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Abstract. We determine all pairs of real numbers (α, β) such that the dilated floor functions bαxc
and bβxc commute under composition, i.e., such that bαbβxcc = bβbαxcc holds for all real x.

1. Introduction

The floor function bxc rounds a real number down to the nearest integer. The ceiling function
dxe, which rounds up to the nearest integer, satisfies

(1) dxe = −b−xc.

These two fundamental operations discretize (or quantize) real numbers in different ways. The
names floor function and ceiling function, along with their notations, were coined in 1962 by
Kenneth E. Iverson [5, p. 12], in connection with the programming language APL. Graham, Knuth,
and Patashnik [4, Chap. 3] note this history and give many interesting properties of these functions.

We study the floor function applied to a linear function `α(x) = αx, yielding the dilated floor
function fα(x) = bαxc, where α is a real number. Dilated floor functions arise in constructing digital
straight lines, which are “lines” drawn on two-dimensional graphic displays using pixels, and are
discussed further below. This note addresses the question: When do two dilated floor functions
commute under composition of functions? Linear functions always commute under composition
and satisfy the identities

(2) `α ◦ `β(x) = `β ◦ `α(x) = `αβ(x) for all x ∈ R.

However, discretization generally destroys such commutativity. We have the following.

Theorem 1. The complete set of all (α, β) ∈ R2 such that

bαbβxcc = bβbαxcc

holds for all x ∈ R consists of:
(i) three continuous families (α, α), (α, 0), (0, α) for all α ∈ R;

(ii) the infinite discrete family {
(α, β) =

(
1
m
,

1
n

)
: m, n ≥ 1

}
,

where m, n are positive integers. (The families overlap when m = n.)
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The interesting feature of this classification is the existence of the infinite discrete family (ii)
of solutions where commutativity survives. The family (ii) fits together to form an infinite family
of pairwise commuting functions Tm(x) := f1/m(x) = b 1

m xc for integers m ≥ 1. Moreover, these
functions satisfy for all m, n ≥ 1 the further relations

Tm ◦ Tn(x) = Tn ◦ Tm(x) = Tmn(x) for all x ∈ R,

which are the same relations satisfied by composition of linear functions (2).
One can ask an analogous question for dilated ceiling functions: When do two dilated ceiling

functions commute? The resulting classification turns out to be identical. To see this, set gα(x) :=
dαxe. Using the identity (1), we deduce that for any α, β,

fα ◦ fβ(x) = −gα ◦ gβ(−x), for all x ∈ R.

Since x 7→ −x is a bijection of the domain R to itself, we see that gα and gβ commute under
composition if and only if fα and fβ commute under composition.

The commuting family (ii) was noted by Cardinal [3, Lemma 6] in a number-theoretic context.
He studied certain semigroups of integer matrices, constructed using the floor function, from which
he constructed a family of symmetric integer matrices that he related to the Riemann hypothesis.
Also from this number-theoretic perspective, symmetry properties of the solutions may be impor-
tant. Both sets of solutions (i) and (ii) are invariant under exchange (α, β) to (β, α). However:

(1) The set of all continuous solution parameters (i) is invariant under the reflection symmetry
taking (α, β) to (−α,−β), while the discrete solutions (ii) break this symmetry.

(2) If one restricts to strictly nonzero parameters, then the continuous solution parameters (i)
are invariant under the symmetry taking (α, β) to ( 1

α
, 1
β
), while the discrete solutions (ii)

break this symmetry.
In the next section we prove Theorem 1, and in the final section, we discuss the problem in the

general context of digital straight lines.

2. Proof of Theorem 1

Two immediate cases where commutativity holds are α = 0 or β = 0: In these cases, the
functions fα and fβ commute since their composition is the zero function. In what follows, we
suppose that αβ , 0, and then we reparameterize the problem in terms of inverse parameters
(1/α, 1/β), which will simplify the resulting formulas.

