ǫ > 0 and k ∈ N, almost all an are (ǫ, k)-normal, in
the sense that the number of n ≤ m for which an is not (ǫ, k)-normal is o(m) as m tends
to infinity again.

Then x = 0.sa1sa2sa3sa4 . . . is normal.

Here, we use the notation f(x) = O(g(x)) to mean that |f(x)/g(x)| ≤ C for some
constant C (called an implicit constant), and the notation f(x) = o(g(x)) to mean that
f(x)/g(x) approaches 0 as x approaches infinity. We shall also use the notation f(x) ∼ g(x)
to mean f(x) = g(x)(1 + o(1)) or, equivalently, limx→∞ f(x)/g(x) = 1.

Theorem 1 says, in essence, that if almost all an exhibit small-scale normality results, then
we expect the full number x to exhibit large-scale normality results. Although Theorem 1
is implicitly used in almost every combinatorial normality proof, we are unaware of it ever
being given explicitly in the literature, and so provide a proof in Section 2.

Copeland and Erdős [5] gave a fairly powerful counting result on the number of integers
that are not (ǫ, k)-normal. The first half of the following proposition is due to them; the
second half is derived from Lemma 4.7 in [3].

Proposition 2. Let ǫ > 0 and k ∈ N be fixed.
There exists a δ = δ(ǫ, k) > 0 such that the number of integers in the interval [1,m] that

are not (ǫ, k)-normal is at most m1−δ for all sufficiently large m.
There also exists a δ′ = δ′(ǫ, k) > 0 such that the number of base-g strings of length

ℓ (including those that start with 0) that are not (ǫ, k)-normal is at most gℓ(1−δ) for all
sufficiently large ℓ.
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Combining Theorem 1, the first half of Proposition 2, and the Prime Number Theorem,
it is immediate that the Copeland-Erdős number 0.2357111317 . . . , formed by taking an to
be the nth prime, is normal to base 10.

Many early normality results focused on sequences {an}∞n=1 that were increasing. More
recent variants have allowed more chaotic and oscillating functions an = f(n) to be consid-
ered. Recently, the authors of this note looked at functions f(n) that are almost bijective,
which we shall define in the following way.

First, we say a set S ⊂ N is meager if #{n ∈ S : n ≤ m} ≤ m1−δ for some fixed
δ > 0 and all sufficiently large m. We say a set S ⊂ N has asymptotic density 0 if
#{n ∈ S : n ≤ m} = o(m). We say a function f : N → N is almost bijective if the
pre-image of any meager set has asymptotic density 0.

By Proposition 2, the set of integers which are not (ǫ, k)-normal is a meager set. Thus,
if f : N → N is almost bijective, then f(n) will be (ǫ, k)-normal for almost all n. This gives
the following variant on the combinatorial method, which appears explicitly in [11]:

Theorem 3. Suppose the function f : N → N is almost bijective. If, in addition,

m = o

(

m
∑

n=1

L(an)

)

and m · max
1≤n≤m

L(an) = O

(

m
∑

n=1

L(an)

)

then x = 0. Ěf(1) Ěf(2) Ěf(3) . . . is normal.

This result covers a fairly wide variety of functions. De Koninck and Kátai [7, 8] implicitly
applied this result with certain variants of the largest prime divisor function. Pollack and
Vandehey [11] showed that one could take f(n) to be various classical number-theoretic
functions, including the Euler totient function and the sum-of-divisors function. Szüsz and
Volkmann [12] gave fairly general analytic conditions guaranteeing that the values f(n) are
(ǫ, k)-normal for almost all n. (See the following table for some explicit examples.)

Function Discoverer Resulting normal number

P (n), the largest prime
divisor of n

De Koninck and Kátai 0.123253723511213 . . .

φ(n), the Euler totient
function

Pollack and Vandehey 0.112242646410412 . . .

σ(n), the sum of the di-
visors of n

Pollack and Vandehey 0.1347612815131812 . . .

⌊n1/2⌋, the floor of the
square root of n

Szüsz and Volkmann 0.1112222233333334 . . .

Despite all these results inspired by Besicovitch’s work, none of them are strong enough to
prove the normality of xB = 0.14916253649 . . . .1 In particular, for the function f(n) = n2,
the pre-image of the meager set S = {n2 : n ∈ N} is the whole domain N.

1Szusz and Volkmann mistakenly claim that their result is strong enough to prove a result like this. In
Theorem 2 of their paper, they need an additional condition that β ≤ 1, because if β > 1 then the bound
in line (3.11) would be Mk = O(1), which would cause their condition (v) to fail.
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Our goal in the rest of this paper is to update and simplify the proof of the normality of
xB = 0. Ěf(1) Ěf(2) . . . with f(n) = n2 and some integer base g ≥ 2, to reflect modern work
on normal numbers, in the hope that it can inspire further combinatorial results. In Section
2, we prove Theorem 1. In Sections 3–5, we present our proof of the normality of xB. In
Section 6, we briefly discuss how our proof differs from Besicovitch’s and the difficulties in
extending this method combinatorially.