We prove Theorem 1 by a case analysis that depends on the signs of α and β. The proofs analyze
the jump points in the graphs of f1/α ◦ f1/β(x). We define for real y the upper level set at level y:

S 1/α,1/β(y) := {x : f1/α ◦ f1/β(x) ≥ y} = ( f1/α ◦ f1/β)−1[y,∞).

The commutativity property asserts the equality S 1/α,1/β(n) = S 1/β,1/α(n) of upper level sets for all
n ∈ Z, and the converse holds because the range of f1/α ◦ f1/β is a subset of Z. The key formulas
are identities determining these upper level sets given in Lemmas 1 and 4, leading to formulas
characterizing commutativity when α, β > 0 and α, β < 0 given in Lemmas 2 and 5, respectively.

Case 1. Both α and β are positive. We begin with a formula for the upper level sets at integer
points.
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Lemma 1. For α, β > 0 and each n ∈ Z, the upper level set is

S 1/α,1/β(n) =
[
βdnαe,∞) .

Proof. We have the following implications:

x ∈ S 1/α,1/β(n)⇔
⌊

1
α

⌊
1
β

x
⌋⌋
≥ n (by definition)

⇔
1
α

⌊
1
β

x
⌋
≥ n (the right side is in Z)

⇔

⌊
1
β

x
⌋
≥ nα (since α > 0)

⇔

⌊
1
β

x
⌋
≥ dnαe (the left side is in Z)

⇔
1
β

x ≥ dnαe (the right side is in Z)

⇔ x ≥ βdnαe (since β > 0). �

Lemma 2. For α, β > 0, the function f1/α commutes with f1/β if and only if the equality

(3) βdnαe = αdnβe

holds for all integers n ∈ Z.

Proof. By Lemma 1, we have x ∈ S 1/α,1/β(n) if and only if x ≥ βdnαe. Similarly, x ∈ S 1/β,1/α(n) if
and only if x ≥ αdnβe, so that commutativity of the functions is equivalent to the desired equality
of ceiling functions. �

Lemma 3. For α, β > 0, the function f1/α commutes with f1/β if and only if either α = β or if α and
β are both positive integers.

Proof. If α = β then commutativity clearly holds. If α, β are both (positive) integers, then the
relation (3) holds for all n ∈ Z since the ceiling functions have no effect. Hence, commutativity
holds.

The remaining case is that where at least one of α, β is not an integer; without loss of generality,
assume α is not an integer. We write dαe = A ≥ 1, with A > α, and dβe = B ≥ 1. We show that
commutativity occurs only if α = β.

Starting from Lemma 2, the relation (3) can be rewritten

(4)
α

β
=
dnαe
dnβe

,

whenever the term dnβe is non-vanishing; here dnβe ≥ 1 holds for n ≥ 1.
Since α < A, there exists a finite n ≥ 2 such that dkαe = kA for 1 ≤ k ≤ n−1, while dnαe = nA−1.

Now, (4) requires
α

β
=

A
B

=
dkαe
dkβe

for all k ≥ 1.
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By induction on k ≥ 1, this relation implies dkβe = kB for 1 ≤ k ≤ n − 1. It also implies that
dnβe = nB or nB − 1. The relation (4) for k = n becomes

α

β
=

A
B

=
dnαe
dnβe

=
nA − 1
dnβe

,

which rules out dnβe = nB. Thus, dnβe = nB − 1, and we now have

A
B

=
nA − 1
nB − 1

.

Clearing denominators yields nAB − A = nAB − B, whence A = B. Thus, we have α
β

= A
B = 1, so

that α = β as asserted. �

Case 2. Both α and β are negative. We obtain a criterion which parallels Lemma 2 in the positive
case.

Lemma 4. For α, β < 0 and each n ∈ Z, the upper level set is

S 1/α,1/β(n) = (βbnαc + β,∞) .

Proof. We have the following implications:

x ∈ S 1/α,1/β(n)⇔
⌊

1
α

⌊
1
β

x
⌋⌋
≥ n (by definition)

⇔
1
α

⌊
1
β

x
⌋
≥ n (the right side is in Z)

⇔

⌊
1
β

x
⌋
≤ nα (since α < 0)

⇔

⌊
1
β

x
⌋
≤ bnαc (the left side is in Z)

⇔
1
β

x < bnαc + 1 (the right side is in Z)

⇔ x > βbnαc + β (since β < 0). �

Lemma 5. For α, β < 0, the function f1/α(x) commutes with f1/β(x) if and only if the equality

βbnαc + β = αbnβc + α

holds for all integers n ∈ Z.

Proof. By Lemma 4, we have x ∈ S 1/α,1/β(n) if and only if x > βbnαc + β. Similarly, we have
x ∈ S 1/β,1/α(n) if and only if x > αbnβc + α, so that commutativity of the functions is equivalent to
the desired equality. �

Lemma 6. For α, β < 0, the function f1/α commutes with f1/β if and only if α = β.

Proof. Choose n = 0 in Lemma 5. We obtain that α = β is a necessary condition for commutativity.
But this condition is obviously sufficient. �
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Case 3. α and β are of opposite signs.

Lemma 7. For (α, β) with αβ < 0, the function f1/α(x) never commutes with f1/β(x).

Proof. Without loss of generality, we may consider α > 0 and β < 0. It suffices to show
S 1/α,1/β(n) , S 1/β,1/α(n). We will see that both of these upper level sets start at −∞ and have a
finite right endpoint.

We first compute S 1/α,1/β(n). We can follow the same steps as in Lemma 1, except in the last
step where we have instead that x ∈ S 1/α,1/β(n) if and only if x ≤ βdnαe since β < 0. We obtain for
α > 0 and β < 0 that

S 1/α,1/β(n) = (−∞, βdnαe]

is a closed interval.
Next, we compute S 1/β,1/α(n). We can follow the same steps as in Lemma 4, except in the last

step where we have instead that x ∈ S 1/β,1/α(n) if and only if x < αbnβc + α since α > 0. We find
in this case that

S 1/α,1/β(n) = (−∞, αbnβc + α)

is an open interval. It follows that the two functions cannot commute. �

The case analysis is complete, and Theorem 1 follows.

3. Digital Straight Lines

The mathematical study of digital straight lines, which are “lines” drawn on two-dimensional
graphic displays represented by pixels, was initiated by A. Rosenfeld [9] in 1974. For more recent
work, see Klette and Rosenfeld [7] and Kiselman [6]. In drawing a digital image of the line
`α,γ(x) := αx + γ, a simple recipe is to associate to the abscissa n = bxc the pixel (bxc, bαbxc+ γc) ∈
Z2 (more complicated recipes are used in practice). Bruckstein [2] noted self-similar features of
digital straight lines, relating them to the continued fraction expansion of their slopes; see also
McIlroy [8]. In contrast, our proof of Theorem 1 does not require continued fractions.

From the digital straight line viewpoint, one can view bαbβxcc as a step function approximation
to the straight line `αβ(x) := αβx in the sense that the difference function

hα,β(x) := bαbβxcc − αβx

is a bounded function. This difference function is explicitly given by a combination of iterated
fractional part functions hα,β(x) = −α{βx} − {α(βx− {βx})} so is a bounded generalized polynomial
in the sense of Bergelson and Leibman [1]. The commutativity problem studied here is that of
determining when the generalized polynomial hα,β(x) − hβ,α(x) is identically zero.

Commutativity questions under composition can be considered for general digital straight lines
such as fα,γ(x) := bαx+γc. However, general linear functions `α,γ(x) = αx+γ with distinct nonzero
γ do not commute under composition. We do not know whether any interesting new commuting
pairs occur in this more general context.

Acknowledgement. The authors thank S. Mori for a helpful comment. The first author received
financial support from NSF grant DMS-1401224.
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