2. Proof of Theorem 1

Consider a sequence {an}∞n=1 satisfying the conditions of Theorem 1. Let x = 0. sa1 sa2 sa3 . . .
in the appropriate base g. To show that x is normal to base g, we must show for any given
string s of length k that

lim
N→∞

ν(x,N, s)

N
=

1

gk
.

We fix an ǫ > 0, which will be allowed to tend towards zero at the end of the proof.
For a given integer N , let m = m(N) be such that the Nth digit of x lies in the string

given by Ďam. Then
m−1
∑

n=1

L(an) < N ≤
m
∑

n=1

L(an).

The second part of (2) implies that L(am) = o(
∑m

n=1 L(an)), so we have that N ∼
∑m

n=1 L(an), m = o(N), and L(am) = o(N). Therefore,

ν(x,N, s) = ν( sa1 sa2 . . . Ďam, s) +O(L(f(m))) = ν( sa1 sa2 . . . Ďam, s) + o(N).

The number of times a string of length k can appear in sa1 sa2 . . . Ďam starting in some Ďan
and ending in some Ďan′ with n < n′ is at most km = o(N). Therefore,

ν(x,N, s) = ν( sa1 sa2 . . . Ďam, s) + o(N) =
∑

n≤m

ν(Ďan, s) + o(N).

Let T ⊂ N be the set of integers n such that an is not (ǫ, k)-normal. Note that by the
assumptions of the theorem, we have #{n ≤ m : n ∈ T} = o(m). We always have that
ν(Ďan, s) = O(L(an)), and therefore

∑

n≤m
n∈T

ν(Ďan, s) = O







∑

n≤m
n∈T

L(an)






= O






max
n≤m

L(an) ·
∑

n≤m
n∈T

1







= o

(

m ·max
n≤m

L(an)

)

= o (N) .

Now we let S = N \ T be the set of integers n such that an is (ǫ, k)-normal. If n ∈ S
then ν(Ďan, s) = L(an)g

−k +O(ǫL(an)), and thus
∑

n≤m
n∈S

ν(Ďan, s) =
∑

n≤m
n∈S

(

L(an)
(

g−k +O(ǫ)
))
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= g−k







∑

n≤m

L(an)−
∑

n≤m
n∈T

L(an)






+O






ǫ ·
∑

n≤m
n∈S

L(an)







= g−k (N(1 + o(1)) + o(N)) +O



ǫ ·
∑

n≤m

L(an)





= g−kN + o(N) +O(ǫN)

Since the sum over n ≤ m is equal to the sum over n ≤ m with n ∈ S plus the sum over
n ≤ m with n ∈ T , we have shown that

ν(x,N, s)

N
= g−k + o(1) +O(ǫ).

Since ǫ > 0 was arbitrary, ν(x,N, s)/N → g−k as N → ∞.

3. Cutting the squares in half

From here on, we shall be interested in the specific case when an = f(n) = n2 with a
fixed integer base g ≥ 2. Implicit constants may depend on g.

In this case we have L(f(n)) = ⌊logg f(n)⌋+ 1 = 2 logg n+O(1), and thus

(3)
m
∑

n=1

L(f(m)) =
2

log g
m logm(1 + o(1)).

Here the sum of logg(n) has been estimated using the proof of the integral test. It is clear

from (3) that an = n2 satisfies the restrictions on L(an) from the statement of Theorem 1.

To prove the normality of xB = 0. Ěf(1) Ěf(2) Ěf(3) . . . in this case, it suffices by Theorem 1
to show that for a fixed ǫ > 0 and k ∈ N, that the number of n ∈ [1,m] for which f(n) is
not (2ǫ, k)-normal is o(m) as m tends to infinity. (Note that using 2ǫ is intentional here.)

Let δ = δ(ǫ, k) be the constant from Proposition 2, and let m′ = ⌊m1− δ
2 ⌋. We may ignore

values of n ∈ [1,m′ − 1], since there are only o(m) of these.
Let ℓ := ⌊L(f(m))/2⌋. For sufficiently large m, we have L(f(n)) > ℓ for all n ∈ [m′,m].
We now consider two new auxiliary functions b(n,m) and c(n,m) for a fixed m. We let

b(n,m) = ⌊n2/gℓ⌋, and we let c(n,m) be the least nonnegative residue of n2 modulo gℓ.

While we shall define Ğb(n,m) in the usual way as the string of base g digits of b(n,m), we

shall modify our definition slightly for Ğc(n,m). If c(n,m) has fewer than ℓ base g digits,

then append enough 0’s to the beginning of the string Ğc(n,m) so that it has length ℓ.
With these definitions, the string Ęf(n) is the concatenation of Ğb(n,m) and Ğc(n,m), for

all n ∈ [m′,m]. As a quick example, consider m = 500 and n = 179. Then f(m) = 250000,
so that l = 3, and f(n) = 32041. In this case, b(n,m) = 32 and c(n,m) = 41, so that
Ğb(n,m) = 32 and Ğc(n,m) = 041.

Since Ęf(n) has close to 2ℓ digits, and both Ğb(n,m) and Ğc(n,m) have approximately ℓ
digits, we may think of this as bisecting f(n) into halves.

Now we make two claims which we will prove in subsequent sections:
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Claim. The number of n ∈ [m′,m] for which Ğb(n,m) is not (ǫ, k)-normal is o(m) as m
tends to infinity.

Claim. The number of n ∈ [m′,m] for which Ğc(n,m) is not (ǫ, k)-normal is o(m) as m
tends to infinity.

We now finish proving the normality of xB assuming these two claims.
Suppose that both Ğb(n,m) and Ğc(n,m) are (ǫ, k)-normal. Then

ν(f(n), s) = ν( Ğb(n,m), s) + ν( Ğc(n,m), s) +O(k)

= L( Ğb(n,m))(g−k +O(ǫ)) + L( Ğc(n,m))(g−k +O(ǫ)) +O(k)

= L(f(n))(g−k +O(ǫ)) +O(k).

(Here we are using the big-O notation with implicit constant 1 in all cases.) Since k =
O(ǫL(f(n))) for all n ∈ [m′,m] provided m is sufficiently large, we have that f(n) is

(2ǫ, k)-normal in this case. So f(n) is not (2ǫ, k)-normal only if Ğb(n,m) or Ğc(n,m) is not
(ǫ, k)-normal, and there are only o(m) such n in the interval [m′,m] by our two claims.
This completes the proof.

4. How often is the first half of n2 normal?

Here we will prove that the number of n ∈ [m′,m] for which Ğb(n,m) is not (ǫ, k)-normal
is o(m) as m tends to infinity. This is comparatively simple. As the first half of the
digits of f(n) grow fairly regularly, they cannot take any given non-(ǫ, k)-normal value too
frequently.

Recall that b(n,m) = ⌊n2/gℓ⌋. For the remainder of this section we will often suppress
the dependence on m and just write b(n).

Since ℓ ≥ logg m− 1, we have gℓ ≥ m/g, and thus b(n) is always in the interval [1, gm].

By the first half of Proposition 2, there are at most (gm)1−δ integers in the interval [1, gm]
that are not (ǫ, k)-normal.

Now suppose that m′ ≤ n1 < n2 ≤ m. Then, since we have ℓ ≤ logg m+ 1 as well,

b(n2)− b(n1) =
n2
2 − n2

1

gℓ
+O(1) = g−ℓ(n2 − n1)(n2 + n1) +O(1)

≥ (gm)−1(n2 − n1)(2m
′) +O(1)

Thus, if n2 − n1 ≥ m3δ/4, then

b(n2)− b(n1) ≥ (gm)−1 ·m3δ/4 · 2m′ +O(1) ≥ 2g−1mδ/4 +O(1).

Thus, for sufficiently large m, we have b(n1) 6= b(n2) for n2 − n1 ≥ m3δ/4. Since b(n) is
non-decreasing, this means that b(n) can take a given value in the interval [1, gm] at most

m3δ/4 times. Since there are at most (gm)1−δ integers in the interval [1, gm] that are not

(ǫ, k)-normal, we have that at most O(m1−δ/4) = o(m) of the integers n ∈ [m′,m] have
Ğb(n,m) not (ǫ, k)-normal.
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5. How often is the second half of n2 normal?

Here we will prove that the number of n ∈ [m′,m] for which Ğc(n,m) is not (ǫ, k)-normal
is o(m) as m tends to infinity. As before, we will write c(n) in place of c(n,m).

Let B be the set of integers b ∈ [0, gℓ − 1] such that sb is not (ǫ, k)-normal. Here again,
we assume sb to be padded with initial zeros so as to have length ℓ. By the second half of
Proposition 2, the cardinality of B is at most gℓ(1−δ′) for a certain δ′ = δ′(ǫ, k) > 0.

How often is c(n) ∈ B? Since [m′,m] ⊂ [1, gℓ+1], the number of n ∈ [m′,m] with c(n) ∈ B
is at most the g times the count of such n in [1, gℓ]. By Cauchy–Schwarz,

∑

1≤n≤gℓ

c(n)=b

1 =
∑

b∈B

#{1 ≤ n ≤ gℓ | n2 ≡ b (mod gℓ)}

≤
(

∑

b∈B

1

)1/2(
∑

b∈B

#{1 ≤ n1, n2 ≤ gℓ | n2
1 ≡ n2

2 ≡ b (mod gℓ)}
)1/2

.

We are now left with the problem of counting how many pairs of integers (x, y) there are
with 1 ≤ x, y ≤ gl and x2 ≡ y2 (mod gℓ). When g is a prime power, a satisfactory answer
is contained in the next lemma.

Lemma 4. Let p be a prime and e be a positive integer. The number of solutions to the
congruence x2 ≡ y2 (mod pe) is at most

{

2e · pe, if p is odd,

4e · pe, if p = 2.

Proof. Certainly, if p⌈e/2⌉ divides each component of the pair (x, y), then x2 ≡ y2 (mod pe).

There are (pe−⌈e/2⌉)2 solutions of this kind.

For all other solutions, p⌈e/2⌉ divides neither component. Group the remaining solutions
according to the largest exponent r for which pr | x. Then 0 ≤ r < e/2. Since p2r | pe |
x2 − y2 and p2r divides x2, we see that pr divides y. Write x = prx′ and y = pry′, and
notice that determining the pair (x, y) modulo pe amounts to determining the pair (x′, y′)
modulo pe−r. Now x2 ≡ y2 (mod pe) precisely when

(4) x′2 ≡ y′2 (mod pe−2r).

This final congruence looks very similar to the one we started with, and one might wonder
if we have gained anything. Indeed we have: by the maximality of r, we know that x′

must be coprime to p, which forces y′ to be coprime to p as well. In other words, x′ and y′

represent elements of the unit group modulo pe−2r.
The key word here is “group.” As was known to Gauss, if p is an odd prime, the units

group modulo pe−2r is cyclic of order pe−2r(1−1/p). In any cyclic group of even order, each
element has precisely two square roots. So if p is odd, the congruence (4) has 2pe−2r(1−1/p)
solutions modulo pe−2r, and so has p2r · 2pe−2r(1 − 1/p) = 2pe(1 − 1/p) solutions modulo
pe−r. Putting everything together, we see that the number of solutions to x2 ≡ y2 (mod pe)
is exactly

2pe(1− 1/p)⌈e/2⌉ + (pe−⌈e/2⌉)2.
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Here we used that the number of integers in the range 0 ≤ r < e/2 is precisely ⌈e/2⌉.
What if p = 2? In this case, the group of units modulo pe−2r is either cyclic or the

direct sum of two cyclic groups, and so each element can have at most four square roots.
Modifying the above argument accordingly, we find that the number of solutions in this
case is at most 4pe(1− 1/p)⌈e/2⌉ + (pe−⌈e/2⌉)2.

Finally, it is straightforward to check that these bounds do not exceed the upper bounds
specified in the statement of the lemma. �

Now suppose that g has the prime factorization pe11 pe22 . . . p
ej
j . We use the above lemma

combined with the Chinese Remainder Theorem to see that the number solutions to x2 ≡ y2

(mod gℓ) is at most 2(
∏j

i=1 2eiℓ)g
ℓ, where the initial 2 comes from the possibility that 2 is

a factor of g. Since gℓ ≤ gm and ℓ ≤ logg m+1, the total number of pairs is O((logm)jm).

Thus, the number of n ∈ [m′,m] for which c(n) belongs toB is is O(
√
#B·(logm)j/2m1/2).

Recalling that #B ≤ gℓ(1−δ′) while gℓ ≤ gm, we see that #B = O(m1−δ′). Since (logm)j/2

is smaller than mδ′/4 for large m, our final count of n is O(m1−δ′/4), which is o(m). This
completes the proof.

6. Revisiting and extending Besicovitch

As mentioned earlier, the main result of Besicovitch’s paper was not a proof that xB =
0.1491625 · · · is normal base 10. What Besicovitch showed was that, almost all of the
integers n2, for n ∈ N, are (ǫ, 1)-normal to a given base g ≥ 2.

Besicovitch, like we did above, split the string Ďn2 into approximate halves. His method
for showing that the first half has good normality properties is very similar to the method
we used. His method for the second half is a long direct counting argument quite different
from ours. Besicovitch relies heavily on results from Diophantine approximation about how
well real numbers can be approximated by rational numbers with small denominators.

It’s natural to ask if we could show combinatorially that n3 is (ǫ, k)-normal for almost

all n. We could divide the string Ďn3 into 3 roughly equal length pieces as we did with Ďn2.
The methods of Section 4 (and those of Besicovitch) would show that the first third of Ďn3

would almost always be (ǫ, k)-normal. The methods of Section 5, with minor modifications2,

would show the same for the last third of Ďn3. (Besicovitch’s methods would not work here
due to the limits of Diophantine approximation of real numbers.) However, neither our

methods nor Besicovitch’s would be sufficient to show the middle third of Ďn3 is almost
always (ǫ, k)-normal. New techniques are required for that.
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